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A. Background
A.1. YOLO Object Detector

In this paper, we focus on the state-of-the-art one-stage
YOLO object detector and leverage its capabilities. Since
the emergence of YOLO’s first version [11], other versions
have been published to further enhance its performance [1,
5, 9, 10]. However, since YOLOv3 [10], the architectural
design of the network has not been altered substantially, and
this design serves as the foundation for the recent state-of-
the-art versions (e.g., YOLOv4 [1], YOLOv5 [5]). Our pro-
posed approach utilizes the latest version, YOLOv5.
Architecture. YOLO’s architecture is comprised of two
components: (a) a backbone network used to extract fea-
tures from the input image, and (b) three detection heads
which process the image’s features at three different scales.
These components are connected using the feature pyramid
network (FPN) [8] topology, where feature maps from dif-
ferent blocks of the backbone are concatenated to feature
maps of corresponding sizes in the detection heads. The
size of a detection head is determined by the size of the in-
put image and the network’s stride (downsampling factor) –
32, 16, and 8. This allows the network to detect objects
of different sizes: the first detection head (with the largest
stride) has a broader context, specializing in the detection
of large objects, while the smallest one has finer resolution
and specializes in the detection of small objects.
Detection layer. The last layer of each detection head pre-
dicts a 3D tensor of size W × H × (4 + 1 + Nc), where
W ×H is the grid size (W and H are the width and height,
respectively) and 4+ 1+Nc (which we refer to as a candi-
date) encodes three parts:
• Bounding box offsets - four coordinate offsets from a pre-

defined anchor box.
• Objectness score - a value that represents the model’s con-

fidence that the bounding box contains an object.
• Class scores - Nc confidence scores indicating the pres-

ence of specific class categories.
To be more precise, every cell in the grid predicts three
bounding boxes (associated with three predefined anchor
boxes), resulting in a 3×W ×H× (4+1+Nc) prediction.

Training YOLO. Every ground-truth object is associated
with a single cell in each detection head. The input image is
divided into an W×H grid, and the responsible cell is deter-
mined by the grid cell that the object’s center falls in. Since
each cell contains three candidates, each of which is asso-
ciated with a different predefined anchor box, the specific
candidate is determined to be the one with the highest in-
tersection over union (IoU) value between the ground-truth
bounding box and the candidate’s anchor box.

YOLO does not assume that the class categories are mu-
tually exclusive; therefore the class score vector is trained
with the multi-label configuration (the sigmoid function is
applied on each output neuron).
Postprocessing. YOLO outputs a fixed number of candi-
dates (the amount depends on the size of the input image)
which are then filtered in three sequential steps:
• Objectness score filtering - only candidates whose object-

ness score exceeds a predefined threshold are passed to
the next step.

• Class score filtering - only candidates that have at
least one unconditional class score (Pr(Objectness) ·
Pr(Class)) that exceeds the predefined threshold are
passed to the next step.

• Non-maximum suppression (NMS) - since many candi-
dates can detect the same object, NMS is applied to re-
duce redundancy.

B. OOD Detection Methods Examined
Let f be a multi-label image classifier with a shared param-
eter space θ up to the penultimate feature space. For an
input x, the output for the nth class is:

fyn
(x) = h(x; θ) · wn (1)

where h(x; θ) is the feature vector in the penultimate layer
and wn is a vector that represents the weights corresponding
to class n. The predictive probability of a binary label yn is
determined by a binary logistic classifier:

p(yn = 1|x) = exp(fyn(x))

1 + exp(fyn
(x))

(2)

where n ∈ {1, .., Nc}.



B.1. Baseline Methods

The baselines (MaxLogit [4] and MSP [3]) considered in
our paper can be formalized as follows:

MaxLogit = max
n

fyn
(x) (3)

MSP = max
n

exp(fyn
(x))∑Nc

n exp(fyn(x))
(4)

B.2. State-of-the-Art Methods for OOD Detection
in the Multi-Class Domain

We consider two state-of-the-art methods originally de-
signed for the multi-class task: ODIN [7] and Maha-
lanobis [6]. These methods are adapted to the multi-label
case (following the adaption proposed in [13]).
ODIN. The adapted ODIN score takes the maximum of the
calibrated label-wise predictions and is formulated as fol-
lows:

ODIN = max
n

exp(fyn
(x)/T )

1 + exp(fyn
(x)/T )

(5)

Since ODIN also proposes input preprocessing (by adding
small adversarial perturbations), the input is calculated
using x̂ = x− ϵ · sign(−∇ℓŷn

), where ℓŷn
is the BCE

loss for the label ŷn with the largest output, such that
ŷn = argmaxn(p(yn = 1|x)).
Mahalanobis. The Mahalanobis score is represented in the
following way:

M(x) = max
n

−(ϕ(x)− µ̂yn)
⊺Σ̂−1(ϕ(x)− µ̂yn) (6)

where the feature embedding ϕ(x) is extracted for a given
sample, µ̂yn

is the class mean for label yn, and Σ̂−1 is the
covariance matrix. Furthermore, we consider the calibra-
tion techniques proposed in the original paper [6]: (a) input
preprocessing, and (b) feature ensemble. For preprocessing,
the perturbed sample is defined as:

x̂ = x+ ϵ sign(∇xM(x)) =

= x− ϵ sign(∇(ϕ(x)− µ̂yn)
⊺Σ̂−1(ϕ(x)− µ̂yn)) (7)

For feature ensemble, the scores are extracted from each
block and integrated by

∑
ℓ αℓMℓ(x̂), where ℓ denotes the

ℓ-th block. In our evaluation, we use equal weights for all
layers (i.e., αℓ = 1).

B.2.1 Hyperparameter Selection

Since ODIN and Mahalanobis both require validation sets
for hyperparameter selection, we consider the following
setup proposed in [13] (corrupted in-distribution samples
into OOD data):

• Pixel-wise arithmetic mean of random pairs of in-
distribution images. Given two images x1 and x2, the
value of a pixel at location (i, j) in the new image is:

xarth mean(i, j) =
x1(i, j) + x2(i, j)

2
(8)

• Geometric mean of random pairs of in-distribution im-
ages. Given two images x1 and x2, the value of a pixel at
location (i, j) in the new image is:

xgeom mean(i, j) =
√

x1(i, j) · x2(i, j) (9)

• Random permutation of 16 equally sized patches of an
in-distribution image.
These datasets are used to fine-tune the hyperparameters:

magnitude of noise ϵ for both and temperature T for ODIN.
For ODIN, T ∈ {1, 10, 100, 1000}, and ϵ is chosen from 21
evenly spaced in the range of [0, 0.004]. For Mahalanobis,
ϵ is chosen from [0, 0.0005, 0.001, 0.002, 0.005]. The opti-
mal ϵ and T values are the ones that minimize the FPR95.

B.3. State-of-the-Art Methods for OOD Detection
in the Multi-Label Domain

JointEnergy. We also consider the state-of-the-art multi-
label OOD detection method JointEnergy [13]:

Eyn
(x) = − log(1 + exp(fyn

(x)))

Ejoint(x) =

Nc∑
n=1

−Eyn(x)
(10)

C. Proposed Datasets
C.1. In-Distribution Dataset

Objects365in. We propose a new in-distribution benchmark
for OOD detection in the multi-label domain, which is a
subset of the Objects365 dataset [12]. The specific classes,
which are chosen according to their frequency in the dataset
(i.e., the 20 most common classes that do not overlap with
the OOD dataset), are: person, chair, car, boat, wild bird,
bench, sailboat, bottle, potted plant, cup, handbag/satchel,
dog, bus, train, umbrella, cow, airplane, cat, truck, and
horse. We divided the images into three sets consisting of
68,723, 5,000, and 10,000 images for the training, valida-
tion, and test sets, respectively.

C.2. OOD Datasets

We propose two new benchmarks constructed from datasets
that contain images associated with multiple class cate-
gories and instances, thus reflecting the complexity of the
multi-label setting: a subset from the Objects365 [12]
dataset and a subset from the NUS-WIDE dataset [2].
Objects365out. A subset of 241 classes which do not over-
lap with any of the classes present in the in-distribution



datasets, and specifically with the classes present in the
Objects365in subset presented above, containing a total of
11,669 images. For example, The top-10 most frequent
classes are (sorted in descending order): lamp, street lights,
storage box, picture/frame, cabinet/shelf, flag, air condi-
tioner, sneakers, trash bin can, fish. The full list of the class
can be found online.1

NUS-WIDEout. A subset of 54 classes that do not over-
lap with any of the classes in the in-distribution datasets
containing 13,149 images. The specific classes are: beach,
bridge, buildings, castle, cityscape, clouds, coral, earth-
quake, elk, fire, fish, flags, flowers, fox, frost, garden,
glacier, grass, harbor, house, lake, leaf, map, military,
moon, mountain, nighttime, ocean, plants, police, railroad,
rainbow, reflection, road, rocks, sand, sign, snow, sports,
statue, street, sun, sunset, temple, tiger, tower, town, toy,
tree, valley, water, waterfall, whales, window.

D. Results
D.1. Effect of Responsible Grid Cell Percentage pk

As discussed in Section 4.2 in the paper, we characterize
the effect of the percentage {pk|k ∈ {1, 2, 3}} of respon-
sible cells (described in Section 3.1), where p1 (resp. p3)
represents the smallest (resp. largest) detection head. We
perform an extensive evaluation to examine the effect of
different pk combinations, where pk is selected from 11
evenly spaced numbers in the range [0, 1]. To limit the num-
ber of possible combinations, we set a constraint such that
p3 > p2 > p1, based on the fact that the grid’s resolu-
tion increases in each subsequent detection head, resulting
in 165 different combinations. Figure 1 presents the mAP
results for the different combinations of pk across the dif-
ferent datasets. It is interesting to observe the consistent
pattern present across all datasets, where we can see that
p1 benefits most from the lower range (∼ [0.0 − 0.2]), p2
benefits from slightly higher range (∼ [0.1 − 0.4]), and p3
benefits from the upper range (∼ [0.3− 0.7]). Furthermore,
as stated in Section 3.1, the results confirm that since bound-
ing boxes do not accurately segment the object’s area, set-
ting pk = 1 degrades the model’s performance, likely due
to the background areas included in the annotated bounding
boxes. To obtain the optimal combination, after training, we
sort all the models according to their in-distribution mAP
and select the 20 best-performing ones. Then, we count
the number of occurrences for all pk values (each pk is
counted independently, not as a triplet) and select the most
frequent values. We aggregate the results over all of the
in-distribution datasets and find that the best configuration
is: (p1, p2, p3) = (0.0, 0.1, 0.5). We recommend using this
configuration for all datasets, i.e., pk is not a hyperparame-
ter that should be tuned.

1https://github.com/AlonZolfi/YolOOD

(a) PASCAL-VOC

(b) MS-COCO

(c) Objects365in

Figure 1. Models’ mAP for different pk combinations on the
(a) PASCAL-VOC, (b) MS-COCO, and (c) Objects365in datasets.
Each line represents a model trained with a single combination.

https://github.com/AlonZolfi/YolOOD


D.2. In-Distribution mAP

For a comprehensive comparison of OOD detection per-
formance, we also provide the in-distrubtion mAP results
for the YOLO-cls and YolOOD models. Table 1 presents
the results on the various in-distribution datasets, show-
ing that YolOOD’s mAP is on par with that of YOLO-
cls. Despite the slight differences, in the OOD detection
task, YolOOD outperforms all state-of-the-art OOD detec-
tion methods (which use YOLO-cls), demonstrating the su-
periority of our proposed approach. It should be noted that
when training the networks from “scratch” (i.e., no pre-
trained weights are used), YolOOD achieves substantially
better results on both the in-distribution mAP and OOD de-
tection metrics. However, for a fair comparison between the
different methods, we followed the training scheme of using
a pre-trained backbone.

Model
Din PASCAL-VOC MS-COCO Objects365in

YOLO-cls 91.09 81.83 81.53
YolOOD-a1 88.64 76.81 78.48
YolOOD-o2 89.15 78.97 79.71

Table 1. In-distribution mAP comparison on the YOLO-cls and
YolOOD models on the in-distribution datasets. 1Trained using the
auto-generated annotations. 2Trained using the original annotations.

D.3. Additional Results

In addition to the OOD detection results presented in the
paper, we provide the full results of all the experiments con-
ducted in our evaluation, including both the mean and stan-
dard deviation.

Table 2 presents the OOD detection performance of
YolOOD vs. state-of-the-art OOD detection methods.

Table 3 presents the OOD detection performance when
using different combinations of aggregation functions for
YolOOD’s detection heads and class scores output vector.

Table 4 presents the OOD detection performance when
using JointEnergy on YolOOD and YOLO-cls networks.

Table 5 presents the OOD detection performance be-
tween YolOOD and a standard YOLO object detector.



Table 2. Comparison of the OOD detection performance of YolODD vs. state-of-the-art methods. ↓ indicates that lower values are better,
and ↑ indicates that higher values are better.
1Trained using the auto-generated annotations. 2Trained using the original annotations.

Din PASCAL-VOC MS-COCO Objects365in
Dout Method FPR95 ↓ / AUROC ↑ / AUPR ↑

O
bj

ec
ts

36
5 o

ut

MaxLogit [4] 28.91 ± 0.71 / 94.96 ± 0.11 / 95.32 ± 0.16 16.39 ± 0.58 / 96.90 ± 0.09 / 99.17 ± 0.03 29.95 ± 0.81 / 94.33 ± 0.21 / 94.38 ± 0.30
MSP [3] 50.78 ± 1.50 / 88.36 ± 0.37 / 88.61 ± 0.39 46.25 ± 0.16 / 86.78 ± 0.28 / 95.63 ± 0.13 65.20 ± 0.88 / 83.99 ± 0.42 / 84.13 ± 0.59
ODIN [7] 28.91 ± 0.71 / 94.96 ± 0.11 / 95.32 ± 0.16 16.39 ± 0.58 / 96.90 ± 0.09 / 99.17 ± 0.03 29.95 ± 0.81 / 94.33 ± 0.21 / 94.38 ± 0.30
Mahalanobis [6] 73.34 ± 0.45 / 73.90 ± 0.18 / 70.94 ± 0.25 87.69 ± 0.13 / 52.13 ± 0.15 / 77.53 ± 0.11 83.30 ± 0.23 / 63.23 ± 0.15 / 56.69 ± 0.19
JointEnergy [13] 27.90 ± 1.29 / 95.37 ± 0.18 / 96.04 ± 0.13 14.80 ± 0.40 / 97.16 ± 0.07 / 99.28 ± 0.02 23.13 ± 0.42 / 95.84 ± 0.12 / 96.20 ± 0.17
YolOOD-a1 18.37 ± 0.51 / 96.10 ± 0.20 / 95.85 ± 0.32 11.70 ± 0.15 / 97.21 ± 0.01 / 99.19 ± 0.01 18.40 ± 0.66 / 95.76 ± 0.10 / 95.15 ± 0.13
YolOOD-o2 16.38 ± 0.70 / 96.60 ± 0.22 / 96.50 ± 0.28 11.53 ± 0.22 / 97.30 ± 0.05 / 99.23 ± 0.02 17.24 ± 0.33 / 95.97 ± 0.06 / 95.42 ± 0.06

N
U

S-
W

ID
E

ou
t

MaxLogit [4] 23.60 ± 1.27 / 95.99 ± 0.21 / 96.05 ± 0.19 12.16 ± 0.27 / 97.53 ± 0.06 / 99.24 ± 0.02 38.07 ± 2.62 / 92.62 ± 0.37 / 91.48 ± 0.39
MSP [3] 47.34 ± 1.61 / 89.34 ± 0.42 / 88.71 ± 0.41 40.89 ± 0.62 / 88.33 ± 0.22 / 95.53 ± 0.10 78.08 ± 1.20 / 78.42 ± 0.63 / 76.91 ± 0.62
ODIN [7] 23.60 ± 1.27 / 95.99 ± 0.21 / 96.05 ± 0.19 12.16 ± 0.27 / 97.53 ± 0.06 / 99.24 ± 0.02 38.07 ± 2.62 / 92.62 ± 0.37 / 91.48 ± 0.39
Mahalanobis [6] 77.23 ± 0.31 / 73.76 ± 0.35 / 67.76 ± 0.53 88.74 ± 0.13 / 60.35 ± 0.22 / 80.85 ± 0.14 88.54 ± 0.14 / 62.34 ± 0.17 / 54.12 ± 0.21
JointEnergy [13] 20.19 ± 1.78 / 96.53 ± 0.22 / 96.76 ± 0.18 8.29 ± 0.23 / 97.90 ± 0.04 / 99.39 ± 0.01 24.46 ± 1.55 / 95.34 ± 0.21 / 94.96 ± 0.24
YolOOD-a1 21.24 ± 0.78 / 96.29 ± 0.09 / 96.08 ± 0.16 7.62 ± 0.37 / 98.13 ± 0.07 / 99.43 ± 0.03 12.19 ± 0.73 / 97.64 ± 0.12 / 97.29 ± 0.14
YolOOD-o2 18.48 ± 0.76 / 96.85 ± 0.16 / 96.77 ± 0.22 4.40 ± 0.12 / 98.57 ± 0.03 / 99.58 ± 0.01 9.54 ± 0.57 / 98.01 ± 0.05 / 97.61 ± 0.06

Table 3. OOD detection performance when using different combinations of aggregation functions on YolOOD’s detection heads and class
scores output vector. ↓ indicates that lower values are better, and ↑ indicates that higher values are better.

Din PASCAL-VOC MS-COCO Objects365in
Dout Class Agg. Head Agg. FPR95 ↓ / AUROC ↑ / AUPR ↑

O
bj

ec
ts

36
5 o

ut Max
Max 20.06 ± 0.68 / 96.29 ± 0.16 / 96.52 ± 0.20 8.54 ± 0.18 / 97.97 ± 0.03 / 99.46 ± 0.01 20.55 ± 0.62 / 96.01 ± 0.02 / 95.96 ± 0.03
Multiply 23.19 ± 1.92 / 95.11 ± 0.50 / 94.89 ± 0.57 15.62 ± 0.39 / 96.69 ± 0.08 / 99.06 ± 0.03 26.05 ± 1.01 / 94.56 ± 0.25 / 93.99 ± 0.23
Sum 16.38 ± 0.70 / 96.60 ± 0.22 / 96.50 ± 0.28 11.53 ± 0.22 / 97.30 ± 0.05 / 99.23 ± 0.02 17.24 ± 0.33 / 95.97 ± 0.06 / 95.42 ± 0.06

Sum
Max 40.04 ± 1.80 / 82.03 ± 1.14 / 77.46 ± 1.54 53.25 ± 0.61 / 82.31 ± 0.26 / 93.63 ± 0.15 38.86 ± 0.85 / 84.24 ± 0.16 / 78.66 ± 0.29
Multiply 23.15 ± 1.79 / 95.11 ± 0.51 / 94.94 ± 0.58 14.76 ± 0.43 / 96.98 ± 0.07 / 99.17 ± 0.02 25.71 ± 1.14 / 94.70 ± 0.25 / 94.27 ± 0.24
Sum 37.31 ± 2.19 / 86.73 ± 1.05 / 85.04 ± 1.19 41.27 ± 0.71 / 89.57 ± 0.18 / 96.71 ± 0.07 35.22 ± 0.80 / 90.85 ± 0.19 / 89.25 ± 0.19

N
U

S-
W

ID
E

ou
t

Max
Max 28.14 ± 1.03 / 94.97 ± 0.37 / 94.70 ± 0.52 8.55 ± 0.21 / 98.05 ± 0.04 / 99.40 ± 0.01 21.48 ± 0.64 / 95.40 ± 0.19 / 94.19 ± 0.26
Multiply 16.32 ± 0.53 / 96.92 ± 0.19 / 96.60 ± 0.25 5.48 ± 0.20 / 98.49 ± 0.04 / 99.55 ± 0.01 10.40 ± 0.32 / 97.90 ± 0.10 / 97.36 ± 0.13
Sum 18.48 ± 0.76 / 96.85 ± 0.16 / 96.77 ± 0.22 4.40 ± 0.12 / 98.57 ± 0.03 / 99.58 ± 0.01 9.54 ± 0.57 / 98.01 ± 0.05 / 97.61 ± 0.06

Sum
Max 49.09 ± 2.06 / 74.59 ± 1.79 / 64.33 ± 2.83 56.15 ± 0.46 / 78.87 ± 0.24 / 90.78 ± 0.16 31.66 ± 1.28 / 87.09 ± 0.65 / 79.90 ± 0.86
Multiply 16.01 ± 0.61 / 96.97 ± 0.19 / 96.66 ± 0.24 4.45 ± 0.13 / 98.64 ± 0.03 / 99.60 ± 0.01 9.39 ± 0.39 / 98.08 ± 0.09 / 97.61 ± 0.12
Sum 42.90 ± 2.29 / 83.08 ± 1.37 / 78.62 ± 1.84 37.73 ± 0.45 / 90.83 ± 0.12 / 96.72 ± 0.05 17.13 ± 1.48 / 96.51 ± 0.26 / 95.54 ± 0.31

Table 4. OOD detection performance comparison when applying JointEnergy on YolOOD and YOLO-cls networks. ↓ indicates lower
values are better, and ↑ indicates higher values are better.

Din PASCAL-VOC MS-COCO Objects365in
Dout Model FPR95 ↓ / AUROC ↑ / AUPR ↑

Objects365out
YOLO-cls 27.90 ± 1.29 / 95.37 ± 0.18 / 96.04 ± 0.13 14.80 ± 0.40 / 97.16 ± 0.07 / 99.28 ± 0.02 23.13 ± 0.42 / 95.84 ± 0.12 / 96.20 ± 0.17
YolOOD 17.41 ± 0.81 / 96.77 ± 0.16 / 97.04 ± 0.18 7.10 ± 0.13 / 98.20 ± 0.01 / 99.54 ± 0.01 15.91 ± 0.41 / 96.93 ± 0.03 / 96.97 ± 0.03

NUS-WIDEout
YOLO-cls 20.19 ± 1.78 / 96.53 ± 0.22 / 96.76 ± 0.18 8.29 ± 0.23 / 97.90 ± 0.04 / 99.39 ± 0.01 24.46 ± 1.55 / 95.34 ± 0.21 / 94.96 ± 0.24
YolOOD 23.66 ± 1.40 / 95.88 ± 0.34 / 95.72 ± 0.43 4.65 ± 0.24 / 98.57 ± 0.02 / 99.58 ± 0.01 11.51 ± 0.66 / 97.77 ± 0.09 / 97.37 ± 0.11

Table 5. OOD detection performance comparison between YolOOD and a regular YOLO detector. ↓ indicates lower values are better, and
↑ indicates higher values are better.

Din PASCAL-VOC MS-COCO Objects365in
Dout Model FPR95 ↓ / AUROC ↑ / AUPR ↑

Objects365out
YOLO 40.57 ± 1.02 / 92.16 ± 0.26 / 92.66 ± 0.25 20.03 ± 0.13 / 96.40 ± 0.05 / 99.02 ± 0.02 28.64 ± 0.86 / 94.06 ± 0.10 / 93.66 ± 0.12
YolOOD 16.38 ± 0.70 / 96.60 ± 0.22 / 96.50 ± 0.28 11.53 ± 0.22 / 97.30 ± 0.05 / 99.23 ± 0.02 17.24 ± 0.33 / 95.97 ± 0.06 / 95.42 ± 0.06

NUS-WIDEout
YOLO 29.90 ± 2.29 / 94.54 ± 0.34 / 94.24 ± 0.32 7.20 ± 0.23 / 98.27 ± 0.02 / 99.48 ± 0.01 17.99 ± 0.86 / 96.43 ± 0.11 / 95.60 ± 0.11
YolOOD 18.48 ± 0.76 / 96.85 ± 0.16 / 96.77 ± 0.22 4.40 ± 0.12 / 98.57 ± 0.03 / 99.58 ± 0.01 9.54 ± 0.57 / 98.01 ± 0.05 / 97.61 ± 0.06
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