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1. Overview
In this document, we provide the following material in ad-
dition to the main manuscript:
• In Sec. 2, we present the results of additional experi-

ments, in which we evaluate the effect of different loss
weights and data augmentation techniques, and assess the
efficiency of TAPPS and other approaches.

• In Sec. 3, we provide more details of the experimental
setup, including the implementation details of TAPPS and
the strong baseline.

• In Sec. 4, we show examples of predictions by TAPPS
on the Pascal-PP and Cityscapes-PP datasets, and qualita-
tively compare TAPPS to the strong baseline and existing
work.

The code for TAPPS is made publicly available through
https://tue-mps.github.io/tapps/.

2. Additional experiments
Loss weights. In Tab. 1, we show the impact of using dif-
ferent loss weights to balance the losses for object-level seg-
mentation and part-level segmentation, using the weights
λobj and λpt (see Eq. 1 of the main manuscript). We find
that balancing the losses with λobj = λpt = 1.0 yields the
best performance. As expected, the object-level segmenta-
tion performance, reflected in the PQ metric, drops when
λobj is decreased. Conversely, the part-level segmentation
performance, reflected in the PartSQPt metric, drops when
λpt is decreased.

Data augmentation techniques. As explained in Sec. 3.1
of this document, we use large-scale jittering data aug-
mentation for our experiments on Pascal-PP. However,
the existing works Panoptic-PartFormer [8] and Panoptic-
PartFormer++ [9] use less aggressive data augmentation
techniques during training. To show that the difference in
data augmentation techniques is not the main reason that
TAPPS outperforms these methods, we train TAPPS with

λpt λobj
PartPQ PartSQ PQ

Pt No pt All Pt All

1.0 1.0 67.2 50.4 54.7 75.1 57.7

0.5 1.0 67.0 50.1 54.4 75.0 57.5
0.2 1.0 65.9 50.1 54.1 73.6 57.5
0.1 1.0 64.9 50.2 53.9 72.0 57.6

1.0 0.5 67.3 50.2 54.5 75.5 57.4
1.0 0.2 66.6 49.1 53.5 75.5 56.4
1.0 0.1 66.3 48.0 52.7 75.6 55.5

Table 1. Loss weights. Evaluated on Pascal-PP [1, 4, 5, 14], with
pre-training on COCO panoptic segmentation [10].

Method Data augmentation
PartPQ PartSQ PQ

Pt No pt All Pt All

TAPPS (ours) Default 67.2 50.4 54.7 75.1 57.7

TAPPS (ours) Flip & resize [8] 65.8 47.2 51.9 74.8 54.9
Panoptic-PartFormer [8] Flip & resize [8] 56.1 38.8 43.2 66.8 47.6
Panoptic-PartFormer++ [9] Flip & resize [8] 52.6 42.6 45.1 60.4 51.6

Table 2. Comparison with state-of-the-art methods using
identical data augmentation techniques. Evaluated on Pascal-
PP [1, 4, 5, 14], with pre-training on COCO panoptic segmenta-
tion [10]. For the default data augmentation techniques of TAPPS,
see Sec. 3.1.1.

the same data augmentation techniques that are used by
these methods, according to the official code repository of
Panoptic-PartFormer. Specifically, we apply a random hor-
izontal flip, and then directly resize the image such that the
smallest side is 800 pixels. The results in Tab. 2 show that
TAPPS still significantly outperforms both existing meth-
ods when using these data augmentation techniques. This
shows that the improvement by TAPPS is mainly caused
by the methodology and network architecture, and not by
the data augmentation differences. Finally, we note that
there are no differences in data augmentation techniques be-
tween our method and existing works on the Cityscapes-PP
dataset, so these results in Tab. 2 of the main manuscript are
directly comparable.
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Method Inference speed Memory # Params

Baseline 14.9 fps 2.1 GB 44M
TAPPS (predict all parts) 12.7 fps 7.8 GB 48M
TAPPS (predict compat. parts) 16.1 fps 1.7 GB 48M

(a) Different versions of TAPPS, with ResNet-50 backbone.

Method Inference speed # Params PartPQ

Panoptic-PartFormer [8] 11.5 fps 40M 43.2
TAPPS (ours) 16.1 fps 48M 54.7

(b) TAPPS vs. existing work, with ResNet-50 backbone.

Table 3. Efficiency. We evaluate the average inference speed in
frames per second (fps) and the maximum required GPU memory
on the Pascal-PP val set [1, 4, 5, 14], using an Nvidia A100 GPU.

Efficiency. In Tab. 3a, we show the effect of predicting
only compatible parts on the model’s efficiency. Most im-
portantly, we observe that the default version of TAPPS,
which only predicts the masks for the N c compatible parts,
is much more efficient than the version that predicts masks
for all N pc part classes, in terms of both inference speed
and memory. Moreover, by only considering compatible
parts, TAPPS is also more efficient than the baseline that
uses separate object-level and part-level queries. Another
reason that TAPPS is more efficient than the baseline is that
its part-level queries do not participate in the self-attention
and cross-attention operations in the decoder, unlike those
of the baseline. This shows the strength of the simplicity of
TAPPS.

In Tab. 3b, we compare TAPPS to existing method
Panoptic-PartFormer [8]. The results show that TAPPS ob-
tains a considerably better PartPQ, while using only 8M
more parameters, and even being much faster.

3. Experimental setup
In this section, we provide further details about the exper-
imental setup. First, in Sec. 3.1, we describe the imple-
mentation details more extensively, for TAPPS, the strong
baseline, and the TAPPS version that conducts dynamic part
segmentation. Second, in Sec. 3.2, we explain how we
obtain the PartPQ scores for Panoptic-PartFormer [8] and
Panoptic-PartFormer++ [9] on Pascal-PP.

3.1. Implementation details

The most important implementation details have already
been provided in Sec. 4 of the main manuscript. This sub-
section provides a more comprehensive overview of the im-
plementation details.

3.1.1 General

This subsection describes the implementation details that
apply to both TAPPS and the baseline. For completeness,

we repeat some of the details already mentioned in the main
manuscript.

Both TAPPS and the baseline are implemented on top
of the publicly available code of Mask2Former [2], which
uses Detectron2 [16]. All experiments are conducted with
a batch size of 16, using 4 Nvidia A100 GPUs in total.
Following Mask2Former, we optimize all networks using
AdamW [12], using a polynomial learning rate schedule
with an initial learning rate of 10−4, a power of 0.9, and
a weight decay of 0.05. When we apply ImageNet pre-
training, we initialize the backbone with weights pre-trained
on ImageNet-1K [15]. In case of COCO pre-training, we
initialize both the backbone and the compatible decoder lay-
ers with weights pre-trained on COCO panoptic segmen-
tation [7, 10]; we use the weights provided in the official
repository of Mask2Former. Like Mask2Former, TAPPS
applies deep supervision [2]. This means that the segmenta-
tion masks and classes are predicted after each transformer
layer in the decoder, and that a loss is calculated for these
predictions at each of these layers. The overall loss is the
sum of the total losses at all transformer layers.

For experiments on Pascal-PP [1, 4, 5, 14], we train for
60k iterations in case of ImageNet pre-training. In case of
COCO pre-training, we train for 10k iterations, to avoid
overfitting. Following state-of-the-art panoptic segmenta-
tion implementations on COCO [10], during training, we
apply a random horizontal flip, followed by large-scale jit-
tering with a scale between 0.1 and 2.0 and a random crop
of 1024×1024 pixels. During inference, we resize the im-
age such that the shortest side is 800 pixels.

For experiments on Cityscapes-PP [3, 4], we train for
90k iterations for both ImageNet and COCO pre-training.
We follow the conventional data augmentation steps for
Cityscapes during training [2, 8]: random horizontal flip
with a probability of 0.5, scaling the image with a ran-
dom factor between 0.5 and 2.0, and finally a random crop
of 512×1024 pixels. During inference, we feed the full-
resolution images of 1024×2048 pixels.

3.1.2 TAPPS

For TAPPS, we use N q = 100 shared queries. This is
equal to the default number of object-level queries used by
Mask2Former, because each shared query still represents
only one object-level segment. Following Mask2Former,
query embedding dimension E = 256. By default, the
adaptation layer in the JOPS head is an MLP with two
fully connected layers with 256 input and output channels
and a ReLU activation in between; see Tab. 4 of the main
manuscript for ablations.

During inference, TAPPS outputs PPS predictions with-
out requiring rule-based post-processing, as it does not have
to assign object-instance-unaware parts to individual ob-
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Figure 1. Baseline network architecture. Our strong baseline uses two separate sets of queries, one set for object-level segmentation and
another set for part-level segmentation. Using these two sets of queries, this baseline network separately predicts object-level segments and
object-unaware part-level segments. Operator ⊗ denotes a matrix multiplication.

jects, or resolve conflicts between object- and part-level
predictions. Specifically, for each query, TAPPS simply
outputs (a) an object-level class and mask, and (b) a part-
level mask for each part-level class that is compatible with
the predicted object-level class. For each pixel within the
object-level mask, TAPPS keeps only the highest-scoring
part mask prediction, applying argmax. This results in a
set of compatible part-level segments that belong to an in-
dividual object-level segment. Applying this to all shared
queries, we output a set of predictions that comply with the
PPS task definition.

3.1.3 Baseline

Like Mask2Former, our baseline uses 100 queries for
object-level segmentation. Additionally, to also conduct
part-level semantic segmentation, it uses 100 additional
queries. In Fig. 1, we depict the network architecture for
this strong baseline. As seen in this figure, both sets of
queries are concatenated when entering the Transformer
decoder, so there can be interaction between object-level
and part-level queries through self-attention. Note that, al-
though they are concatenated, these queries are not ‘mixed’
or shared. The first 100 queries are still object-level queries,
which learn to represent object-level segments, and the fi-
nal 100 queries are part-level queries, which learn to rep-
resent object-instance-unaware part-level segments. At the
end of the decoder, the queries are again split into two
sets of queries, and fed into separate heads. The object-
level head predicts the object-level segmentation masks and
classes, resulting in object-level panoptic segmentation pre-
dictions. The part-level head predicts the part-level seg-
mentation masks and classes, resulting in object-instance-
unaware part segmentation predictions, i.e., semantic seg-

mentation for part classes.
During training, we apply the cross-entropy loss to the

object-level and part-level classes, and we use both the
cross-entropy and Dice loss [13] for the object-level and
part-level segmentation masks. The total loss is the sum
of the object-level mask and classification losses, and the
part-level mask and classification losses.

During inference, because the part-level predictions are
object-instance-unaware and not explicitly linked to indi-
vidual objects, and because there can be incompatibilities
between object- and part-level predictions, we apply the de-
fault rule-based merging strategy [4] used by existing work
to generate the final PPS predictions.

3.1.4 Dynamic part segmentation

In Tab. 7 of the main manuscript, we compare our default
version of TAPPS to a version that applies dynamic part
segmentation. By default, as explained in Sec. 3.3.2 of the
main manuscript, we generate a set of fixed per-object part
queries in the JOPS head. That means that each per-object
part query corresponds to a fixed, pre-determined part-level
class, and that this query predicts a mask for this class. Al-
ternatively, we can use a set of dynamic queries, which do
not correspond to a fixed class, like we do for object-level
segmentation. As depicted in Fig. 2, for each query Qi, we
apply N dyn fully-connected (FC) layers to generate a set of
dynamic per-object part queries Qdyn

i ∈ RN dyn×E . As these
queries are dynamic, they do not correspond to a fixed class,
so for each of these queries we predict (a) a part-level class
with a single fully-connected layer, and (b) a part-level seg-
mentation mask by first applying a 3-layer MLP and then
taking the product of the resulting mask queries with the
features F. We use N dyn = 50.



Method Backbone Pre-training
As originally reported [8, 9] With official evaluation [4]

PartPQPt PartPQNoPt PartPQ PartPQPt PartPQNoPt PartPQ

Panoptic-PartFormer [8] ResNet-50 [6] I,C – – 37.8 56.1 38.8 43.2
Panoptic-PartFormer++ [9] ResNet-50 [6] I,C – – 42.2 52.6 42.6 45.1

Panoptic-PartFormer [8] Swin-B [11] I,C – – 47.4 64.3 50.6 54.1
Panoptic-PartFormer++ [9] Swin-B [11] I,C – – 49.3 48.9 52.1 51.3

Table 4. Re-evaluation of existing work on Pascal-PP [1, 4, 5, 14]. After discovering an evaluation bug in the official code of Panoptic-
PartFormer [8] which caused the PartPQ scores to be lower than they actually are, we re-evaluate the predictions by Panoptic-PartFormer [8]
and Panoptic-PartFormer++ [9] using the official PPS evaluation repository [4]. We use these higher correct numbers in our comparisons
in the main manuscript. I = ImageNet [15], C = COCO panoptic [10] pre-training.
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Figure 2. Dynamic part segmentation. When conducting
dynamic part segmentation, the JOPS head uses N dyn fully-
connected (FC) layers to generate N dyn per-object part queries.
Each per-object part query dynamically learns to represent at most
one part-level segment within an object. For each per-object part
query, we predict (a) a part-level class and (b) a part-level mask.

To supervise these part-level predictions during train-
ing, we assign each per-object part query to at most one
part-level ground-truth segment using the same Hungar-
ian matching algorithm we use for object-level segmenta-
tion [2]. This matching is applied separately within each
object-level segment. If there is no matching ground-truth
segment for a part query, we do not supervise the segmen-
tation mask and supervise a ‘no-part’ class label. The part
class prediction by this dynamic version of TAPPS is super-
vised with a cross-entropy loss. The other losses remain the
same.

During inference, the procedure is the same as for the de-
fault TAPPS. The only difference is the source of the part-
level class prediction. This dynamic version explicitly pre-
dicts it, whereas, for the default fixed version, it is known
because each per-object part query is associated with a pre-
determined part class.

3.2. Evaluation of existing work

As mentioned in Tab. 2 of the main manuscript, the
PartPQ scores of Panoptic-PartFormer [8] and its exten-

sion Panoptic-PartFormer++ [9] on Pascal-PP reported in
our work are higher than the scores that these works origi-
nally reported [8, 9]. This is due to an evaluation bug that
we discovered in the official code repository of Panoptic-
PartFormer [8], which caused the resulting PartPQ scores to
be lower than they actually are. Note that this bug only ap-
plies to Pascal-PP and not to Cityscapes-PP. We notified the
authors of this bug, and they confirmed it. To assess whether
this problem also occurred for Panoptic-PartFormer++, for
which the code is not available, we requested the authors
to send us the predictions by Panoptic-PartFormer++, so we
could re-evaluate them on Pascal-PP. We are thankful that
the authors have sent us these predictions. In Tab. 4, we pro-
vide both the originally reported scores, and the scores after
our re-evaluation given the official PPS evaluation repos-
itory [4]. For all methods, the overall PartPQ scores are
higher when using the correct evaluation. Therefore, we
compare against these higher values in Tab. 2 of the main
manuscript.

4. Qualitative results

In Fig. 3 and Fig. 4, we compare TAPPS against the strong
baseline that we describe in Sec. 3.1.3. These examples
show some of the advantages of TAPPS over the baseline.
Specifically, we observe that TAPPS (1) makes more accu-
rate part segmentation predictions within identified objects,
and (2) is better able to separate different object instances.

Comparing TAPPS to state-of-the-art existing model
Panoptic-PartFormer [8] in Fig. 5 and Fig. 6, we observe
even more significant differences. In addition to the object-
level segmentation quality, the part segmentation quality
within objects is considerably better for TAPPS. This ap-
plies to large and small objects across different classes.

In Fig. 7 and Fig. 8, we show examples of predictions by
TAPPS with a Swin-B [11] backbone, which achieves new
state-of-the-art PPS performance. These examples show the
high segmentation quality that TAPPS can achieve, across
different types of objects and classes.

Finally, Fig. 9 shows examples of typical errors made



by TAPPS. Notably, TAPPS struggles with images in which
objects are seen from uncommon perspectives, and images
with many objects and complex occlusions.
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(a) Input image (b) Ground truth (c) Baseline (d) TAPPS (ours)

Figure 3. Qualitative examples of TAPPS and our strong baseline on Pascal-PP [1, 4, 5, 14]. Both networks use ResNet-50 [6] with
COCO pre-training [10]. White borders separate different object-level instances; color shades indicate different categories. Note that the
colors of part-level categories are not identical across instances; there are different shades of the same color. In these examples, we can
see how TAPPS improves both the instance separability and part segmentation quality with respect to the strong baseline. The red boxes
indicate regions in which these differences are best visible. Best viewed digitally.



(a) Input image (b) Ground truth (c) Baseline (d) TAPPS (ours)

Figure 4. Qualitative examples of TAPPS and our strong baseline on Cityscapes-PP [3, 4]. Both networks use ResNet-50 [6] with
COCO pre-training [10]. White borders separate different object-level instances; color shades indicate different categories. Note that the
colors of part-level categories are not identical across instances; there are different shades of the same color. In these examples, we can
see how TAPPS improves both the instance separability and part segmentation quality with respect to the strong baseline. The red boxes
indicate regions in which these differences are best visible. Best viewed digitally.



(a) Input image (b) Ground truth (c) Panoptic-PartFormer [8] (d) TAPPS (ours)

Figure 5. Qualitative examples of TAPPS and Panoptic-PartFormer [8] on Pascal-PP [1, 4, 5, 14]. Both networks use ResNet-50 [6]
with COCO pre-training [10]. White borders separate different object-level instances; color shades indicate different categories. Note that
the colors of part-level categories are not identical across instances; there are different shades of the same color. Best viewed digitally.



(a) Input image (b) Ground truth (c) Panoptic-PartFormer [8] (d) TAPPS (ours)

Figure 6. Qualitative examples of TAPPS and Panoptic-PartFormer [8] on Cityscapes-PP [3, 4]. Both networks use ResNet-50 [6]
with COCO pre-training [10]. White borders separate different object-level instances; color shades indicate different categories. Note that
the colors of part-level categories are not identical across instances; there are different shades of the same color. Best viewed digitally.



(a) Input image (b) Ground truth (c) TAPPS (ours)

Figure 7. TAPPS with Swin-B [11] on Pascal-PP [1, 4, 5, 14]. The Swin-B backbone is pre-trained on COCO panoptic [10]. White
borders separate different object-level instances; color shades indicate different categories. Note that the colors of part-level categories are
not identical across instances; there are different shades of the same color. Best viewed digitally.



(a) Input image (b) Ground truth (c) TAPPS (ours)

Figure 8. TAPPS with Swin-B [11] on Cityscapes-PP [3, 4]. The Swin-B backbone is pre-trained on COCO panoptic [10]. White borders
separate different object-level instances; color shades indicate different categories. Note that the colors of part-level categories are not
identical across instances; there are different shades of the same color. Best viewed digitally.



(a) Input image (b) Ground truth (c) TAPPS (ours)

Figure 9. Examples of errors in TAPPS predictions. The predictions are made by TAPPS that uses a ResNet-50 [6] backbone pre-
trained on COCO panoptic [10]. Top three images are from Pascal-PP validation [1, 4, 5, 14], bottom three images are from Cityscapes-PP
val [3, 4]. White borders separate different object-level instances; color shades indicate different categories. Note that the colors of part-
level categories are not identical across instances; there are different shades of the same color. Best viewed digitally.


	. Overview
	. Additional experiments
	. Experimental setup
	. Implementation details
	General
	TAPPS
	Baseline
	Dynamic part segmentation

	. Evaluation of existing work

	. Qualitative results

