
Supplementary Document of StraightPCF: Straight Point Cloud Filtering

Dasith de Silva Edirimuni1, Xuequan Lu2*, Gang Li1, Lei Wei1, Antonio Robles-Kelly1, Hongdong Li3
1Deakin University, 2La Trobe University, 3Australian National University
{dtdesilva, gang.li, lei.wei, antonio.robles-kelly}@deakin.edu.au,

b.lu@latrobe.edu.au, hongdong.li@anu.edu.au

This supplementary document contains the following:
A. Additional methodology details.

A.1. VelocityModule training.
A.2. Inference time filtering objective for full network.

B. Further evaluation on synthetic and scanned data
B.1. Performance of additional methods on PUNet and

PCNet data with Gaussian noise.
B.2. Additional visual results on real-world scanned

data.
C. Further evaluation on PUNet and PCNet data under dif-

ferent noise patterns.
D. Comparison of test times for different methods.
E. Further ablation studies.

E.1. Higher VelocityModule couplings, K.
E.2. Impact of Euler step number, N .

F. Discussion of limitations.

A. Additional Methodology Details
A.1. VelocityModule training

In Sec. 4.1 of the main paper, we presented the Velocity-
Module that enables filtering via straight flows. Here, we
provide more detail into its training objective. We train
the VelocityModule by minimizing the loss of Eq. (7) in
the main paper. During training, we first draw samples
XXX0 = YYY + σHξ ∧ ξ ∼ N (0, I) and XXX1 = YYY from π0

and π1, respectively. Given a pair (XXX0, XXX1), we use the
linear interpolation of Eq. (4), given in the main paper, to
sample an intermediate state at time t ∼ U(0, 1). For the
filtering task, we do not have explicit knowledge of the time
step at which we start the filtering process. Consequently,
we do not input the time step t to the VelocityModule, we
only provide XXXt. We then obtain the optimal parameters θ⋆

of the VelocityModule by minimizing the expected value
over time of the L2 norm term in Eq. (7), given in the main
paper, such that,

θ⋆ = argmin
θ

{
Et∼U(0,1)

[
∥vvvθ(XXXt)− δδδ(XXX1,XXX0)∥22

]}
.

(1)
*Corresponding author: X. Lu, supported by fund 3.2501.11.47.

A.2. Inference time filtering objective for full net-
work

In this section, we provide supplementary details on the
filtering objective of the full network, with trained Veloc-
ityModule coupling and DistanceModule. Eq. (15) of the
main paper provides the sequential position update for our
StraightPCF network. Now, the full position update across
time steps S = {M̂, M̂ +K, . . . , N(K − 1)} is,

X̃XX1 = X̃XXM̂/T +
dϕ(X̃XXM̂/T )

T

∑
t̂∈S

K−1∑
k=0

vvvkθ(X̃XX(t̂+k)/T ). (2)

We apply our StraightPCF network across T = N · K to-
tal iterations. At very high noise levels, this entire filtering
process has to be repeated, similar to ScoreDenoise [8]. The
reason for this is the upper limit of our training noise scales
is only σ = 2%. Therefore, at inference, for σ = 2% noise,
we repeat the full position update 2 times while for σ = 3%,
we repeat the process 3 times.

B. Further Evaluation on Synthetic and
Scanned Data

In this section, we provide additional results on both syn-
thetic and scanned data that could not be added to the main
paper, due to constraints of space. Moreover, we provide
more detail into our experimental set-up. To obtain Cham-
fer Distance (CD) and Point2Mesh (P2M) results, we have
used the implementation of PyTorch3D [13] with the same
settings as ScoreDenoise [8], PDFlow [9] and DeepPSR [2].
For all filtering results, to ensure fair comparison, learning
based methods were only trained on the synthetic PUNet
training set with Gaussian noise.

B.1. Performance of additional methods on PUNet
and PCNet data with Gaussian noise

Table 1 presents the performance of deep learning-based
methods and conventional methods which were not in-
cluded in the main paper, due to limitations of space. These
results are for PUNet and PCNet data with Gaussian noise

1



Resolution 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU
N

et
da

ta
se

t[
14

] Bilateral [4] 3.646 1.342 5.007 2.018 6.998 3.557 0.877 0.234 2.376 1.389 6.304 4.730
Jet [1] 2.712 0.613 4.155 1.347 6.262 2.921 0.851 0.207 2.432 1.403 5.788 4.267
MRPCA [10] 2.972 0.922 3.728 1.117 5.009 1.963 0.669 0.099 2.008 1.033 5.775 4.081
GLR [5] 2.959 1.052 3.773 1.306 4.909 2.114 0.696 0.161 1.587 0.830 3.839 2.707
GPDNet[11] 3.780 1.337 8.007 4.426 13.482 9.114 1.913 1.037 5.021 3.736 9.705 7.998
DMRD [7] 4.482 1.722 4.982 2.115 5.892 2.846 1.162 0.469 1.566 0.800 2.432 1.528
Ours 1.870 0.239 2.644 0.604 3.287 1.126 0.562 0.111 0.765 0.266 1.307 0.648

PC
N

et
da

ta
se

t[
12

] Bilateral [4] 4.320 1.351 6.171 1.646 8.295 2.392 1.172 0.198 2.478 0.634 6.077 2.189
Jet [1] 3.032 0.830 5.298 1.372 7.650 2.227 1.091 0.180 2.582 0.700 5.787 2.144
MRPCA [10] 3.323 0.931 4.874 1.178 6.502 1.676 0.966 0.140 2.153 0.478 5.570 1.976
GLR [5] 3.399 0.956 5.274 1.146 7.249 1.674 0.964 0.134 2.015 0.417 4.488 1.306
GPDNet [11] 5.470 1.973 10.006 3.650 15.521 6.353 5.310 1.716 7.709 2.859 11.941 5.130
DMRD [7] 6.602 2.152 7.145 2.237 8.087 2.487 1.566 0.350 2.009 0.485 2.993 0.859
Ours 2.747 0.536 4.046 0.788 4.921 1.093 0.877 0.144 1.173 0.259 1.816 0.445

Table 1. Quantitative filtering results of conventional methods and older learning based methods on the synthetic PUNet and PCNet datasets
with Gaussian noise. CD and P2M values are multiplied by 104.

Figure 1. Additional visual results on the real-world Paris-Rue-Madame dataset.

at scales of 1%, 2% and 3% of the bounding sphere’s ra-
dius. In general, we see that these methods perform sub-
optimally, with relatively higher CD and P2M errors. Fur-
thermore, conventional methods require hyper-parameter
tuning to obtain the best possible results. This is a tedious
process which deep learning based methods help remedy.

B.2. Additional visual results on real-world scanned
data

Fig. 1 illustrates filtering results on Scene 3 and Scene 4
of the Paris-Rue-Madame dataset. We observe from the
close-ups in Scene 3 and 4 that PDFlow and DeepPSR leave
behind high amounts of noise near the building windows.

By comparison, IterativePFN fairs better but is not able to
completely filter these noisy artifacts. StraightPCF is able
to recover cleaner, smoother surfaces and removes a higher
proportion of noise. This is evident in the close-ups of the
windows and the close-up of the car roof. Further evalu-
ation on real-world outdoor scenes is provided in Fig. 2
which illustrates filtering results on 4 scenes of the Kitti-360
dataset [6]. This dataset contains point clouds at a high spar-
sity setting and high noise level. While other methods leave
behind noisy remnants, StraightPCF provides smoothly fil-
tered surfaces. Moreover, the points are better distributed,
as compared with DeepPSR which leaves behind clustering
artifacts. Next, Fig. 3 demonstrates visual filtering results



Figure 2. Visual results on 4 scans of the real-world Kitti-360 data.

Figure 3. Visual filtering results on 4 scans of the real-world Kinect data. We outperform other methods and recover better distributed
points with fewer, and smaller, holes.



Resolution 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU
N

et
[1

4]

Score [8] 2.479 0.463 3.701 1.098 4.764 1.984 0.711 0.149 1.319 0.593 2.087 1.162
PointFilter [15] 2.399 0.433 3.529 0.888 5.240 2.001 0.757 0.185 0.964 0.301 1.918 0.963
PDFlow [9] 2.103 0.383 3.293 1.060 4.640 2.182 0.653 0.167 1.197 0.604 2.080 1.349
DeepPSR [2] 2.377 0.328 3.400 0.813 4.179 1.384 0.644 0.075 1.036 0.345 1.521 0.692
IterativePFN [3] 1.994 0.212 3.030 0.567 4.611 1.678 0.602 0.061 0.830 0.205 2.425 1.377
Ours 1.834 0.238 2.640 0.617 3.479 1.292 0.556 0.108 0.798 0.296 1.662 0.926

PC
N

et
[1

2]

Score [8] 3.380 0.831 5.168 1.218 6.816 1.980 1.079 0.178 1.740 0.394 2.692 0.761
PointFilter [15] 3.016 0.878 4.949 1.329 7.482 2.225 1.069 0.194 1.457 0.310 2.720 0.691
PDFlow [9] 3.246 0.607 4.722 0.993 6.390 1.738 0.988 0.159 1.734 0.478 2.828 0.811
DeepPSR [2] 3.146 0.993 4.943 1.342 6.307 1.860 1.011 0.173 1.630 0.432 2.332 0.724
IterativePFN [3] 2.639 0.694 4.492 1.036 6.534 1.910 0.922 0.142 1.323 0.272 3.046 0.987
Ours 2.757 0.543 4.080 0.830 5.209 1.329 0.883 0.148 1.229 0.290 2.226 0.654

Table 2. Quantitative filtering results of recent methods and our method on the synthetic datasets with non-isotropic Gaussian noise. Our
network is lightweight, with just ∼ 530K parameters (17% of IterativePFN). CD and P2M values are multiplied by 104.

Resolution 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU
N

et
[1

4]

Score [8] 2.903 0.670 4.602 1.812 6.295 3.233 0.825 0.233 1.677 0.885 2.669 1.645
PointFilter [15] 2.773 0.571 4.250 1.366 7.668 3.905 0.827 0.230 1.244 0.491 2.876 1.800
PDFlow [9] 2.538 0.574 4.319 1.861 7.817 4.819 0.821 0.296 1.507 0.860 4.532 3.520
DeepPSR [2] 2.725 0.488 3.915 1.218 4.982 1.981 0.740 0.139 1.279 0.526 1.835 0.890
IterativePFN [3] 2.393 0.315 3.396 0.806 6.489 3.131 0.653 0.089 0.999 0.317 3.670 2.411
Ours 2.164 0.338 2.982 0.872 4.574 2.163 0.602 0.133 0.966 0.412 2.536 1.676

PC
N

et
[1

2]

Score [8] 3.968 0.954 6.193 1.650 8.395 2.618 1.204 0.227 2.058 0.509 3.379 1.013
PointFilter [15] 3.539 0.985 5.732 1.589 9.821 3.273 1.155 0.227 1.723 0.381 3.536 1.099
PDFlow [9] 3.760 0.713 5.778 1.404 9.245 2.869 1.166 0.214 2.107 0.544 4.831 1.453
DeepPSR [2] 3.687 1.133 5.452 1.573 7.142 2.166 1.121 0.226 1.830 0.484 2.574 0.740
IterativePFN [3] 3.189 0.801 4.894 1.165 8.173 2.517 0.993 0.172 1.477 0.288 3.799 1.138
Ours 3.156 0.602 4.468 0.940 6.099 1.548 0.936 0.161 1.399 0.332 2.916 0.892

Table 3. Quantitative filtering results of recent methods and our method on the synthetic datasets with Laplace noise. Our network is
lightweight, with just ∼ 530K parameters (17% of IterativePFN). CD and P2M values are multiplied by 104.

on the Kinect data. Methods such as PDFlow, DeepPSR
and IterativePFN perform poorly on scans such as Boy
and Pyramid, in comparison to StraightPCF. Furthermore,
Pointfilter leaves behind a large number of holes on the
Pyramid scan whereas StraightPCF recovers a cleaner fil-
tered version of the Pyramid with fewer, and smaller, holes.

C. Further Evaluation on PUNet and PCNet
Data Under Different Noise Patterns

Similar to the analysis of ScoreDenoise [8], DeepPSR [2],
PDFlow [9] and IterativePFN [3], we look at quantitative

and visual results on synthetic data under different noise
patterns. More specifically, we look at noise patterns that
have the following distributions:

1) Non-isotropic Gaussian distribution where the co-
variance matrix is given by:

Σ = s2 ×

 1 −1/2 −1/4
−1/2 1 −1/4
−1/4 −1/4 1

 (3)

The noise scale s is set to 1%, 2% and 3% of the bounding
sphere’s radius. In contrast to the synthetic data presented
in the main paper, which contain isotropic Gaussian noise,



Resolution 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU
N

et
[1

4]

Score [8] 1.274 0.249 2.467 0.414 3.366 0.977 0.505 0.046 0.691 0.129 0.900 0.288
PointFilter [15] 1.139 0.287 2.447 0.407 3.031 0.574 0.631 0.148 0.742 0.171 0.798 0.188
PDFlow [9] 0.874 0.178 2.026 0.332 2.660 0.637 0.456 0.057 0.854 0.326 0.953 0.400
DeepPSR [2] 1.226 0.190 2.416 0.299 2.969 0.472 0.497 0.027 0.638 0.064 0.928 0.245
IterativePFN [3] 0.645 0.088 2.009 0.191 2.684 0.339 0.443 0.014 0.599 0.054 0.694 0.110
Ours 0.624 0.097 1.834 0.252 2.365 0.427 0.418 0.050 0.557 0.130 0.683 0.228

PC
N

et
[1

2]

Score [8] 1.789 0.692 3.232 0.795 4.767 1.258 0.714 0.104 1.044 0.164 1.342 0.308
PointFilter [15] 1.414 0.792 2.926 0.853 4.032 0.999 0.774 0.155 1.060 0.181 1.182 0.210
PDFlow [9] 2.038 0.506 3.108 0.582 3.954 0.788 0.727 0.096 1.245 0.329 1.374 0.361
DeepPSR [2] 1.610 0.954 3.065 1.014 4.146 1.129 0.661 0.110 0.991 0.157 1.306 0.270
IterativePFN [3] 0.989 0.598 2.495 0.668 3.713 0.805 0.578 0.089 0.918 0.134 1.074 0.186
Ours 1.399 0.477 2.917 0.581 3.677 0.700 0.678 0.103 0.906 0.175 1.058 0.240

Table 4. Quantitative filtering results of recent methods and our method on the synthetic datasets with uniform noise. Our network is
lightweight, with just ∼ 530K parameters (17% of IterativePFN). CD and P2M values are multiplied by 104.

here we look at Gaussian noise that is anisotropically dis-
tributed. Table 2 and Fig. 4 provide quantitative and visual
results on this noise pattern. Our method outperforms oth-
ers across most resolution and noise settings on both the
PUNet and PCNet datasets.

2) Laplace distribution where the noise scale s is set
to 1%, 2% and 3% of the bounding sphere’s radius. Ta-
ble 3 and Fig. 5 provide quantitative and visual results on
this noise pattern. We note that the noise intensity for this
noise pattern is generally higher than the case of Gaussian
noise. However, our method satisfactorily filters synthetic
data across both PUNet and PCNet datasets. IterativePFN
and DeepPSR obtain competitive P2M results, yet induce
clustering which can be seen from the formation of small
holes on the Camel and Netsuke shapes of Fig. 5. We
also observe that while our StraightPCF method interpo-
lates between Gaussian high noise variant patches and un-
derlying clean patches during training time, the results on
the Laplace distributed synthetic data demonstrates the high
generalizability of our method.

3) Uniform distribution of noise within a sphere of ra-
dius s. The probability to sample noise at a position xxx
within the sphere is given by,

p(xxx; s) =

{
3

4πs3 , ∥xxx∥2 ≤ s,

0, Otherwise
(4)

where the noise scale s is set to 1%, 2% and 3% of the
bounding sphere’s radius. This noise distribution is not uni-
modal unlike the previous distributions and generally has
a lower noise intensity than that of Gaussian noise. Ta-
ble 4 and Fig. 6 provide quantitative and visual results on

Method Time (s)
PCN 186.7
ScoreDenoise 15.8
Pointfilter 100.8
PDFlow 53.8
DeepPSR 8.99
IterativePFN 19.7
Ours 18.2

Table 5. Runtimes of state-of-the-art methods on point clouds with
50K points and 2% Gaussian noise, from the PUNet dataset.

this noise pattern. Overall, StraightPCF consistently out-
performs others on the Chamfer Distance metric, indicating
its ability to recover a distribution of points closer to that
of the clean point cloud. Furthermore, analysis of the vi-
sual results again reinforces the conclusion that while some
methods such as IterativePFN may yield lower P2M errors,
they cause points to cluster and leave behind small holes.

D. Comparison of Test Times for Different
Methods

Table 5 provides runtimes for StraightPCF, and other state-
of-the-art methods, on synthetic point clouds at 50K resolu-
tion and σ = 2%. We obtained the runtime for each method
by filtering 3 point clouds at 50K resolution and σ = 2%,
from the PUNet dataset, and taking the mean of the total
runtime. In general, DeepPSR is the fastest method but
its overall performance across synthetic and scanned data
is sub-optimal. To improve performance results, DeepPSR



Figure 4. Visual results for 50K resolution shapes with non-isotropic Gaussian noise and noise scale s = 2% of the bounding sphere
radius.

Figure 5. Visual results for 50K resolution shapes with Laplace noise and noise scale s = 2% of the bounding sphere radius.

would potentially need to filter point clouds for additional
iterations, leading to higher runtimes. The same is true
for ScoreDenoise. However, we obtain state-of-the-art per-
formance with highly competitive runtimes. As mentioned
previously, StraightPCF is much more lightweight than It-
erativePFN, its closest competitor in terms of performance.

It has only ∼ 530K parameters compared to IterativePFN’s
∼ 3.2M parameters.

E. Further Ablation Studies
Tables 6 and 7 provide ablation results on higher Veloci-
tyModule (VM) couplings K, with and without the Dis-



Figure 6. Visual results for 50K resolution shapes with uniformly distributed noise and noise scale s = 2% of the bounding sphere radius.

Ablation: PUNet
10K points

1% noise 2% noise 3% noise
CD P2M CD P2M CD P2M

V5) CVM w/ DM 1.87 0.24 2.64 0.60 3.29 1.13
V6) 3VM w/o DM 1.89 0.27 2.81 0.76 3.43 1.25
V7) 3VM w/ DM 1.87 0.24 2.66 0.61 3.23 1.09

V8) 4VM w/o DM 1.90 0.28 2.87 0.83 3.52 1.34
V9) 4VM w/ DM 1.86 0.24 2.62 0.59 3.38 1.20

Table 6. Ablation results for higher VelocityModule (VM) cou-
plings K, with and without the DistanceModule (DM). CD and
P2M distances are multiplied by 104.

Ablation: PUNet
10K points

1% noise 2% noise 3% noise
CD P2M CD P2M CD P2M

N = 1 2.03 0.30 2.84 0.76 3.44 1.26
N = 3 1.87 0.24 2.64 0.60 3.29 1.13
N = 5 1.86 0.24 2.62 0.59 3.33 1.15

Table 7. Ablation on different numbers of Euler steps N . Based
on the above results, we see that N = 3 is the optimal number
of Euler steps as it provides a good balance between performance
and efficiency. CD and P2M distances are multiplied by 104.

tanceModule, and the impact of tuning the number of Euler
steps N , respectively. We see that the optimal architecture
is V5 as it only contains K = 2 VMs and is smaller than

Figure 7. Visual results for the 3K resolution Netsuke shape with
Gaussian noise and σ = 3% of the bounding sphere radius. Fil-
tering sparse point clouds at high noise is a challenge for Straight-
PCF. However, it recovers a better distribution of points, as com-
pared with other state-of-the-art methods.

the other variants, leading to a faster runtime. Generally,
it also provide either the best or second best results on the
ablation set. The results of Tables 6 further reinforces the
importance of the DistanceModule to ensure convergence
at the clean surface, especially as noise increases. More-
over, Table 7 demonstrates the importance of Euler steps
N . For N = 1, we obtain sub-optimal results. For N = 3,
we strike a balance between performance and runtime effi-
ciency as runtime increases as N increases. Also, we see
only a marginal improvement in performance for N > 3.

F. Discussion of Limitations
Finally, Fig. 7 illustrates the visual filtering results for the
Netsuke shape with 3K resolution and σ = 3%. We see that
at this high sparsity setting, it is difficult to recover high lev-
els of geometric detail. However, our method performs bet-



ter than other state-of-the-art methods and recovers a nicer
distribution of points.

References
[1] Frederic Cazals and Marc Pouget. Estimating differential

quantities using polynomial fitting of osculating jets. Com-
puter Aided Geometric Design, 22(2):121–146, 2005. 2

[2] H Chen, B Du, S Luo, and W Hu. Deep point set resampling
via gradient fields. IEEE Transactions on Pattern Analysis
& Machine Intelligence, 45:2913–2930, 2023. 1, 4, 5

[3] Dasith de Silva Edirimuni, Xuequan Lu, Zhiwen Shao, Gang
Li, Antonio Robles-Kelly, and Ying He. Iterativepfn: True it-
erative point cloud filtering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13530–13539, 2023. 4, 5

[4] S. Fleishman, Iddo Drori, and D. Cohen-Or. Bilateral mesh
denoising. ACM SIGGRAPH 2003 Papers, 2003. 2

[5] W Hu, X Gao, G Cheung, and Z Guo. Feature graph learning
for 3d point cloud denoising. IEEE Transactions on Signal
Processing, 68:2841–2856, 2020. 2

[6] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. arXiv preprint arXiv:2109.13410, 2021. 2

[7] Shitong Luo and Wei Hu. Differentiable manifold recon-
struction for point cloud denoising. In Proceedings of the
28th ACM International Conference on Multimedia, page
1330–1338. Association for Computing Machinery, 2020. 2

[8] Shitong Luo and Wei Hu. Score-based point cloud denoising.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 4583–4592, 2021. 1, 4, 5

[9] Aihua Mao, Zihui Du, Yu-Hui Wen, Jun Xuan, and Yong-Jin
Liu. Pd-flow: A point cloud denoising framework with nor-
malizing flows. In The European Conference on Computer
Vision (ECCV), 2022. 1, 4, 5

[10] E Mattei and A Castrodad. Point cloud denoising via moving
rpca. Computer Graphics Forum, 36:123–137, 2017. 2

[11] Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and En-
rico Magli. Learning graph-convolutional representations for
point cloud denoising. In Computer Vision – ECCV 2020,
pages 103–118. Springer International Publishing, 2020. 2

[12] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guer-
rero, N. Mitra, and M. Ovsjanikov. Pointcleannet: Learn-
ing to denoise and remove outliers from dense point clouds.
Computer Graphics Forum, 39, 2020. 2, 4, 5

[13] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. ArXiv, 2020.
1

[14] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 2, 4, 5

[15] Dongbo Zhang, Xuequan Lu, Hong Qin, and Y. He. Point-
filter: Point cloud filtering via encoder-decoder modeling.
IEEE Transactions on Visualization and Computer Graph-
ics, 27:2015–2027, 2021. 4, 5


	. Additional Methodology Details
	. VelocityModule training
	. Inference time filtering objective for full network

	. Further Evaluation on Synthetic and Scanned Data 
	. Performance of additional methods on PUNet and PCNet data with Gaussian noise
	. Additional visual results on real-world scanned data

	. Further Evaluation on PUNet and PCNet Data Under Different Noise Patterns
	. Comparison of Test Times for Different Methods
	. Further Ablation Studies
	. Discussion of Limitations

