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Abstract

Large-scale vision 2D vision language models, such as
CLIP can be aligned with a 3D encoder to learn general-
izable (open-vocabulary) 3D vision models. However, cur-
rent methods require supervised pre-training for such align-
ment, and the performance of such 3D zero-shot models re-
mains sub-optimal for real-world adaptation. In this work,
we propose an optimization framework: Cross-MoST:
Cross-Modal Self-Training, to improve the label-free clas-
sification performance of a zero-shot 3D vision model by
simply leveraging unlabeled 3D data and their accompa-
nying 2D views. We propose a student-teacher framework
to simultaneously process 2D views and 3D point clouds
and generate joint pseudo labels to train a classifier and
guide cross-model feature alignment. Thereby we demon-
strate that 2D vision language models such as CLIP can
be used to complement 3D representation learning to im-
prove classification performance without the need for ex-
pensive class annotations. Using synthetic and real-world
3D datasets, we further demonstrate that Cross-MoST en-
ables efficient cross-modal knowledge exchange resulting in
both image and point cloud modalities learning from each
other’s rich representations. The code and pre-trained mod-
els are available here.

1. Introduction

Recent developments of foundational models such as CLIP
[34], contrastively pre-trained on large-scale 2D image text
pairs, enable open-vocabulary zero-shot classification. On
the other hand, the 3D visual domain which has an in-
creasingly important role in real-world applications such
as mixed reality, robotics, and autonomous driving, suf-
fers from the limited amount of training data. Therefore,
directly learning 3D foundational models lacks scalability.
Recent works [16, 51] propose to train a 3D encoder by
aligning its latent space with a pre-trained 2D image-text
model, CLIP [34]. This allows zero-shot 3D classification
whose performance, however, remains sub-optimal for real-
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Figure 1. Proposed cross-modal self-training achieves signif-
icant performance gains over zero-shot [51] 3D classification,
as well as recently proposed self-training[24] applied on point
clouds.

world adaptation, especially when compared to supervised
learning. Nevertheless, supervised learning requires expen-
sive annotated datasets.[4, 7].

Self-training is an interesting learning paradigm that be-
longs to semi-supervised learning and aims to adapt models
for downstream tasks where pseudo-labels from unlabeled
data are used as training targets. Especially for large foun-
dational models such as CLIP pretrained on very general
datasets, self-training acts as a useful training paradigm to
adopt its general knowledge to specific downstream tasks
without requiring any labels. Self-training on images cap-
italizing on the open-vocabulary zero-shot classification
ability of CLIP to generate a pseudo-supervisory signal has
been explored by works such as MUST[24]. However,
adopting similar self-training methods in other modalities
such as 3D point clouds has not been widely explored, and
is accompanied by the challenge of noise in pseudo labels
due to the lack of pretrained knowledge and limited open-
vocabulary performance.

On the other hand, real-world data gathered by 3D scan-
ners are often accompanied by their corresponding RGB
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and/or RGBD images, whereas synthetic 3D data such as
CAD models can easily be rendered into a set of defined 2D
views. This provides an opportunity for two coexisting data
modalities to learn from each other’s unique representations
to understand one reality; even without labels.

To this end, we propose ”Cross-MoST: Cross-Modal
Self-Training: Aligning Images and Pointclouds to learn
Classification without Labels” aiming to 1) Harness the
multimodality of data to mitigate the lack of expensive an-
notations, 2) Generate more robust pseudo-labels to enable
self-training on 3D point clouds, and 3) Implement cross-
modal learning and facilitate both image and point cloud
modalities to learn from each other’s unique and rich repre-
sentations. Our contributions are as follows:

• We explore self-training as a setting to implement cross-
modal learning. By formulating joint pseudo-labels
by taking into account both 3D point clouds and their
2D views, we create more robust pseudo-labels for
self-training while simultaneously aligning the two data
modalities. Furthermore, we use instance-level feature
alignment to complement this objective.

• We carefully engineer design elements from uni-modal
self-training such as student-teacher networks for self-
training, and masked-image-modeling for learning lo-
cal features, to simultaneously accommodate multiple
modalities.

• We demonstrate that the proposed joint pseudo-labels and
feature alignment between images and point clouds en-
able each modality to benefit from one another’s unique
representations, leading to improved classification perfor-
mance in each modality through label-free training.

As shown in Figure 1, Cross-MoST achieves respec-
tively +10.36% and +22.73% improvement over zero-shot
on the most widely used datasets; Scanobjectnn [43] and
Modelnet40 [47] respectively. It also achieves respectively
+11.53% and +4.25% improvement over Self-training on
the single point cloud modality, highlighting the impact of
cross-modal learning.

It is important to note that Cross-MoST is orthogonal
to works such as ULIP[51] which addresses self-supervised
pre-training in images or point clouds, as well as works such
as MUST[24] which explores self-training on a single (im-
age) modality. Advances in either or both domains will
lead to even better Cross-modal Self-training paradigms.
We present Cross-MoST as a simple and effective solution
for 3D classification that unlocks the potential of CLIP-like
foundational models in practical scenarios where 3D scans
and their corresponding 2D views are abundant, but the la-
bels are scarce. We further demonstrate the effectiveness
of our Cross-MoST on 8 different versions of 4 popular 3D
datasets, collectively representing synthetic and real-world
3D objects and 2D images, as well as real RGB, synthetic
rendered, and depth-based 2D images.

2. Related work
Supervised Training: One approach to point cloud model-
ing involves projecting 3D point clouds into voxel or grid-
based representation [27, 39], followed by 2D or 3D con-
volutions for feature extraction. On the other hand, Point-
Net [31] and PointNet++ [32] pioneered directly ingest-
ing 3D point clouds and extracting permutation-invariant
feature representations through shared MLPs. These net-
works have been widely used in various point cloud appli-
cations [9, 46, 50]. Similarly, PointNeXt [33] emerged as a
lightweight version of PointNet++. Point Transformer [55]
and PCT [13] show improvements in the supervised training
paradigm using transformer-based networks.
Self-Supervised Training: self-supervised 3D pre-training
methods [30, 38] utilize encoder-decoder architectures to
first transform point clouds into latent representations, and
then recover them into the original data form. Other works
[10, 35, 48] conducts self-supervised pre-training via con-
trastive learning. Inspired by the BERT [8] in the language
domain and masked image modeling [15, 49], several works
have been proposed for masked point modeling for self-
supervised learning [25, 29, 52, 54].
Multi-modal Pre-Training: Recent advancements in
multi-modal contrastive learning have enabled CLIP [34] to
perform robust and efficient multi-modal training with mil-
lions of image text pairs. CLIP has been extended to high-
efficiency model training such as ALBEF [23], cycle con-
sistency [11], and self-supervised learning [28]. PointClip
[53, 57] and CLIP2Point [17] attempt to leverage the supe-
rior pre-trained knowledge of CLIP to improve 3D shape
understanding by converting point clouds into multiple 2D
views/depth maps. ULIP [51] and CG3D [16] enable di-
rect processing of point clouds using a separate 3D encoder,
and leverage point cloud, image, and language triplets to
align these three modalities together. Recent methods such
as Uni3D[56], Vit-Lens[22], and OpenShape[26] scale up
multi-modal pre-training using larger datasets.
Self-training for Semi-supervised Training: Self-training
improves the quality of features by propagating a small ini-
tial set of annotations to a large set of unlabeled instances,
and has shown promising progress in domains including vi-
sion [37, 49, 58], NLP [14], and speech [18]. [2, 24, 40, 42].
Similar to [24], this work uses pseudo labels[21] and ap-
plies consistency regulation [20, 40] objective to encourage
the model to output same predictions when perturbations
are added to image/point cloud inputs, and guide the model
to give sharp predictions with low entropy [12].

We solve the problem of confirmation bias in self-
training by combining pseudo-labels from complementary
modalities to eliminate label noise and improve robustness
Furthermore, similar to [3, 42], we model the teacher as an
exponentially moving average of the student, thus improv-
ing the tolerance to inaccurate pseudo-labels.
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Figure 2. Cross-modal Self-training
for 3D point clouds and their corre-
sponding 2D views. The teacher (blue)
weights are updated as an exponen-
tially moving average of the student
(green). The teacher generates joint
pseudo-labels to allow cross-modal
self-training. Our MPM and MIM
modules inside the student model im-
plement masked point and image mod-
eling. Align represents the cross-
modal feature alignment, whereas GL-
Align within MIM and MPM modules
represent global-local feature align-
ment to support masked modeling
within each individual modality (im-
age and pointcloud).

3. Cross-Modal Self-Training
As shown in Figure.2, we operate in a unified embedding
space for both image and point cloud branches. We ini-
tialize the image encoder ViT with a CLIP pre-trained im-
age encoder such that a common classifier could be initial-
ized using CLIP text embeddings corresponding to the cate-
gories available in the training dataset. The point and image
encoders, as well as the classifiers of student and teacher
networks, are initialized identically. An input training pair
consists of a 3D point cloud, and an image representing the
corresponding 3D object from a random view. The teacher
network classifier generates the joint pseudo-label for the
input image-point cloud pair by combining the two corre-
sponding sets of classification logits. The same input pair is
sent to the student network with heavy augmentations and
masking to generate two sets of predictions using the stu-
dent network classifier. Cross entropy loss is calculated be-
tween the joint pseudo labels and the student network pre-
dictions, and the weights of the classifier as well as both
image and point cloud encoders are updated accordingly.
Finally, the teacher network weights are updated as an ex-
ponentially moving average of the student. Additionally,
image and point mask modeling, as well as alignment losses
complement our cross-modal self-training process as regu-
larizers and additional supervision signals.

3.1. Preliminaries

CLIP [34] pre-trains an image encoder and a text encoder
with a contrastive loss such that paired images and texts
have high similarities in a shared embedding space. We

denote the CLIP’s image and text encoders as hI and hS .
The input image X is divided into K patches followed by a
projection to produce patch tokens. Then a learnable [CLS]
token is preppended to the input patch embeddings to cre-
ate X = {xcls, x1, x2, ...xK} which is used as input to hI ,
hI(X) = X̃ = {x̃cls, x̃1, x̃2, ...x̃K}. The output embed-
ding of the [CLS] token is then normalized and projected to
obtain the feature embedding of the image, f I (x̃cls) = x̃.

For zero-shot classification, each category c’s name
is wrapped in several templates such as "a photo of
a {category}", "a picture a {category}" to
produce sc. These text descriptions are passed to the text
encoder to yield the category-level normalized text embed-
ding, s̃c = avg

(
hS(sc)

)
. During inference, the dot prod-

uct between the text embeddings S̃ = {s̃i}Cc=1 and the im-
age embedding yield prediction logits; x̃.S̃ = pimg

Uni-modal self-training for images: MUST [24] proposes
an EMA teacher-student setting to implement self-training
on images using CLIP’s zero shot prediction ability to gen-
erate pseudo-labels. It converts CLIP’s non-parametric text
embedding S̃ into weights of a linear classifier Q that takes
as input the feature embedding of images; Q (x̃) = p.
Both the EMA teacher and the student models are initial-
ized with the same pre-trained weights, θ =

{
θI , θQ

}
,

where θI is the weights of CLIP visual encoder. The
model teacher weights are updated at each iteration as:
∆ = µ∆+ (1− µ)θ. A batch B of weakly augmented im-
ages is passed to the teacher model to yield a set of soft pre-
diction logits qb, which is converted to hard pseudo-labels
as q̂b = argmaxc(qb). The same batch of images is sent
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to the student model with strong augmentations to yield
prediction logits pb. Self-training loss is calculated as the
cross-entropy H between the predictions and the pseudo-
labels that exceed a confidence threshold, T .

Lcls =
1

B

B∑
b=1

1(max(qb) ≥ T )H(q̂b, pb) (1)

This encourages the model to return the same predictions
for perturbed inputs, while the student learns stronger rep-
resentations as augmentations are applied to its input.

3.2. Cross-Modal Self-training for images and
pointclouds

In this subsection, we elaborate the architectural elements
and loss functions in Cross-MoST as shown in Figure.2.
Pointcloud encoder: We denote an input point cloud as
Y . Following the work of PointBert [52], we first clus-
ter the point cloud object into K local patches or sub-
clouds by applying the k-nearest-neighbor algorithm on a
set of selected sub-cloud centers. Similar to patchifying
in images, these sub-clouds contain only local geometric
information, regardless of their original location. Next,
they are passed through a pre-trained Point tokenizer from
[52] to convert each sub-cloud into a point embedding, and
a learnable [CLS] token is appended as follows; Y =
{ycls, y1, y2, ...yK}. This enables each point cloud object
to be represented as a sequence of tokens and sent as input
to a standard transformer encoder, hP as Ỹ = hP (Y) =
{ỹcls, ỹ1, ỹ2, ...ỹK}. The output embedding of the [CLS]
token ỹcls is normalized and projected to yield the point
cloud feature embedding, fP (ỹcls) = ỹ.

Following the work of ULIP[51] we pre-train the point
cloud encoder to learn a 3D representation space aligned
with the image-text embedding space of CLIP. The pre-
training is done on synthesized image-text-point cloud
triplets from the CAD models of Shapenet[4] dataset.
EMA teacher-student setting: We use the non-parametric
text embeddings S̃ to initialize the classifier Q. Since
both image and point cloud features are now projected to
the same embedding space, the same classifier Q is used
to obtain prediction logits for both modalities. Q (x̃) =
pimg, Q (ỹ) = ppcl. We use an ensemble of text
prompts such as "a photo of a {category}", "a
3D model of a {category}" and average them to
initialize the classifier, to ensure sufficient zero-shot accu-
racy for both image and point cloud inputs.

Now, we characterize our model parameters as θ ={
θI , θP , θQ

}
, while the teacher is the EMA of the student

model similar to MUST i.e., ∆ = µ∆ + (1 − µ)θ. Our
proposed self-training leverages cross-modal losses derived
by joint pseudo-labels and feature alignment as well as reg-
ularization based on masked modeling and fairness.

Cross-Modal cross-entropy via joint pseudo-labels: We
create a training sample by pairing a point cloud object with
an image showing the object from a random viewpoint. A
set of weak augmentations are applied to the batch B of
image and point cloud pairs which is then passed through
the teacher model to obtain two sets of soft prediction logits
from each modality; qb,img, qb,pcl which are used to derive
modality-specific pseudo-labels q̂b,img = argmaxc(qb,img)
and q̂b,pcl = argmaxc(qb,pcl). Then, the teacher prediction
for each sample b that corresponds to the highest confidence
between the two modalities in q̂b,img and q̂b,pcl is selected
to assemble a set of joint pseudo-labels, r̂b. The confidence
score from the selected modality for each sample is defined
as rb; confidence score for the combined pseudo-label. Fol-
lowing the work of FixMatch [40] and MUST [24], we se-
lect the samples whose confidence exceeds a threshold T to
act as pseudo-labels. (further details in Appendix ??).

The student model receives strongly augmented versions
of the same image-point cloud pairs, yielding predictions
pb,img, pb,pcl. We apply cross-entropy loss H between the
student predictions and the selected pseudo-labels.

Lcls =
1

B

B∑
b=1

1(rb > T ){H(r̂b, pb, img) +H(r̂b, pb, pcl)}

(2)
The pseudo-label selection through confidence thresh-

olding indirectly encourages the model to yield sharp pre-
dictions. Moreover, the combination facilitates cross-modal
exchange of class-level feature knowledge while encourag-
ing pseudo-label agreement between modalities.
Cross-modal feature alignment: Extending the pertaining
objective of CLIP and ULIP, we continue to enforce Feature
alignment between image and point cloud pairs in the mul-
timodal embedding space. Thereby we encourage images
and point clouds representing one instance of reality to be
embedded close to each other. This unsupervised objective
complements the pseudo-supervised class-level discrimina-
tion implemented by self-training.

For a batch B of training image-point cloud pairs, we
calculate the cosine similarity between the feature embed-
dings of each image and point cloud x̃b, ỹb, and maximize
the similarity of image-point cloud embeddings of B posi-
tive pairs, while minimizing the similarity of B2 − B neg-
ative pairs. We implement this objective by optimizing a
symmetric cross-entropy over the similarity scores.

Lalign =
∑
(i,j)

−1

2
log

exp
(

x̃iỹj

τ

)
∑

b exp
(

x̃iỹb

τ

)−1

2
log

exp
(

x̃iỹj

τ

)
∑

b exp
(

x̃bỹj

τ

)
(3)

Fairness Regularization: As shown by prior research [45],
CLIP-like models are often biased towards certain classes,
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causing the pseudo-labels to further magnify such biases in
the self-training settings. Therefore, we apply fairness reg-
ularization on both image and point cloud predictions sepa-
rately during self-training by enforcing the following loss:

Lfair = − 1

C

C∑
c=1

(
log(pc,img) + log(pc,pcl

)
(4)

where p denotes the batch-average prediction and C is the
number of class categories.
Masked-Modeling MM: Masked image and point cloud
modeling aim to learn specific local features at image-patch
and point-subcloud levels respectively. It not only acts as
a regularization to further reduce the noise in the pseudo
labels but also as a complementary supervision signal from
unlabeled data.
Masked-image reconstruction - MIM: We formulate the
masked image modeling (MIM) objective as predicting the
missing RGB values of masked-out patches using contex-
tual information learned through attention. We train a sim-
ple linear decoder gI that takes output embedding x̃m of
mth [MSK] token as input and reconstructs the masked-out
RGB pixel values; zm = gI (x̃m) which are then compared
with the ground truth patch to formulate the MIM loss.

Lmim =
1

MN

M∑
m=1

∥zm − σm∥1

zm, σm ∈ RN , N is the number of RGB pixels in a patch,
σm is the RGB values of the originally masked out patch.
Masked-point reconstruction - MPM: Representing each
sub-cloud of a 3D spatial locality by a discrete token en-
ables us to implement a masked point reconstruction objec-
tive. A selected set of tokens from Y is replaced by a learn-
able [MSK] token and passed as input to the point cloud
encoder hP . Random masking of patches from multiple lo-
cations makes the learning objective too easy given the rich-
ness of contextual information from neighboring patches in
3D point clouds. Therefore, we mask out a selected token,
and m other tokens corresponding to sub-clouds in its spa-
tial neighborhood resulting in a block-wise masking strat-
egy [52]. We pass the output token through a linear decoder
gP ; wm = gP (ỹm), and apply an L1 loss between wm and
corresponding the masked-out input token ym.

Lmpm =
1

MN

M∑
m=1

∥wm − ym∥1

where wm, ym ∈ RN , and N is the dimensionality of the
point token. The model learns to predict missing geometric
structures of a point cloud given its neighboring geometries,
encouraging local feature representation learning.

Global-local alignment: Both MIM and MPM encourage
each branch to learn rich local semantics. Then we trans-
fer this local feature information to the object-level embed-
ding space by aligning local and global features within each
modality. Specifically, we project the output embeddings of
all [MSK] tokens to the image/point cloud feature embed-
ding space using f I and fP , and calculate a global-local
feature alignment loss within each modality.

Llg−align =
1

Mimg

Mimg∑
m=1

∥x̃−um∥22+
1

Mpcl

Mpcl∑
m=1

∥ỹ−vm∥22

where um = f I (x̃m), x̃m is the output embedding of the
mth masked image token, and where vm = fP (ỹm), ỹm is
the output embedding of the mth masked point token.

4. Experimental Protocols
Datasets details: Shapenet [4] consists of textured CAD
models of 55 object categories. We use Shapenet to pre-
train the point cloud branch for better self-training initial-
ization. ModelNet40 [47] is a synthetic dataset of 3D CAD
models containing 40 categories. We pair 2D renderings of
CAD models with the point clouds to create Modelnet40
and ModelNet10 (a subset of 10 common classes). We
follow the realistic 2D views generated using [57] to gen-
erate the dataset ModelNet40-d (depth). Redwood [5] is
a dataset of real-life high-quality 3D scans and their mesh
reconstructions. We randomly sample 20 frames from the
RGB videos of each object scan and use them in our im-
age encoder. Co3D [36] is a large-scale dataset of real
multi-view images capturing common 3D objects, and their
SLAM reconstructions. We sample 20 GRB images per ob-
ject for our image encoder. For Scanobjectnn [43] with real
3D point cloud scans, we report results on 3 different ver-
sions; Sc-obj - scans of clean point cloud objects, Sc-obj
withbg - scans of objects with backgrounds, and Sc-obj
hardest - scans with backgrounds and additional random
scaling and rotation augmentations. Multiview images for
all versions of scanobjectnn are generated using realistic 2D
view rendering from point clouds[57]. Detailed descrip-
tions of the sizes, number of categories, and pre-processing
applied to each dataset are provided in Appendix ??.
Implementation details: We use ViTB/16 as the image en-
coder, and a standard transformer [44] with multi-headed
self-attention layers and FFN blocks as our point cloud en-
coder. We use AdamW [19] optimizer with a weight decay
of 0.05. The batch size is 512, and the learning rate is scaled
linearly with batch size as (lr= base lr*batchsize/256). We
used 4 V100 GPUs for training. Further details are in Ap-
pendix ??.
Image encoder: We use a ViT-B/16 model pretrained
by [34] for the image branch. After resizing to the side
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224 × 224, random cropping is applied as a weak aug-
mentation on the input to the teacher model to generate
pseudo-labels. Stronger augmentations; RandomResized-
Crop+Flip+RandAug [6] are applied to the inputs to the stu-
dent model. We implement a patch-aligned random mask-
ing strategy where multiple image patches are randomly
masked with a fixed ratio of 30%.
Point cloud encoder: We used Shapenet [4] dataset and its
rendered 2D views from [51] to pre-train the point cloud
encoder and the projection layers fP , fS , and f I . Pre-
training is done for 250 epochs with a learning rate of 10−3

with AdamW optimizer with a batch size of 64. We di-
vide each point cloud into 64 sub-clouds and use a Mini-
Pointnet to extract embeddings of each sub-cloud, followed
by a pointbert[52] encoder to convert each sub-cloud into
point embeddings. Rotation perturbation and random scal-
ing are applied on the input point cloud to the teacher model
to generate pseudo-labels. Stonger augmentations; random
cropping, input dropout, rotate, translate, and scaling are
applied to the input to the student model. Random masking
is applied to 30% to 40% of the point embeddings.

4.1. Results

We perform experiments on 4 datasets with point clouds
and associated images, which span different types of 3D
point clouds; Modelnet- sampled from CAD models, Red-
wood- real 3D scans, and Co3D- SLAM reconstructed point
clouds. We also use different types of images; Modelnet-
2D rendered CAD models, Redwood, Co3D- real images,
and Scanobjectnn- realistic depth renderings from point
clouds. Table 1 shows the results of our proposed cross-
modal self-training.
Baselines: 1) Baseline Zeroshot- we used ULIP [51] trained
with CLIP [34] initialization. We use the embeddings of
text prompts "a photo of a {category}", "a 3D
model of a {category}" to initialize the classifier
and directly evaluate the classification. 2) Baseline self-
training [24]- We removed all cross-modal modules and
cross-modal losses, and applied self-training individually
on 2D and 3D branches using their own pseudo-labels with-
out any cross-modal combination. For both baselines, ULIP
pretraining was done on the point cloud branch to provide
consistent initialization.
Evaluation: The same classifier operates on both images
and point cloud embeddings. To emulate real-life scenar-
ios where both image and point cloud data are simultane-
ously available for a test sample, as well as to show how
both modalities benefit from each others’ unique knowl-
edge, we report the classification accuracies for Image and
Point cloud encoders separately. Image* is calculated by
using the average of image embeddings of all 2D views cor-
responding to the test object, hence is often higher than Im-
age due to richer information from multiple views. Datasets

such as Co3D have very noisy and occluded point clouds,
but are accompanied by high-quality RGB images; leading
to higher accuracy on Image and Image*. We report the ac-
curacies of both branches to demonstrate the cross-modal
learning impacts the two modalities.

As shown in Table 1, we substantially improve upon
the baselines on all datasets. Especially, comparison be-
tween Baseline Self-training (individual self-training on
each branch without any cross-modal label or feature ex-
change) and Cross-modal self-training for image and point
cloud branches suggests that our proposed method enables
both modalities to learn from each other

An important result is that for datasets such as
Modelnet40-d whose zero-shot accuracies on the point
cloud branch are higher than that of the image (57.74%
and 30.31% respectively), Cross-modal self-training signif-
icantly improves point cloud branch accuracy above base-
line self-training (from 61.26% to 66.17%). This effect is
even more pronounced in the variants of Scanobjectnn re-
sulting in an even higher performance on Image* compared
to Point cloud. Similarly, for datasets such as Redwood
whose zero-shot accuracies on image branch are higher
than that of point clouds (85.71% and 55.95% respec-
tively), Cross-modal self-training significantly improves
image branch accuracy above baseline self-training (from
91.67% to 94.05%). This shows that even with low zero-
shot performance, unique knowledge of the 3D branch due
to their rich geometric details and that of the image branch
due to large-scale CLIP pertaining can provide strong com-
plementary training signals to the other modality.
Comparisons with SOTA: In Table.6, we report the per-
formance of state-of-the-art pre-training methods on model-
net40. To preserve consistency, we only include the meth-
ods that use Shapenet for pre-training. However, it is im-
portant to distinguish between open-vocabulary and self-
training settings. Although no labels are used in the pro-
cess, self-training can be framed as a further adaptation of
an open-vocabulary model for a specific set of categories.
Another implication is that recent improvements in pre-
training [22, 26] could further improve the performance of
cross-modal self-training by providing even better initial-
ization than ULIP[51].

4.2. Ablative Analysis

Effect of proposed objectives: In Table 3, we ablate the
main components of the proposed cross-modal self-training
setting for Modelnet40, and illustrate their contribution to
the final architecture. The best performance is achieved
when all the components are used in combination. It is
also important to note that pretraining the point cloud en-
coder on even a limited dataset such as Shapenet dramat-
ically improves the performance on both point cloud and
image branches after Cross-modal self-training.
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Method Datasets → ModelNet10 ModelNet40 ModelNet40-d Redwood Co3d Sc-obj Sc-obj withbg Sc-obj hardest

Baseline Image 55.00 54.00 23.18 85.71 90.30 19.11 16.70 13.12
Zeroshot Image* 65.50 56.25 30.31 85.71 94.01 26.16 19.28 13.85

Point cloud 75.50 58.75 57.74 55.95 13.20 46.99 42.86 31.57

Baseline Image 78.00 73.13 35.58 86.91 91.08 23.24 20.65 18.25
Self-training Image* 85.50 78.88 46.80 91.67 92.44 27.54 28.23 23.87

Point cloud 85.50 69.13 61.26 63.10 16.90 47.33 49.57 37.47

Cross-modal Image 86.50 79.50 52.92 88.10 93.15 52.84 49.57 40.60
self-training Image* 89.50 82.75 62.89 94.05 94.22 58.86 55.94 44.14

Point cloud 90.00 83.13 66.17 75.00 83.45 48.02 51.46 41.64

Table 1. We evaluate the classifier on 2D views/images and 3D point clouds separately. Image* indicates the performance of the classifier
averaged over all rendered views. For each dataset, we highlight the highest achieved accuracy among the three evaluation settings.
Cross-modal self-training consistently improves over Zeroshot and self-training baselines for both images and point clouds highlighting
the potential of Cross-modal learning.

Method Datasets → ModelNet10 ModelNet40 ModelNet40-d Redwood co3d Sc-obj Sc-obj withbg Sc-obj hardest

Cross-modal Image 86.50 79.50 52.92 88.10 93.15 52.84 49.57 40.60
Self-training Image* 89.50 82.75 62.89 94.05 94.22 58.86 55.94 44.14

Point cloud 90.00 83.13 66.17 75.00 83.45 48.02 51.46 41.64

Without L-Align Image 86.50 78.38 53.57 88.10 88.30 48.71 48.02 39.24
Image* 91.00 83.00 62.24 94.05 90.30 55.25 55.25 43.13
Point cloud 91.00 81.75 65.40 75.00 81.39 48.19 50.60 39.59

Without MM Image 87.50 80.13 57.66 83.33 81.74 50.26 52.32 40.94
Image* 91.00 82.88 66.37 88.10 83.81 54.39 59.55 43.72
Point cloud 89.50 81.75 67.10 73.81 79.53 49.91 55.94 42.05

Table 2. Ablations on all datasets. Without L-Align refers to ablating the cross-modal feature alignment by removing Lalign. Without
MM refers to ablating the masked-modeling in both branches; image and point cloud by removing both Lmim and Lmpm.

Align Comb MM Init. Image Image* Pointcloud

✗ ✓ ✓ ✓ 78.38 83.00 81.75
✗ ✗ ✓ ✓ 73.13 78.88 69.13
✓ ✗ ✓ ✓ 73.75 77.38 72.63
✓ ✓ ✗ ✓ 80.13 82.88 81.75
✓ ✓ ✓ ✗ 73.00 78.63 21.88
✓ ✓ ✓ ✓ 79.50 82.75 83.13

Table 3. Aign- Cross-modal feature alignment,
Comb- Joint pseudo-label, MM-Image and Point
masked modeling, and Init.- point cloud encoder ini-
tialization using ULIP pre-training. Results are re-
ported on Modelnet40.

Pseudo-labels Image Image* Point cloud

No Comb. 73.75 77.38 72.63
Image only 72.50 76.88 78.38
Point cloud only 71.63 74.38 70.50
Random 78.25 81.88 81.88
Our (Joint) 79.50 82.75 83.13

Table 4. Effect of pseudo-labels on self-
training for modelnet40. No comb. does
self-training on individual modalities using its
own pseudo-labels. Only image/pointcloud
adapts the pseudo-label from one of the
modalities for both.

Views Image Image* Pointcloud

1 76.75 76.75 78.50
2 78.38 80.75 80.13
4 78.50 82.38 80.50
8 78.88 82.00 81.25
12 79.50 82.75 83.13

Table 5. Increasing the number of
2D rendered views per point cloud
improves the performance of our
cross-modal self-training. Results
are reported on Modelnet40.

Method Modelnet40 (top1) accuracy

Openshape[26]-Pointbert 70.3
VIT-LENS-Datacomp-L14[22] 70.6
ULIP-Pointbert[51] 60.4
ULIP-Pointbert with Cross-MoST 83.13 (+22.73)

Table 6. Reported performance of state-of-the art Zero-shot mod-
els trained on Shapenet[4] compared with proposed Cross-MoST

In Table 2, we report the results of ablating Cross-modal
feature alignment and Masked-modeling and confirm that
these design elements lead to a clear improvement of per-
formance in a majority of datasets. As we qualitatively
compare in Appendix ??, the quality, hence the difficulty

of these datasets varies dramatically in both modalities.
Masked modeling is more advantageous to datasets (such as
Redwood and Scanobjectnn) with point clouds with large
distribution shifts from Shapenet due to obfuscations and
heavy augmentations. Furthermore, in Co3D image branch,
ablating masked modeling leads to a degradation in per-
formance indicating the importance of its regularization ef-
fects.
Effect of pseudo-label combination: Table 4 compares the
performance of the model with different approaches to de-
rive pseudo-labels. Random refers to randomly picking a
prediction from either branch image or point cloud to act as
the pseudo-label for a given input pair. Cross-modal learn-
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Figure 3. As the training progresses, biasness towards certain
classes is significantly reduced in both branches. Predictions on
each branch become more sharp, as indicated by increasing en-
tropy. (modelnet40)
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Figure 4. The percentage of pseudo-labels selected from each
modality for combined self-training. The agreement between
pseudo-labels increases as our training progresses. (modelnet40)

Class Type → All classes Medium classes Hard classes

Baseline Image 54.00 47.50 44.71
Zeroshot Image* 56.25 49.55 47.65

Point cloud 59.50 42.73 36.76

Self-training Image 73.13 67.73 66.18
Baseline Image* 78.88 73.64 72.06

Point cloud 69.25 57.27 52.06

Cross-modal Image 79.50 72.73 72.65
self-training Image* 82.75 77.27 77.65

Point cloud 83.13 76.82 76.47

Table 7. Accuracy on unseen classes for Modelnet40. Cross-
modal self-training significantly outperforms self-training in
medium and hard classes, especially in the point cloud branch.

ing significantly improves the performance on both image
and point cloud branches even with a random combination
of pseudo-labels. The proposed score-based method further
improves accuracy by using the most confident predictions
between the modalities to act as the pseudo-label.
Effect of the number of 2D views: In our experiments
with ModelNet40 [41] we have 12 2D views for each point-
cloud object. The ablation results in Table 5 indicate that
object understanding benefits from using multiple different
views to extract more detailed visual understanding. This
improvement is also reflected in the point cloud branch due
to the cross-modal training.
Training Analysis: By thresholding the score of teacher
predictions from each branch and combining them to gener-
ate joint pseudo-labels, we implicitly encourage the model
to give sharp predictions. We calculate prediction entropy
as the KL divergence between a uniform distribution and
the softmax predictions of each branch to quantify this be-
havior. Figure 3 illustrates how the entropy of predictions
increases with self-training. CLIP models are known to re-
sult in predictions biased towards certain classes [45]. This
hinders the ability to self-train since such biases can be fur-
ther amplified [1]. Figure 3 shows how our regularization
and cross-modal learning objectives discourage this confir-
mation bias as training progresses. The biasedness is calcu-

lated as KL divergence between a uniform distribution and
the class distribution of the predictions for a balanced test
set (further details on the calculation of entropy and biased-
ness are in Appendix ??).

Figure 4 shows the percentage of pseudo-labels picked
from each modality for the combined self-training. Al-
though the accuracy of each individual branch is compara-
ble, the modal steers itself to pick more pseudo-labels from
the image branch as training progresses.

Self-training on unseen classes: Certain classes of Mod-
elNet40, have been already introduced to the model dur-
ing supervised pre-training of the point cloud encoder by
Shapenet55. For a fairer comparison of zeroshot and label-
free classification performance, therefore we evaluate our
model on 2 other splits of ModelNet40 as proposed by [51]-
medium and hard, with non-overlapping object classes (fur-
ther details of these splits in Appendix ??). Results in table
7 show that cross-modal self-training significantly improves
the accuracy of hard and medium classes.

5. Conclusion

In this paper, we proposed a simple framework to adapt an
open-vocabulary 3D vision model to downstream classifi-
cation without using any labels. The core of the proposed
approach is to enable cross-modal self-training by leverag-
ing pseudo-labels from point clouds and their correspond-
ing 2D views and additionally aligning their feature repre-
sentations at the instance level. The proposed method is
orthogonal to pretrained foundational models and the qual-
ity of 2D images that provide complementary information.
Therefore, improvements in pre-trained foundational mod-
els or the quality of 2D views/renderings of point clouds
will further improve the results of self-training in our pro-
posed framework. Our work highlights how the rich knowl-
edge of CLIP-based models can be adapted to better under-
stand 3D realities even in the absence of class-level labels.
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