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Figure 1. Samples of the miniImageNet datasets.

A. Detailed Dataset Setups

miniImageNet [13] is a subset of the ImageNet dataset [5],

containing 100 classes randomly sampled from ImageNet,

and each class contains 600 images. Following current

works [2, 6], we utilize its base classes as the source-domain

dataset, where 64 classes and 38,400 images are involved.

Different with the ordinary few-shot learning works [13],

cross-domain few-shot learning (FSL) utilize the raw im-

age from ImageNet following the same data list, instead of

resizing each image to the size of 84 × 84. Image samples

can be found in Fig. 1.

CUB [14] is a fine-grained dataset of bird classification.

Following current works [2, 6], we utilize its novel-class

split to be one of our target datasets, which contains 50

classes and 2,953 samples in all. Sampled images can be

found in Fig. 1.

Cars [9] is a fine-grained dataset of car classification. It

contains images of cars with 49 classes and 2,027 images in

all.

Places [17] collects images of different places such as

the airplane, coffee bar and so on. It contains 19 classes and

3,800 images in all.

Plantae [8] is a dataset of plant classification. It contains

*Corresponding author. Code is at https://github.com/Zoilsen/FLoR.

Figure 2. Samples of the CUB, Cars, Places, and Plantae datasets.

50 classes and 3,800 images in all.

CropDiseases [10] is a dataset for recognizing agricul-

tural diseases. It contains 19 classes and 43,456 images in

all. Sampled images can be found in Fig. 1. The above

5 datasets are all in natural images, which is close to the

miniImageNet dataset. Below we will also introduce three

datasets that are in the distant domains.

EuroSAT [7] contains satellite imagery of the earth. It

contains 10 classes and 27,000 images in all.

ISIC2018 [4] contains skin lesion images for lesion clas-

sification. It contains 7 classes and 10,015 images in all.

ChestX [15]) is the most challenging dataset with the X-

ray images for chest classification. Since its images are very

different from that of the miniImageNet dataset, it is very

hard to transfer knowledge to it. It contains 7 classes and

25,847 images in all.

The k-way n-shot classification refers to sampling

episodes for few-shot training and evaluation. Each episode

can be understood as a small dataset, which a training set

(a.k.a. support set) contains k classes and n training sam-

ples in each class, and a test set (a.k.a. query set) containing

un-overlapping samples from the given k classes. Typically,

we have the 5-way 1-shot and 5-way 5-shot settings. Since
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Figure 3. Samples of the CropDiseases, EuroSAT, ISIC2018, and

ChestX datasets.

Figure 4. Sensitivity study of hyper-parameter choices by (a) keep-

ing a = b and (b) by fixing a or b and tuning the other one. The

best hyper-parameter choice is a = b = 0.1, and the performance is

stable when hyper-parameter changes.

the transductive setting utilize the query set as an unlabeled

training set, the size of the query set is also an important

issue for fair comparisons. Typically, the query set contains

15 samples for each class, leading to 75 query samples in

each query set in total.

B. Sensitivity Study

We report the hyper-parameter choice of our model in

Fig. 4. Since there are only two hyper-parameters in our

method, we first test to keep their values the same (Fig. 4a),

and then fix one value to search for the other value (Fig. 4b).

We can see the optimal value is a=b=0.01, and the perfor-

mance stably changes when altering a or b, which means

our model is not sensitive to the hyper-parameter choice.

C. More Validations

C.1. Comparison with more BN + IN methods

We implement more methods based on BN + IN in Tab. 1,

and compare with them both quantitatively and technically.

Technically, (1) our analysis and instantiations are not lim-

ited to normalization layers (see Tab. 2) or specific net-

work structures (CNN, ViT); (2) we randomly sample in-

termediate points between outputs to cover more high-loss

regions, instead of setting fixed or learnable ratios like ex-

isting works, which is verified to be more effective in paper

Tab.7.

Table 1. Comparison with more BN + IN methods.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Meta BIN [3] 86.66 ±0.19 78.52 ±0.28 46.06 ±0.31 25.28 ±0.16 59.13 ±0.12

TaskNorm [1] 87.95 ±0.23 79.32 ±0.32 43.15 ±0.43 26.48 ±0.19 59.23 ±0.20

BIN [11] 86.72 ±0.22 77.87 ±0.28 48.46 ±0.32 25.90 ±0.14 59.28 ±0.12

Ours 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12

C.2. Why selecting normalization layers

Our analysis is not limited to normalization layers.

However, as normalization layers are easy to produce ef-

fective but distinct representations (i.e., different minima in

landscapes), it is easier to be applied to flatten the long-

range loss landscapes. We try to produce distinct represen-

tations through applying different convolutions in Tab. 2,

which also improves the performance and verifies our anal-

ysis. However, the improvements are marginal compared

with normalization layers.

Table 2. Comparison with more different instantiations.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Baseline (Conv3x3) 85.80 ±0.27 78.01 ±0.22 39.10 ±0.33 26.13 ±0.17 57.26 ±0.13

Conv3x3 + Conv5x5 86.29 ±0.33 78.79 ±0.29 41.52 ±0.31 25.85 ±0.19 58.11 ±0.19

Conv1x1 + Conv7x7 86.27 ±0.22 76.36 ±0.33 44.03 ±0.18 25.80 ±0.19 58.12 ±0.19

Ours 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12

C.3. Randomness of model parameters

Although randomness is verified to be beneficial (paper

Tab.7), our improvements also originate from where to im-

port randomness (i.e., intermediate points between nor-

malized representations). We follow FWT [25] to compare

with randomness-based works by the 5-way 1-shot accuracy

in Tab. 3, showing our design is vital.

Table 3. Comparison with randomness-based methods.

Method Randomness Location CUB Cars Places Plantae Ave.

Dropout Single Output Feature 35.86 ±0.51 30.72 ±0.43 37.47 ±0.62 29.22 ±0.47 33.32

FWT BN weight and bias 45.69 ±0.68 31.79 ±0.51 53.10 ±0.80 35.60 ±0.56 41.55

Ours Intermediates of multiple features 49.99 ±0.18 37.41 ±0.31 53.18 ±0.28 40.10 ±0.42 45.17

C.4. Generalization to other normalization layers

Our method can also generalize to the combination of

other normalizations. We report the performance of dif-

ferent combinations in Tab. 4. Since IN are more similar to

GroupNorm (GN) [16], the minima produced by them are

closer, making the flattened range smaller than BN + GN

or BN + IN. Therefore, the improvements of GN + IN are

smaller than others, although GN or IN shows better perfor-

mance than BN individually.

C.5. Analysis experiments on realworld data

We use remote sensing images in EuroSAT [13] and medi-

cal images in ISIC [5] as the real-word data in Fig. 5, and



Table 4. Comparison with more normalizations.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Baseline (BN) 85.80 ±0.27 78.01 ±0.22 39.10 ±0.33 26.13 ±0.17 57.26 ±0.13

GN 85.06 ±0.22 76.28 ±0.29 46.74 ±0.40 24.45 ±0.19 58.13 ±0.16

IN 86.67 ±0.20 76.17 ±0.24 47.25 ±0.21 24.79 ±0.15 58.72 ±0.10

GN + IN 87.22 ±0.28 76.96 ±0.31 48.77 ±0.29 24.94 ±0.18 59.47 ±0.22

BN + GN 89.28 ±0.17 80.79 ±0.22 46.26 ±0.17 25.66 ±0.19 60.50 ±0.18

Ours (BN + IN) 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12

use the level of image styles being shifted as the perturba-

tion level. Results are consistent with the experiments in

Fig.2 and Tab.1.

Figure 5. Analysis experiments on real-world data.

C.6. Ablate parameterspace perturbation from
FLoR

We first perturb only the parameters in the BN layer in

Tab. 5, we can see the improvements are limited. We

then remove the learnable parameters in the BN and IN

layers. We can see the results are close to ours, verify-

ing that the improvement is predominantly due to the

representation-space flatness.

Table 5. Ablation study of parameter-space perturbations.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Baseline 85.80 ±0.27 78.01 ±0.22 39.10 ±0.33 26.13 ±0.17 57.26 ±0.13

Perturb only BN Params 88.23 ±0.33 77.65 ±0.40 42.02 ±0.34 26.52 ±0.28 58.61 ±0.20

Ours (w/o learnable param) 87.50 ±0.19 79.98 ±0.28 48.71 ±0.22 25.85 ±0.14 60.51 ±0.13

Ours (w/ learnable param) 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12

C.7. Comparison with the sharpnessbased work
(F2M [12])

We differ with F2M in (1) we flatten loss landscapes in the

representation space, but F2M is in the parameter space;

(2) our flattening is achieved by randomly sampling inter-

mediate points between multiple local minima, but F2M

is by adding perturbations to model parameters (a single

minimum); (3) our performance is significantly higher. We

implement F2M and compare with it in Tab. 6.

Table 6. Comparison with sharpness-based work.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

F2M 86.37 ±0.15 75.05 ±0.17 43.52 ±0.14 26.06 ±0.11 57.75 ±0.10

Ours 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12
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