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A. Contrastive pretraining for language-aware
models

We explain the surge of computational overhead for
language-aware models under contrastive pretraining. Since
goal-free perception independently encodes vision and lan-
guage, for B video-language pairs, we only need to encode B
video clips and then compute a similarity matrix with a shape
of B x B. However, our experiments confirm VideoDistill
will fast degenerate if we just contrast between matched pairs
(calculate a single representation for each video based on its
matched annotation and compute a B X B similarity matrix
as we do in Equation 7). The reason for this phenomenon
is the video encoder simultaneously takes matched video-
language pairs as input. It can simply meet the requirements
of the contrastive objectives if its output is always identical
with language inputs, whatever video is received. To avoid
degeneration, the comparison can not be limited to matched
pairs. We should encode videos with all possible annotations
in the mini-batch (compute B? video representations and
B x B? similarity matrix). Also, we should constrain each
video representation based on an unmatched annotation to
be unfamiliar with the videos” matched annotations.

Nevertheless, the full contrastive learning for language-
aware models leads to a quadratic growth in computational
overhead. This demand is beyond the reach of our current
resources. We will further study this full contrastive learning
in future work.

B. Training Details
B.1. Pretraining Details

Pretraining Datasets.b Our pretraining set consists of three
parts: (1) 3M video-caption pairs randomly sampled from
generic dataset WebVid10OM [3]. (2) 4.2M video-caption
pairs randomly sampled from YouTube video dataset HD-
VILA [31]. We ensure the lengths of video clips sampled
from WebVid10M and HD-VILA range from 10s to 30s. (3)

Table 1. Comparison with SOTA methods on MSRVTT-QA.

Method Pretraining data Pairs Acc
ST-VQA[9] - - 30.9
Co-Memory [7] - - 32.0
AMU [28] - - 325
HME [6] - - 33.0
SSML[1] HowTol100M [22] 136M 35.1
HCRN [14] - - 35.6
ClipBert [16] COCO [4],VisGenome [13] 2.1M 374
CoMVT [26] HowTo100M [22] 136M 39.5
HD-VILA [31] HD-VILA-100M [31] 100M 40.0
PMT [23] - - 40.3
VQA_T [32] - - 39.6
VQA_T [32] HowToVQA69M [32] 69M 41.5
ALPRO [17] HowTo,WebVid 5.5M 42.1
VideoDistill{ - - 42.7
VideoDistill WebVid,HD-VILA,EgoCLIP 11IM 44.2

Table 2. Comparison with SOTA methods on MSVD-QA.

Method Pretraining set Pairs | Acc
HME [6] - - 33.7
SSML [1] HowTol100M 136M 35.1
HCRN [14] - - 36.1
PMT [23] - - 41.8
CoMVT [26] HowTol100M 136M 42.6
SiaSamRea [33] COCO,VisGenome 2.1IM 45.5
ALPRO [17] HowTo,WebVid 5.5M 459
VQA_T [32] HowToVQA69M 69M 46.3
VideoDistill - - 46.2
VideoDistill WebVid,HD-VILA ,EgoCLIP 11IM 49.2

3.8M video-caption pairs from the 1st-person view dataset
EgoCLIP [19]. Generally speaking, the 1st-person videos
have more significant changes in perspective and orientation
as the user moves around than the 3rd-person videos. Thus,
they are helpful in releasing the potential of solving multiple
events and multi-scale reasoning for VideoDistill.

Implementation Details We resize all video clips (as well
as downstream videos) to 256p while preserving the aspect
ratio, then extract frames with 7.5 fps. We randomly sample
100 frames as input during pretraining and evenly sample
100 frames for downstream tasks. Finally, we augment input
frames by random crop a 224 x 224 region to increase input
diversity.

In the video branch, we adopt CLIP-ViTB/16 [25] as the
frame encoder. FS-Blocks and VB-Blocks have L = 3 lay-
ers, a hidden size of D = 1024. The number of attention
heads equals 8 for all LA-Gates, self-attention layers, and
spatial-temporal layers. We borrow spatial-temporal layers
from FrozenInTime [3]. We add a learnable temporal embed-
ding for the input of the first FS-Block, a learnable temporal
embedding, and a spatial embedding for the input of the
first vision refinement block. We sparsely sample K = 16
frames from 100 densely sampled frames as the input of
vision refinement blocks for most experiments unless other-
wise specified. In the text branch, we utilize the text encoder
from CLIP with a maximum sequence length of 77.

For all experiments, we use AdamW optimizer with a



Table 3. Results on EgoMCQ multiple-choice test.

Methods Pretraining set Pairs Ingléaé\('};:;e 0 IIX%‘E‘(,;:?O
TimeSFormer+Distillbert EgoCLIP 3.8M 85.5 47.0
FrozenInTime [3] EgoCLIP 3.8M 89.4 51.5
EgoNCE w/Pos [19] EgoCLIP 3.8M 89.7 53.6
EgoNCE w/Pos&Neg [19] EgoCLIP 3.8M 90.6 57.2
EgoVLP-v2 [24] EgoCLIP 3.8M 91.0 60.9
VideoDistill{ - - 92.0 59.0
VideoDistill WebVid,HD-VILA ,EgoCLIP 11M 92.7 61.3
Table 4. Results on MSRVTT-multiple-choice test.
Method Pretraining set Pairs Acc
CT-SAN [34] - - 66.4
MLB [12] - - 76.1
JSFusion [35] . . 83.4
ActBERT [37] HowTol100M - 85.7
ClipBert [16] COCO,VisGenome 2.1M 88.2
VideoCLIP[29] HowTol100M 136M 92.1
HD-VILA [31] HD-VILA-100M 100M 97.1
VideoDistill WebVid,HD-VILA,EgoCLIP 11M 97.8

learning rate of 3 x 10~° and a weight decay of 1 x 1073,
Also, we employ a linear decay learning rate schedule with a
warm-up strategy. We pretrain VideoDistill on 8 A100 GPUs
with a batch size of 256 for 2 epochs (53 hours) to get our
model applied to downstream tasks. Note that downstream
performances may be further improved if we train the model
for more epochs or customize better hyperparameters of the
model architecture.

Table 5. Comparison of text-to-video retrieval on MSR-VTT, 1k-A
split. Tdenotes our model finetuned in a contrastive manner.

Method PT-set PT-pairs ‘ R@1 R@5 R@10
CE[20] - - 209 488 624
UniVL[21] HowTo100M 136M | 212 496  63.1
ClipBERT([16] COCO,VisGenome 5.6M 220 46.8 59.9
FrozenInTime[3] CC3M,WV2M,COCO 6.IM | 325 615 712
VideoCLIP[29] HowTo100M 136M | 309 554 668
HD-VILA [31] HD-VILA-100M 100M | 356 653  78.0
VideoDistilli ~ WebVid, HD-VILA,EgoCLIP ~ 1IM | 328 63.5 74.0
VideoDistill  WebVid, HD-VILA,EgoCLIP ~ 1IM | 334 701 729
Table 6. Comparison of text-to-video retrieval on DiDeMo.

Tdenotes generating the results of retrieval by direct similarity
comparison like previous works (otherwise, by VIM head) during
fine-tuning.

Method PT-set PT-pairs | R@1 R@5 R@10
HERO[18] TV[15],HowTo 7.6M 2.1 - 114
S2VT[27] COCO - 119 336 -
FSE [36] Sports-1M[11] IM 139 360

CE[20] - - 16.1  46.1 -

ClipBERT[16] COCO,VisGenome 5.6M 204 480  60.8
HD-VILA [31] HD-VILA-100M 100M 288 574  69.1
VideoDistill{ ~ WebVid,HD-VILA,EgoCLIP 11IM 280 57.1 66.4

VideoDistill ~ WebVid, HD-VILA EgoCLIP 1M 272  61.6  63.1

B.2. Finetuning Details

Finetuning Datasets.

EgoMCQ [19] is a 1st-person Multiple-Choice Questions
answering task. Each text query has five video candidates.
It provides two criteria named Inter-video and intra-video
accuracy. The former ensures the five video candidates come
from different videos, and the latter collects candidates from
the same video. The evaluation metric is accuracy.

MSRVTT-QA [28] and MSRVTT-multiple-choice test
[35] are two video question answering tasks basd on
MSRVTT [30]. The former is open-ended, and the latter
is multiple-choice. The evaluation metric is accuracy.

MSVD-QA [28] is an open-ended question answering
task with 1.9k short generic video clips. The evaluation
metric is accuracy.

EgoTaskQA [10] is a long-form open-ended dataset with
an average video length of 25s. It provides 15 categories
of questions to evaluate models in detail. It also provides a
version of the dataset (indirect split) to reduce the usage of
language shortcuts. The evaluation metric is accuracy.

AGQA [8] a long-form open-ended dataset contains 8
types of compositional spatiotemporal reasoning. The aver-
age video length is 30s. We use its v2 version, which has
more balanced distributions, as the dataset creator recom-
mended. The evaluation metric is accuracy.

MSRVTT [30] is 3rd-person video-text retrieval task. It
contains 10K YouTube videos. We follow previous works
[31, 35], finetuning SpaceCLIP on 9K videos and reporting
results on the 1K-A test set. The evaluation metric is R@1,



Table 7. Language-only QA results on the EgoTaskQA normal split. (Gussian inputs)

Category VisualBERT [5] HCRN (w/o vision) VideoDistill (w/o vision)

Acc. Change Acc. Change Acc. Change

world 36.28 -8.7%  35.22 -20.4% 32.06 -32.2%

intent 3502 -21.3% 34.93 -29.8% 26.56 -49.4%

multi-agent 20.58 -21.7% 19.17 -38.9% 18.58 -49.7%

descriptive 3455 -17.7% 33.58 -22.8% 29.45 -36.7%

predictive 2475 -185% 243 -33.5% 19.93 -50.7%

counterfactual  41.3 -1.6% 40.4 -15.8% 39.51 -20.4%

explanatory  31.78 -15.1% 30.57 -24.7% 26.84 -36.9%

action 1572 +4.6% 15.64 -1.7% 15.93 -2.6%

object 7.43 -68% 6.33 -86.0% 2.68 -95.1%

state 45.03 -239% 42.51 -37.7% 33.33 -53.9%

change 69.87 +23% 68.77 +2.1% 63.67 -10.9%

all 3392 -10.6% 32.51 -23.0% 29.45 -33.9%

Table 8. Performances on the EgoTaskQA indirect split.
Category ~ BERT , HCRN o IBERT PSAC HME HGA HCRN ClipBERT VideoDistill}
(w/o vision)

© world 34.96 33.61 40.00 4474 3591 31.29  44.04 26.51 47.82
§ intent 23.56 23.98 36.02 48.38 31.73 2042  47.02 14.66 49.61
n multi-agent 19.70 19.25 26.02 35.37 25.07 17.74 30.11 20.09 35.04
descriptive 33.09 30.73 38.9 4336 3448 29.01 42.02 24.35 45.13
8 predictive 15.58 13.68 31.37 29.11  27.79 15.16  46.32 10.32 52.83
£ counterfactual 34.59 34.75 37.63 3994 3507 33.01 43.64 26.29 43.97
explanatory 27.38 28.11 32.75 4253 29.16 24.00 39.69 22.46 43.75
i) action 2691 28.18 27.49 30.06 25.12 26.15 29.61 25.25 30.34
g object 2.808 4.13 22.63 3097  19.08 7.02 32.20 10.49 45.97
g state 21.96 21.24 32.02 4329 31.60 17.67 41.81 15.29 49.77
v change 55.28 50.71 55.59 5720 47.65 4722 56.27 35.26 53.98
all 31.78 30.76 37.01 4225 33.06 28.36 41.56 24.08 44.77
Performance Change  6.4% 5.4% 2.4% 49% 177% 229% 1.5% 39.6% 0.25%

R@5, R@10.

DiDeMo [2] consists of 10K Flickr videos and 40K manu-
ally annotated sentences. We use a standard split to fine-tune
VideoDistill on the training set and report the result on the
test set. The evaluation metric is R@1, R@5, R@10.

Implementation Details. For open-ended datasets
MSRVTT-QA and MSVD-QA, EgoTaskQA, and AGQA,
we take questions as the language input, then encode the
answers in a one-hot fashion and train a two-layer MLP
classification head over all answer candidates with a cross-
entropy loss on the top of visual representation v;.. For

cls®
the multiple-choice dataset EgoMCQ, we respectively com-

bine the five candidate videos with the question to form
five input pairs, then choose the video corresponding with
the maximum logit over the VITM head as the answer. For
the multiple-choice dataset MSRVTT-multiple-choice test,
we concatenate five answers with the question into five sen-
tences, then choose the answer with the maximum logit over
the VIM head. For text-to-video retrieval MSRVTT and
DiDeMo, we provide two ways to realize retrieval. The first
method is finetuning the module in a contrastive manner
and choosing the answer with the highest similarity of v},
and t.js. The second method is choosing the answer with
the highest VITM logits. We set the batch size to 128 and



finetune the pretrained VideoDistill on 4 A100 GPUs.

C. Generic VideoQA

We evaluate VideoDistill on the four commonly used
VideoQA datasets: MSRVTT-QA [28], MSVD-QA [28],
EgoMCQ [19] and MSRVTT-multiple-choice test [35].
Results. In Table 1,2,3,4, the result of VideoDistill shows
that our model outperforms existing methods on four tasks.
On open-ended datasets MSRVTT-QA and MSVD-QA, we
achieve 2.1% and 2.9% improvement over SOTA methods.
Especially our from-scratch model outperforms previous
large-scale pretrained models with 0.6% gains. For multiple-
choice datasets EgoMCQ and MSRVTT-multiple-choice
test, the task setting is more like the retrieval and is more
suitable for contrastive frameworks like HD-VILA[31] and
VideoCLIP[29]. Our model is still better than the SOTA
methods. We find that VideoDistill achieves an improvement
of 2.1% on EgoMCQ Intra-video test, which is challenging
since it ensures the five candidate answers are continuous
clips with similar visual appearances. It shows that VideoDis-
till can better extract question-related visual semantics.

D. Video-Text Retrieval

Although VideoDistill is specially designed for VideoQA, we
still evaluate it on text-to-video retrieval datasets MSRVTT
[30] and DiDeMo [2] to show its generalization power in
Table 5 and Table 6.

E. More quantitative results and ablations

The impact of LA-Gate. To further demonstrate that LA-
Gate can reduce the use of language prior, we eport the
performance degradations of replacing visual inputs with
Gaussian noise in Table 7. Similar to section 4.4 Table 3, we
find that VideoDistill relies more on visual reasoning during
the answer generation.

We also test VideoDistill on EgoTaskQA indirect split,
which is motivated by the fact [10] that during task execu-
tion, actions, objects, and their changes are often strongly
correlated. It leaves the chance for the model to perform well
by simply over-fitting these strong correlations (language
bias) without thorough task understanding. The indirect ref-
erences can avoid these correlations. Table 8 shows that our
VideoDistill has the least absolute performance change. It
indicates that VideoDistill barely utilizes language bias in
questions.

The choice of the number of densely sampled frames.
We conduct the experiments in Table 9 with L. = 3 and
16 encoded frames. We find that longer video clips (Ego-
taskQA) require a larger N to ensure we are not omitting
the necessary information. Nevertheless, too large N will
damage the performance. One possible reason is a larger N

needs more stacked frame sampling blocks. However, larger
L consumes more computing resources.

Reasonable number of stacked layers L. In Table 10,
we set N = 100 and simultaneously change L for differen-
tiable sparse sampling and vision refinement. We find too
many layers still damage the performance since bigger L
dramatically improve the models’ ability of fitting. Models
will easily trapped in local minimums.

The effectiveness of pretraining losses. The designing
concepts of pretraining losses are: MLM improves context
reasoning by predicting the masked token. VTM and CL
align visual and textual embeddings. Most of the time, ap-
plying one of VIM and CL is enough. This paper utilizes
an incomplete CL to stabilize the training. Ablations on
pretraining loss are shown in Table 11.

Table 9. Sensitivity to densely Table 10. Sensitivity to the
sampled frames. number of stacked blocks.

N  EgoTaskQA MSRVTT-QA L EgoTaskQA MSRVTT-QA
50 40.86 42.13 1 35.50 24.85
100 45.02 44.20 3 45.02 44.20
150 44.80 42.15 5 43.60 44.1
200 42.12 41.10 8 42.18 43.59

Table 11. Analysis of the effectiveness of pretraining tasks.

F. Qualitative Results

We visualize the result of our differentiable sparse sampling
module. Specifically, we report two instances from a four-
frame variant (the number of selected frames K = 4) in
Figure 1 and a full instance from the sixteen-frame version
used on downstream tasks in Figure 2. Note that models with
K > 4 allow duplicate selection, which means important
frames can appear more than once in the K selected frames.



19-th 24-th 32-th 43-th
open the cabinate put the fork onto the plate heat the pot
Question: Did the attribute of fork changed because of the action opening something?

10-th 42-th 43-th 46-th
fill the cup walk to the sofa put the cup to its mouth, drink water play video game

Question: How would the first action did after the person put something to something change the state of water?

Figure 1. Two instances from the four-frame variant



Question: What is the person doing after he/she close something?
Answer: open bottle-water

2-th

9-th

16-th

23-th

30-th

37-th

44-th

51-th



Figure 2. A full instance from the 16-frame variant
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