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1. Explanation of S4(D) and S5 models
The Structured State Spaces (S4 and its diagonal variant

S4D [7, 9]) and Simplified State Space (S5) [12] models
are advanced approaches in sequence modeling, each with
its unique characteristics.

S4 introduces a sequence model based on the Structured
State Space Model (SSM) [4, 5, 8]. It addresses computa-
tional bottlenecks in previous work [5] by reparameterizing
structured state matrices to maintain a hidden state that en-
codes the long history of input. S4D [9] is a variant of the
S4 model, simplifying it by using a fully diagonal state ma-
trix. This adaptation preserves the performance of the orig-
inal model but with a simpler implementation. Gupta [9]
observed that removing the low-rank part of S4’s HiPPO-
LegS matrix [4] results in a diagonal matrix (referred to as
the normal-HiPPO matrix) with comparable performance to
the original S4. S5 [12] is an evolution of S4, using a multi-
input, multi-output (MIMO) single SSM instead of multiple
single-input, single-output (SISO) SSMs used in S4 [7].

The HiPPO matrix [4], a non-normal matrix, is decom-
posed as a sum of a normal and a low-rank matrix. S4 ap-
plies new techniques to overcome computational limitations
associated with this decomposition. The S5 model simpli-
fies the S4 layer by replacing the bank of many indepen-
dent SISO SSMs with one MIMO SSM and implementing
efficient parallel scans [1]. This shift eliminates the need
for convolutional and frequency-domain approaches, mak-
ing the model purely recurrent and time-domain based.

S4 equates the diagonal matrix case to the computation
of a Cauchy kernel, applying to any matrix that can be de-
composed as Normal Plus Low-Rank (NPLR). S5 utilizes
a diagonal state matrix for efficient computation using par-
allel scans. It inherits HiPPO initialization schemes from
S4, using a diagonal approximation to the HiPPO matrix
for comparable performance.

S5 matches the computational complexity of S4 for both

online generation and offline recurrence. It handles time-
varying SSMs and irregularly sampled observations, which
are challenges for the convolutional implementation in S4.
S5 has been shown to match or outperform S4 in vari-
ous long-range sequence modeling tasks, including speech
classification and 1-D image classification [12]. This de-
sign opens up new possibilities in deep sequence model-
ing, including handling time-varying SSMs and combining
state space layers with attention mechanisms for enhanced
performance, which is our contribution along with specific
problem and architecture design.

In summary, while S4 introduced a novel reparameter-
ization of state space models for efficient long sequence
modeling, S5 builds upon this by simplifying the model
structure and computation, leading to a more usable and po-
tentially more flexible approach for various sequence mod-
eling tasks. Both S4 and S5 models can be seen on Figure
1 and Figure 2 respectively.

2. Initialization of continuous-time matrices
2.1. State Matrix Initialization

This subsection elaborates on the initialization process
of continuous-time matrices which are crucial since they al-
low us to discretize them with different time steps to deploy
our model at higher inference frequencies. As described by
[4], S4’s capacity to handle long-range dependencies stems
from employing the HiPPO-LegS matrix, which decom-
poses the input considering an infinitely long, exponentially
diminishing measure [5, 7]. The HiPPO-LegS matrix and
its corresponding single-input-single-output (SISO) vector
are defined as:

(ALegS)nk = −


(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (1)

(bLegS)n = (2n+ 1)
1
2 . (2)

Here, the input matrix BLegS ∈ RN×H is constructed by
concatenating bLegS ∈ RN H times.

Theorem 1 of Gu et al. [5] establishes that HiPPO ma-
trices from [4], AHiPPO ∈ RN×N , can be represented in
a normal plus low-rank (NPLR) format, comprising a nor-
mal matrix, ANormal

HiPPO = VΛV∗ ∈ RN×N , and a low-rank
component:

AHiPPO = ANormal
HiPPO −PQ⊤ = (3)

V (Λ− (V∗P)(V∗Q)∗)V∗ (4)
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Figure 1. In the S4 layer, each dimension of the input sequence u1:L ∈ RL×H is processed by a separate SSM. This process involves
using a Cauchy kernel to determine the coefficients for frequency domain convolutions. The convolutions, done via FFTs, generate the
output y1:L ∈ RL×H for each SSM. The outputs then go through a nonlinear activation function, which includes a layer that mixes them
to produce the final output of the layer.
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Figure 2. For the S5 layer, a parallel scan technique is employed on a diagonal linear SSM to get the SSM outputs. This approach bypasses
the need for frequency domain operations and convolution kernel computations required by S4, resulting in a model that functions in a
purely time-domain, recurrent manner. Recurrence is parallelized with the employment of parallel scans [1].

with unitary V ∈ CN×N , diagonal Λ ∈ CN×N , and low- rank factors P,Q ∈ RN×r. This equation reveals the con-



jugation of HiPPO matrices into a diagonal plus low-rank
(DPLR) structure. Therefore, the HiPPO-LegS matrix can
be expressed through the normal HiPPO-N matrix and the
low-rank term PLegS ∈ RN , as suggested by Goel et al. [3]:

ALegS = ANormal
LegS −PLegsP

⊤
Legs (5)

where

ANormal
LegSnk

= −


(n+ 1

2 )
1/2(k + 1

2 )
1/2, n > k

1
2 , n = k

(n+ 1
2 )

1/2(k + 1
2 )

1/2, n < k

. (6)

PLegsn = (n+
1

2
)

1
2 (7)

We default to initializing the S5 layer state matrix A as
ANormal

LegS ∈ RP×P and then decompose it to obtain the ini-
tial Λ. We often find benefits in initializing B̃ and C̃ using
V and its inverse, as detailed below.

Performance improvements on various tasks were noted
with the S5 state matrix initialized as block-diagonal [12],
with each diagonal block equaling ANormal

LegS ∈ RR×R

(where R < P ). This initialization process also involves
decomposing the matrix to obtain Λ, as well as B̃ and
C̃. Even in this case, B̃ and C̃ remain densely initial-
ized without constraints to keep A block-diagonal during
learning. The hyperparameter J [12] denotes the number
of HiPPO-N blocks on the diagonal for initialization, with
J = 1 indicating the default single HiPPO-N matrix ini-
tialization. Further discussion on the rationale behind this
block-diagonal approach is in Appendix 6.3.

2.2. Input, Output, and Feed-through Matrices Ini-
tialization

The input matrix B̃ and output matrix C̃ are explicitly
initialized using the eigenvectors from the diagonalization
of the initial state matrix. We start by sampling B and C
and then set the complex learnable parameters B̃ = V−1B
and C̃ = CV.

The feed-through matrix D ∈ RH is initialized by sam-
pling each element independently from a standard normal
distribution.

2.3. Timescale Initialization

Prior research, notably [9] and [8], has underscored the
significance of initializing timescale parameters. Explored
in detail by Gu et al. [8], we align with S4 practices and
initialize each element of log∆ ∈ RP from a uniform dis-
tribution over the interval [log δmin, log δmax), with default
values set to δmin = 0.001 and δmax = 0.1.

3. Background on Parallel Scans for Linear
Recurrences

This section provides a concise introduction to parallel
scans, which are central element for the parallelization of
the S5 method implemented in 5.1. For an in-depth explo-
ration, refer to [1].

In essence, a scan operation takes a binary associative
operator •, adhering to the property (a•b)•c = a•(b•c), and
a sequence of L elements [a1, a2, ..., aL]. The output is the
cumulative sequence: [a1, (a1 •a2), ..., (a1 •a2 • ...•aL)].

The principle behind parallel scans is leveraging the flex-
ible computation order of associative operators. For linear
recurrences, parallel scans are applicable on the following
state update equations:

xk = Axk−1 +Buk, yk = Cxk +Duk (8)

We initiate the process with scan tuples ck = (ck,a, ck,b) :=
(A, Buk). The binary associative operator, applied to tu-
ples qi, qj (initial or intermediate), generates a new tuple
qi • qj := (qj,a ⊙ qi,a, qj,a ⊗ qi,b + qj,b), where ⊙ and
⊗ represent matrix-matrix and matrix-vector multiplication,
respectively. With adequate processing power, this parallel
scan approach can compute the linear recurrence of (8) in
O(logL) sequential steps, thereby significantly enhancing
computational efficiency [1].

4. DSEC dataset evaluation

To test the generalizability of our model, we perform in-
ference on the DSEC dataset [2] with a model trained on 1
Mpx dataset [11]. Some results are shown below:

(a) interlaken 00 b (b) zurich city 00 a

(c) zurich city 00 b (d) zurich city 07 a

Figure 3. Detections on DSEC dataset [2] with model trained on
1 Mpx dataset [11]. Names of the specific DSEC scenes are in the
subcaptions.



5. PyTorch implementation of Parallel Scan
and S5 model

In the following subsections, we give implementations
of parallel scans and S5 layer in PyTorch.

5.1. Parallel Scan Operation

Listing 1. Implementation of efficient parallel scan used in S5 model.
from typing import Callable
import torch
from torch.utils._pytree import tree_flatten, tree_unflatten
from functools import partial

def safe_map(f, *args):
args = list(map(list, args))
n = len(args[0])
return list(map(f, *args))

def combine(tree, operator, a_flat, b_flat):
a = tree_unflatten(a_flat, tree)
b = tree_unflatten(b_flat, tree)
c = operator(a, b)
c_flat, _ = tree_flatten(c)
return c_flat

def _scan(tree, operator, elems, axis: int):
num_elems = elems[0].shape[axis]

if num_elems < 2:
return elems

reduced_elems = combine(tree, operator,
[torch.ops.aten.slice(elem, axis, 0, -1, 2) for elem in elems],
[torch.ops.aten.slice(elem, axis, 1, None, 2) for elem in elems],

)

# Recursively compute scan for partially reduced tensors.
odd_elems = _scan(tree, operator, reduced_elems, axis)

if num_elems % 2 == 0:
even_elems = combine(tree, operator,

[torch.ops.aten.slice(e, axis, 0, -1) for e in odd_elems],
[torch.ops.aten.slice(e, axis, 2, None, 2) for e in elems],)

else:
even_elems = combine(tree, operator, odd_elems,

[torch.ops.aten.slice(e, axis, 2, None, 2) for e in elems],)

# The first element of a scan is the same as the first element of the original ‘elems‘.
even_elems = [

torch.cat([torch.ops.aten.slice(elem, axis, 0, 1), result], dim=axis)
if result.shape.numel() > 0 and elem.shape[axis] > 0
else result
if result.shape.numel() > 0
else torch.ops.aten.slice(

elem, axis, 0, 1
) # Jax allows/ignores concat with 0-dim, Pytorch does not
for (elem, result) in zip(elems, even_elems)

]
return list(safe_map(partial(_interleave, axis=axis), even_elems, odd_elems))

def associative_scan(operator: Callable, elems, axis: int = 0, reverse: bool = False):
elems_flat, tree = tree_flatten(elems)

if reverse:
elems_flat = [torch.flip(elem, [axis]) for elem in elems_flat]

num_elems = int(elems_flat[0].shape[axis])
scans = _scan(tree, operator, elems_flat, axis)

if reverse:
scans = [torch.flip(scanned, [axis]) for scanned in scans]

return tree_unflatten(scans, tree)



5.2. S5 model

Listing 2. PyTorch implementation to apply a single S5 layer to a batch of input sequences.
import torch
from typing import Tuple

def discretize_bilinear(Lambda, B_tilde, Delta):
""" Discretize a diagonalized, continuous-time linear SSM

using bilinear transform method.
Args:

Lambda (float32): diagonal state matrix (P, 2)
B_tilde (complex64): input matrix (P, H)
Delta (float32): discretization step sizes (P,)

Returns:
discretized Lambda_bar (float32), B_bar (float32) (P, 2), (P, H, 2)

"""
Lambda = torch.view_as_complex(Lambda)

Identity = torch.ones(Lambda.shape[0], device=Lambda.device)
BL = 1 / (Identity - (Delta / 2.0) * Lambda)
Lambda_bar = BL * (Identity + (Delta / 2.0) * Lambda)
B_bar = (BL * Delta)[..., None] * B_tilde

Lambda_bar = torch.view_as_real(Lambda_bar)
B_bar = torch.view_as_real(B_bar)

return Lambda_bar, B_bar

@torch.jit.script
def binary_operator(

q_i: Tuple[torch.Tensor, torch.Tensor], q_j: Tuple[torch.Tensor, torch.Tensor]
):

"""Binary operator for parallel scan of linear recurrence. Assumes a diagonal matrix A.
Args:

q_i: tuple containing A_i and Bu_i at position i (P,), (P,)
q_j: tuple containing A_j and Bu_j at position j (P,), (P,)

Returns:
new element ( A_out, Bu_out )

"""
A_i, b_i = q_i
A_j, b_j = q_j

return A_j * A_i, torch.addcmul(b_j, A_j, b_i)

def apply_ssm(
Lambda_bars: torch.Tensor, B_bars, C_tilde, D, input_sequence, prev_state, bidir: bool = False

):
""" Compute the LxH output of discretized SSM given an LxH input.

Args:
Lambda_bars (float32): discretized diagonal state matrix (P, 2)
B_bars (float32): discretized input matrix (P, H, 2)
C_tilde (float32): output matrix (H, P, 2)
input_sequence (float32): input sequence of features (L, H)
prev_state (complex64): hidden state (H,)

Returns:
ys (float32): the SSM outputs (S5 layer preactivations) (L, H)
xs (complex64): hidden state (H,)

"""
B_bars, C_tilde, Lambda_bars = as_complex(B_bars), as_complex(C_tilde), as_complex(Lambda_bars)

cinput_sequence = input_sequence.type(Lambda_bars.dtype) # Cast to correct complex type
Bu_elements = torch.vmap(lambda u: B_bars @ u)(cinput_sequence)

if Lambda_bars.ndim == 1: # Repeat for associative_scan
Lambda_bars = Lambda_bars.tile(input_sequence.shape[0], 1)

Lambda_bars[0] = Lambda_bars[0] * prev_state
_, xs = associative_scan(binary_operator, (Lambda_bars, Bu_elements))

if bidir:
_, xs2 = associative_scan(

binary_operator, (Lambda_bars, Bu_elements), reverse=True
)
xs = torch.cat((xs, xs2), axis=-1)

Du = torch.vmap(lambda u: D * u)(input_sequence)
return torch.vmap(lambda x: (C_tilde @ x).real)(xs) + Du, xs[-1]



Listing 3. Raw S5 operator that can be instantiated and used as block in any architecture.
import torch

class S5(torch.nn.Module):
def __init__(...):

self.seq = S5SSM(...)
...

def forward(self, signal, prev_state, step_scale: float | torch.Tensor = 1.0):
if not torch.is_tensor(step_scale):

# Duplicate across batchdim
step_scale = torch.ones(signal.shape[0], device=signal.device) * step_scale

return torch.vmap(lambda s, ps, ss: self.seq(s, prev_state=ps, step_scale=ss))(signal, prev_state, step_scale)

class S5SSM(torch.nn.Module):
def __init__(...):

self.degree = degree
self.discretize = self.discretize_bilinear
...

def get_BC_tilde(self):
match self.bcInit:

case "dense_columns" | "dense" | "complex_normal":
B_tilde = as_complex(self.B)
C_tilde = self.C

case "factorized":
B_tilde = self.BP @ self.BH.T
C_tilde = self.CH.T @ self.CP

return B_tilde, C_tilde

def forward(self, signal, prev_state, step_scale: float | torch.Tensor = 1.0):
B_tilde, C_tilde = self.get_BC_tilde()
if self.degree != 1:

assert (
B_bar.shape[-2] == B_bar.shape[-1]

), "higher-order input operators must be full-rank"
B_bar **= self.degree

step = step_scale * torch.exp(self.log_step)

Lambda_bars, B_bars = self.discretize(self.Lambda, B_tilde, step)

return apply_ssm(Lambda_bars, B_bars, C_tilde, self.D, signal, prev_state, bidir=self.bidir)



6. Exploring the S4 and S5 Architectural Link
This section delves into the relationship between the S4

and S5 architectures, which is instrumental in the evolution
of more efficient architectures and the expansion of theoret-
ical insights from preceding research [4, 7, 12].

Our analysis is segmented into three distinct parts:
1. We utilize the linear nature of these systems to explain

that the latent states generated by the S5 SSM are effec-
tively a linear combination of those produced by the H
SISO S4 SSMs. Moreover, the outputs of the S5 SSM
represent an additional linear transformation of these
states (6.2).

2. For the SISO scenario, as N becomes significantly
large, the dynamics derived from a (non-diagonalizable)
HiPPO-LegS matrix can be accurately approximated by
the (diagonalizable) normal component of the HiPPO-
LegS matrix. This is expanded to encompass the MIMO
context, providing a rationale for initializing with the
HiPPO-N matrix and consequently enabling efficient
parallel scans (6.3).

3. We conclude with a discussion that S5, through strate-
gic initialization of its state matrix, can emulate multiple
independent S4 systems, thus easing previously held as-
sumptions (6.3). We also discuss the set of timescale
parameters, which have been observed to enhance per-
formance (6.4).

It is important to note that many of these results are derived
directly from the linearity of the recurrence.

6.1. Underlying Assumptions

The forthcoming sections are predicated on the follow-
ing assumptions unless stated otherwise:
• We exclusively consider sequence maps that are H-

dimensional to H-dimensional.
• The state matrix for each S4 SSM is the same, denoted as
A(h) = A ∈ CN×N .

• We assert that the timescales for each S4 SSM are consis-
tent, represented by ∆(h) = ∆ ∈ R+.

• S5 employs the identical state matrix A as in S4 [7], im-
plying that the S5’s latent size P is such that P = N .
Additionally, it is presumed that the S5 input matrix is
a horizontal concatenation of the S4’s column input vec-
tors, expressed as B ≜

[
B(1) | . . . | B(H)

]
.

6.2. Distinct Output Projections from Equivalent
Dynamics

In an S5 layer characterized by state matrix A, input ma-
trix B, and an output matrix C, and an S4 layer, where
each of the H individual S4 SSMs possesses a state ma-
trix A and input vector B(h), the outputs of the S5 SSM,
yk, are equivalent to a linear combination of the latent
states from the H S4 SSMs, yk = Cequivx

(1:H)
k , where

Cequiv = [ C · · · C ], provided that both layers are dis-
cretized using identical timescales.

Proof. Considering a singular S4 SSM, the discretized la-
tent states in relation to the input sequence u1:L ∈ RL×H

are described as:

x
(h)
k =

∑k

i=1
A

k−i
B

(h)
u
(h)
i . (9)

For the S5 layer, the latent states are given by:

xk =
∑k

i=1
A

k−i
Bui, (10)

where B is defined as B ≜
[
B

(1) | . . . | B(H)
]

and ui is[
u
(1)
i , . . . , u

(H)
i

]⊤
.

Observation leads to:

xk =
∑H

h=1
x
(h)
k , (11)

This outcome directly stems from the linearity of Equations
(9) and (10), indicating that the MIMO S5 SSM states are
equivalent to the sum of the states from the H SISO S4
SSMs.

The output matrix C for S5 is a singular dense matrix:

yk = Cxk. (12)

Substituting the relationship from (11) into (12) enables ex-
pressing the outputs of the MIMO S5 SSM in terms of the
states of the H SISO S4 SSMs:

yk = C
∑H

h=1
x
(h)
k =

∑H

h=1
Cx

(h)
k . (13)

Defining the vertical concatenation of the H S4 SSM state

vectors as x
(1:H)
k =

[
x
(1)⊤

k , . . . ,x
(H)⊤

k

]⊤
, we ascertain

that the S5 SSM outputs can be written as:

yk = Cequivx
(1:H)
k , with Cequiv = [ C | · · · | C ] ,

(14)
thereby confirming their equivalence to a linear combina-
tion of the HN states computed by the H S4 SSMs.

This proof demonstrates that the outputs of the S5 SSM,
under the specified constraints, can be interpreted as a lin-
ear combination of the latent states generated by H simi-
larly constrained S4 SSMs, sharing identical state matrices
and timescale parameters. However, it does not imply that
the outputs of the S5 SSM are directly identical to those of
the effective block-diagonal S4 SSM; indeed, they differ, as
will be further clarified in the analysis of the S4 layer.

Assuming the output vector for each S4 SSM corre-
sponds to a row in the S5 output matrix, i.e., C =



[
C(1)⊤ | . . . | C(H)⊤

]⊤
, the output of each S4 SSM can be

expressed as:

y
(h)
k = C(h)x

(h)
k , (15)

where y
(h)
k ∈ R. The effective output matrix operating on

the entire latent space in S4 is:

y
(h)
k =

(
CS4xk

)(h)
(16)

By comparing (14) and (16), the distinction in the equiv-
alent output matrices employed by both layers becomes
clear:

CS4 =

 C(1) · · · 0
...

. . .
...

0 · · · C(H)

 , (17)

Cequiv =

 C(1) · · · C(1)

...
. . .

...
C(H) · · · C(H)

 = [C | · · · | C] . (18)

In S4, the effective output matrix comprises independent
vectors on the diagonal, while in S5, it uniformly connects
dense output matrices across the H S4 SSMs. Thus, S5 can
be seen as defining a different projection of the H indepen-
dent SISO SSMs than S4 does. Both projection matrices
possess an identical parameter count.

Despite variations in projection, the interpretability of
the latent dynamics in S5 as a linear projection from S4’s
latent dynamics suggests a promising approach. This ob-
servation leads to the hypothesis that initializing the state
dynamics in S5 with the HiPPO-LegS matrix, the same as
in the method employed in S4 [7], may yield similarly ef-
fective results.

It remains an open question whether one method consis-
tently surpasses the other in terms of expressiveness. It’s
also important to underscore that practical implementation
of S4 and S5 would not directly utilize the block diago-
nal matrix and repeated matrix, respectively, as described
in Equation 18. These matrices serve primarily as theoreti-
cal tools to explain the conceptual equivalence between S4
and S5 models.

6.3. Relaxing the Assumptions

Consider an instance where the S5 SSM state matrix is
configured in a block-diagonal form. In such a scenario, an
S5 SSM with a latent size of JN = O(H) would employ
a block-diagonal matrix A ∈ RJN×JN , complemented by
dense matrices B ∈ RJN×H and C ∈ RH×JN , and J
distinct timescale parameters ∆ ∈ RJ . The latent state
xk ∈ RJN of this system can be divided into J distinct
states x

(j)
k ∈ RN . Consequently, this allows the decom-

position of the system into J individual subsystems, with

each subsystem discretized using a respective ∆(j). The
discretization can be represented as:

A =


A

(1)

. . .

A
(J)

 , B =


B

(1)

...

B
(J)

 , (19)

C =
[
C(1) | · · · | C(J)

]
, (20)

where A
(j) ∈ RN×N , B

(j) ∈ RN×H , and C(j) ∈ RH×N .
This division implies that the system can be interpreted as
J independent N -dimensional S5 SSM subsystems, with
the total output being the sum of the outputs from these J
subsystems:

yk = Cxk =

J∑
j=1

C(j)x
(j)
k . (21)

The dynamics of each of these J S5 SSM subsystems can be
correlated to the dynamics of a distinct S4 system. Each of
these S4 systems possesses its unique set of tied S4 SSMs,
including separate state matrices, timescale parameters, and
output matrices. Hence, the outputs of a JN -dimensional
S5 SSM effectively correspond to the linear combination
of the latent states from J different S4 systems. This real-
ization opens the possibility of initializing a block-diagonal
S5 state matrix with multiple HiPPO-N matrices across its
blocks, rather than a singular, larger HiPPO-N matrix.

6.4. Timescale Parameterization

This section delves into the parameterization nuances of
the timescale parameters ∆. S4 possesses the capability
to learn distinct timescale parameters for each S4 SSM [7],
thereby accommodating various data timescales. Addition-
ally, the initial setting of these timescales is crucial, as high-
lighted in the works of [6] and [9]. Relying solely on a
single initial parameter might result in suboptimal initial-
ization. The previous discussion in this paper proposes the
learning of J separate timescale parameters, corresponding
to each of the J subsystems. However, empirical evidence
indicates superior performance when employing P distinct
timescale parameters [7, 12], one assigned to each state.

This approach can be interpreted in two ways. Firstly,
it may be seen as assigning a unique scaling factor to each
eigenvalue within the diagonalized system framework. Al-
ternatively, it could be considered a strategy to increase the
diversity of timescale parameters at the initialization phase,
thereby mitigating the risks associated with inadequate ini-
tialization. It is noteworthy that the system has the potential
to learn to operate with a singular timescale [12], achieved
by equalizing all timescale values.



7. SSM-only and SSM-ConvNext models
To study the performance of SSM-only models, we re-

placed the attention block with a 2D-SSM block and trained
it on Gen1 and 1 Mpx datasets. We obtain 46.1 mAP
and 45.74 mAP which is lower than the original S5-ViT-B
model’s performance, as it can be seen in Table 1. To eval-
uate a CNN-based backbone, we replace the attention block
with the ConvNext block [10] showing that ViT achieves
better performance than the CNN structure.

Model mAPGen1 mAP1Mpx

S5-ViT-B 47.40 47.20
S5-ConvNext-B 45.92 45.66
S5-SSM2D-B 46.10 45.74

Table 1. Comparison of mAP scores for Gen1 and 1 Mpx
datasets across different base models.

References
[1] Guy E. Blelloch. Prefix sums and their applications. Techni-

cal Report CMU-CS-90-190, School of Computer Science,
Carnegie Mellon University, 1990. 1, 2, 3

[2] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide
Scaramuzza. DSEC: A stereo event camera dataset for driv-
ing scenarios. IEEE RA-L, 2021. 3

[3] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré.
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On the parameterization and initialization of diagonal state
space models. In NeurIPS, pages 35971–35983. Curran As-
sociates, Inc., 2022. 8

[7] Albert Gu, Karan Goel, and Christopher Ré. Efficiently mod-
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