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Abstract

Clothed human reconstruction based on implicit func-
tions has recently received considerable attention. In this
study, we explore the most effective 2D feature fusion
method from multi-view inputs experimentally and propose
a method utilizing the 3D coarse volume predicted by the
network to provide a better 3D prior. We fuse 2D features
using an attention-based method to obtain detailed geomet-
ric predictions. In addition, we propose depth and color
projection networks that predict the coarse depth volume
and the coarse color volume from the input RGB images and
depth maps, respectively. Coarse depth volume and coarse
color volume are used as 3D priors to predict occupancy
and texture, respectively. Further, we combine the fused 2D
features and 3D features extracted from our 3D prior to pre-
dict occupancy and propose a technique to adjust the influ-
ence of 2D and 3D features using learnable weights. The
effectiveness of our method is demonstrated through quali-
tative and quantitative comparisons with recent multi-view
clothed human reconstruction models.

1. Introduction

The development of deep-learning networks has facili-
tated extensive research on clothed human reconstruction.
The goal of clothed human reconstruction is to estimate a
3D human mesh that accurately represents the shape of a
person dressed in clothes from monocular or multi-view im-
age(s). The estimated 3D human mesh can be utilized in
various fields such as clothing design and manufacturing,
gaming, augmented reality (AR), and virtual reality (VR).

In this study, we focus on the sparse multi-view clothed
human reconstruction problem with the aim of estimating
a 3D human mesh from calibrated sparse multi-view im-
ages. Conventional multi-view clothed human reconstruc-
tion methods typically estimate a 3D human mesh via the
following three steps: (A) 2D feature extraction and fusion
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Figure 1. (a) Input multi-view images, (b) coarse depth and color
volumes, (c) geometry prediction results, (d) color prediction re-
sults.

from input images, (B) 3D feature extraction from 3D prior,
and (C) occupancy prediction from extracted 2D and 3D
features.

The process of fusing 2D features in Step (A) is essen-
tial in multi-view environments and several fusion meth-
ods have been proposed for multi-view feature fusion. In
PIFu [37], the 2D features are fused using average pooling.
ICON [47] uses the visibility provided by SMPL-X [36]
to perform feature fusion. DeepMultiCap [57] proposed
attention-aware fusion utilizing self-attention mechanisms,
and SeSDF [6] suggested occlusion-aware fusion method
based on the depth value derived from SMPL-X.

The 3D prior in Step (B) is widely used for clothed hu-
man reconstruction, regardless of the monocular or multi-
view environments. In PIFu [37], the z-coordinates are
concatenated to 2D features without a 3D prior; this lack
of a 3D prior causes the method to suffer from hard
poses. PaMIR [58] and DeepMultiCap [57] voxelize
SMPL [29] and extract 3D features from that volume,
whereas ICON [47] uses the signed distance value from
SMPL-X as a 3D prior. Methods based on parametric body
model priors [3, 17, 29, 36, 49] have demonstrated en-
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hanced robustness to challenging poses and require the use
of a fitted SMPL. However, SMPL does not capture details,
such as hair or clothing. In DIFu [42], instead of using the
SMPL as a 3D prior, a depth volume is generated based
on the front/back depth maps, from which 3D features are
extracted and used. In this method, the depth maps are un-
projected into the 3D space through heuristically calculated
offsets, often resulting in unstable depth volume and ad-
versely affecting the reconstruction performance.

When predicting occupancy in Step (C) from the fused
2D features extracted in Step (A) and the computed 3D fea-
tures in Step (B), previous works [14, 16, 37, 38, 42, 47, 58]
simply combined the features via a concatenation operation
and then predicted occupancy using multi-layer perceptron
(MLP). However, the degree to which each feature aids the
network differs.

In this study, we conducted ablation experiments on the
2D feature fusion method in Step (A) in a consistent envi-
ronment, and compared the quantitative and qualitative re-
sults of each method to determine the best fusion method.
Further, we propose a depth projection network (DPN) and
a color projection network (CPN) for predicting coarse
depth volume and coarse color volume from input RGB im-
ages and depth maps, respectively. The coarse volumes in-
clude detailed information on hair and clothes, unlike the
SMPL, and provide a stable human shape prior that differs
from the unstable depth volume in the DIFu. We experi-
mentally demonstrated that using the coarse volume as a 3D
prior in Step (B), 3D human mesh reconstruction was quan-
titatively and qualitatively improved compared with other
existing 3D priors. Finally, when predicting occupancy in
Step (C) from fused 2D and 3D features, we combined the
weighted features by introducing learnable weights that can
modulate the influence of the 2D and 3D features, unlike
previous works, in which the features were simply concate-
nated. The experimental results of the proposed method are
shown in Fig. 1.

The contributions of this paper can be summarized as
follows:
• An ablation study is performed on existing 2D feature fu-

sion methods to determine the performance differences
and suggest the best method. In addition, an abla-
tion study was conducted on the 3D prior and learnable
weights to deduce the best combination.

• We propose DPN and CPN to predict coarse volumes
that contain detailed information regarding hair and cloth;
these methods are more stable than handcrafted meth-
ods [42], and the predicted coarse volumes are used as
3D priors in the proposed method.

• Extensive experiments using the Thuman2.0 [53] and
BUFF [54] datasets demonstrate that our proposed
method performs well in multi-view feature fusion and
provides a stable 3D prior. Moreover, we demon-

strate that our framework outperforms previously re-
ported clothed human reconstruction methods.

2. Related Work
Implicit function-based representation. Conventional

3D modeling methods include polygonal meshes [20],
voxel surfaces [43, 46], point-based representations [62],
and etc. According to recent studies [8, 24, 31, 34, 51, 52],
implicit function-based representations are widely used in
geometric reconstruction, 3D modeling, and rendering be-
cause they can effectively represent complex structures.
Compared with conventional methods, this method can rep-
resent high-dimensional data more concisely. Additionally,
implicit representations require less memory and provide
natural deformations and flexibility.

Single-view human reconstruction. A parametric 3D
human body model [29, 36, 49] is a human modeling
method based on pose and shape parameters, that can re-
produce various human movements and body shapes. Nu-
merous studies [18, 21, 22, 26, 32, 35, 45, 50, 55] focused
on estimating the parametric human model, particularly the
SMPL [29] or SMPL-X mesh [36], from single-view im-
ages. In particular, the SMPL model can accurately rep-
resent various body shapes and poses, is compatible with
existing graphics pipelines, and has high computational ef-
ficiency. However, it is designed based on the naked human
body; therefore presents limitations in expressing detailed
features, such as clothing and hair.

Saito et al. [37] first introduced an implicit function in
the field of clothed human reconstruction and proposed the
PIFu model for reconstructing a human mesh using pixel-
aligned features. Subsequently, various models [2, 5, 6, 9,
13, 14, 16, 23, 25, 38, 42, 47, 48, 58] employing implicit
functions have been proposed for single-view image recon-
struction. PaMIR [58] is based on an implicit function and
uses a pretrained GraphCMR [22] to estimate the SMPL
mesh as a 3D prior for mesh reconstruction. ICON [47] uti-
lizes the signed distance from the query point to the near-
est SMPL-X body surface, along with the SMPL-X features
and normal. Alldieck et al. [2] employed PHORHUM, a
pixel-aligned approach, to estimate 3D geometry and infer
scene illumination and shading to produce photorealistic re-
sults. JIFF [5] uses a clothed human body and parametric
face model [4] as a prior for recovering fine facial details.
ECON [48] combines implicit representations with explicit
body regularization. DIFu [42] generates a back-side im-
age through a trained hallucinator, creates a 3D coarse vol-
ume from the front and back depth maps, and uses it as
a 3D prior. Although these methods provide visually ap-
pealing results, they do not fully address the issues of self-
occlusion, depth ambiguity, and the lack of backside infor-
mation.

Multi-view human reconstruction. In 3D human mesh
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reconstruction, more precise reconstruction can be achieved
by effectively fusing multi-view images, thus utilizing in-
formation that is not available from a single view. Several
studies have attempted to achieve accurate human recon-
struction from multi-view images. Some methods [1, 10,
11, 15, 27, 28, 57] reconstruct human meshes from multi-
view videos, whereas other methods [7, 39, 59, 60] achieve
high-fidelity human rendering from multi-view input. In ad-
dition, some approaches [37, 58] involve the aggregation
of features of each view using average pooling. DiffuS-
tereo [40], a diffusion-based model, is a generative model in
a multi-view stereo environment, which effectively handles
high-resolution inputs. DoubleField [39] fuses multi-view
features in a sparse-view environment for photorealistic hu-
man rendering and introduces a view-to-view transformer
to learn view-dependent features from high-resolution in-
puts. SeSDF [6] proposes an occlusion-aware feature fu-
sion strategy that self-calibrates to the SMPL-X model fit-
ted from uncalibrated multi-view images and fuses features
considering occlusion. DeepMultiCap [57] is a method
for multi-person clothed human reconstruction from multi-
view videos that fuses features from each view in an
attention-based framework. However, DeepMultiCap can
suffer from performance degradation in the real world ow-
ing to its dependence on well-fitted SMPL. Both SeSDF and
DeepMultiCap rely on the parametric human body model
that is unstable in challenging clothes.

Our work builds upon the attention-based 2D feature fu-
sion approach, as in DeepMultiCap, and introduces a novel
depth projection network for generating a 3D coarse volume
that captures human poses and clothing details. The gener-
ated 3D coarse volume is utilized as a robust 3D prior in
the final reconstruction process, which improves the accu-
racy and details of human reconstruction. Furthermore, our
model significantly reduces the dependence on the SMPL
model of previous methods by using the estimated SMPL
model only for depth-map prediction. This approach pro-
vides the ability to utilize 3D coarse volumes as a 3D prior
without directly using SMPL models to reconstruct com-
plex clothing and difficult poses more accurately. This im-
proves the qualitative and quantitative performances of the
overall human mesh reconstruction process.

3. Proposed Method

3.1. Overview

We propose a method for reconstructing clothed human
meshes from N multiple calibrated images. Fig. 2 shows
the overall structure of the proposed method comprising a
depth estimator [42], geometry reconstructor, and texture
reconstructor.

The depth estimator FDE is an off-the-shelf image-to-
image translation module that generates multi-view depth

𝐼!, 𝐼", ⋯ , 𝐼#

⋯

Depth
estimator

⋯

𝐷!, 𝐷", ⋯ , 𝐷#

Geometry
reconstructor

Texture
reconstructor

Figure 2. Overall structure of the proposed method. The
depth estimator generates depth maps {Dn}Nn=1 from input im-
ages {In}Nn=1 and estimated SMPL M. The geometry reconstruc-
tor predicts occupancy from {In}Nn=1 and {Dn}Nn=1, then extracts
a 3D human mesh Θ using a marching cube algorithm. The tex-
ture reconstructor predicts texture from {In}Nn=1, {Dn}Nn=1, and
Θ and finally outputs a textured 3D human mesh. ⊕ denotes con-
catenate operation.

maps Dn ∈ R1×512×512 (n = 1, . . . , N) from input multi-
view images In ∈ R3×512×512 (n = 1, . . . , N) using esti-
mated SMPL [29] M as prior, and is given as follows:

{Dn}Nn=1 = FDE({In}Nn=1,M). (1)

Geometry reconstructor FGEO predicts the occupancy
via implicit function from {In}Nn=1 and {Dn}Nn=1, and then
converts the predicted occupancy to a 3D human mesh Θ
using the marching cubes algorithm [30]:

Θ = FGEO({In}Nn=1, {Dn}Nn=1). (2)

Texture reconstructor FTEX takes {In}Nn=1, {Dn}Nn=1,
and the vertex coordinates K ∈ RK×3 of Θ computed from
FGEO and outputs the RGB value Ĉ ∈ RK×3 correspond-
ing to each vertex K and the parameters Ω ∈ RK×1×N and
λ ∈ RK×1 for computing the final texture:

{Ĉ,Ω, λ} = FTEX({In}Nn=1, {Dn}Nn=1,K), (3)

where K is the number of vertices in the 3D human mesh
Θ. Geometry reconstructor and texture reconstructor are
described in detail in Sections 3.2 and 3.3, respectively.

3.2. Geometry Reconstructor

Geometry reconstructor FGEO predicts the 3D human
mesh Θ from {In}Nn=1 and {Dn}Nn=1 as shown in Fig. 3.
{In}Nn=1 and {Dn}Nn=1 are concatenated and then fed into
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Figure 3. Geometry Reconstructor. {In}Nn=1 and {Dn}Nn=1 are concatenated and fed into the 2D encoder and DPN. The 2D feature
Φ2D extracted from the 2D encoder is sampled as pixel-aligned feature ΦP

2D and fused into fused feature ϕF
2D through the attention-aware

fusion module. The coarse depth volume VD output from the DPN is used as a 3D prior to extract voxel-aligned feature ϕV
3D . Each feature

is converted to a weighted feature by learnable weights γ2D and γ3D , respectively, and fed into the MLP.

the 2D encoder and DPN. DPN is a module that outputs
coarse depth volume VD ∈ R64×64×64 from {In}Nn=1 and
{Dn}Nn=1 and is described in detail in Section 3.4.

The 2D encoder fHG computes the 2D feature maps
Φ2D = {Φ(s)

2D ∈ RN×256×128×128}4s=1 from the concate-
nated input. This encoder is based on a stacked hourglass
network [33] described in [37], where s is the stack index of
the stacked hourglass network. Φ2D is extracted as follows:

Φ2D = fHG({In}Nn=1 ⊕ {Dn}Nn=1). (4)

The 3D encoder fV E computes the 3D feature volumes
ϕ3D = {ϕ(r)3D ∈ R32×64×64×64}3r=1 from the coarse depth
volume VD. The 3D encoder is based on the volume en-
coder as in [58], where r is the residual block [12] index of
the volume encoder. ϕ3D is extracted as follows:

ϕ3D = fV E(VD). (5)

The sampling module samples voxel-aligned feature
ϕV3D ∈ R32 and pixel-aligned feature ΦP

2D ∈ RN×256 from
3D feature volumes ϕ3D and 2D feature map Φ2D, respec-
tively, utilizing the 3D query point X ∈ R3 and its 2D pro-
jection π(X) ∈ R2 as follows:

ΦP
2D = B(Φ2D, π(X)), ϕV3D = T (ϕ3D, X), (6)

where B(·) and T (·) denote bilinear and trilinear interpola-
tions, respectively.

ΦP
2D is transformed into Φq , Φk, and Φv by learnable

weights Wq , Wk, and Wv , respectively. Note that Φq , Φk,
and Φv are the query, key, and value features, respectively:

Φq = ΦP
2DWq, Φk = ΦP

2DWk, Φv = ΦP
2DWv, (7)

where Wq , Wk, and Wv are learnable projection matrices
for multi-head attention [57].

Subsequently, we compute the fused pixel-aligned fea-
ture ϕF2D ∈ R256 from Φq , Φk, and Φv using the self-
attention encoder [44]. We use two self-attention encoder

layers to obtain ϕF2D. Within each encoder layer [57],
Φq , Φk, and Φv pass through self-attention mechanism and
point-wise feed-forward process as follows:

Φatt = attention(Φq,Φk,Φv)

= softmax(
Φq(Φk)

T

√
dk

),
(8)

ϕF2D = FF (Φatt), (9)

where dk ∈ R is a constant used to prevent the gradient
vanishing problem, and FF (·) denotes the point-wise feed-
forward process [44].

Instead of directly using the fused pixel-aligned feature
ϕF2D and the voxel-aligned feature ϕV3D for occupancy pre-
diction MLP fgeo, we feed the weighted feature computed
using the learnable weights γ2D ∈ R and γ3D ∈ R into the
occupancy prediction MLP fgeo as follows:

fgeo(γ2Dϕ
F
2D ⊕ γ3Dϕ

V
3D) 7−→ [0, 1]. (10)

After the occupancy corresponding to the grid points is
predicted by fgeo, it is converted into a 3D human mesh Θ
using the marching cube algorithm.

3.3. Texture Reconstructor

Texture reconstructor FTEX predicts a textured 3D hu-
man mesh from {In}Nn=1, {Dn}Nn=1, and a 3D human mesh
Θ predicted by geometry reconstructor FGEO as shown in
Fig. 4. {In}Nn=1 and {Dn}Nn=1 are concatenated and fed
into a 2D encoder and CPN. The CPN is the module outputs
the coarse color volume VC ∈ R64×64×64×3 from {In}Nn=1

and {Dn}Nn=1 and is described in detail in Section 3.4.
The 2D encoder fCG computes a 2D feature map Φ̄2D ∈

RN×256×128×128 from the concatenated input, where the
2D encoder is based on CycleGAN [61] as described
in [58]. Φ̄2D is extracted as follows:

Φ̄2D = fCG({In}Nn=1 ⊕ {Dn}Nn=1). (11)
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Figure 4. Texture Reconstructor. The texture reconstructor has almost the same structure as the geometry reconstructor with three
differences. First, it uses CPN instead of DPN and thus uses VC instead of VD as the 3D prior. It also uses vertex K of Θ instead of
query point X in the sampling module. Finally, it concatenates ϕF

2D and ϕ̄F
2D before being input to the MLP. Please note that the features

generated from texture reconstructor are marked with a bar symbol to distinguish them from geometry reconstructor.

The 3D encoder fTV E [58] computes the 3D feature vol-
ume ϕ̄3D ∈ RN×32×64×64×64 from the coarse color vol-
ume VC . ϕ̄3D is extracted as follows:

ϕ̄3D = fTV E(VC). (12)

The sampling process is the same as the sampling mod-
ule described in Section 3.2, except that the vertex K of Θ
is used as input instead of a 3D query point X as follows:

Φ̄P
2D = B(Φ̄2D, π(K)), ϕ̄V3D = T (ϕ̄3D,K). (13)

Similar to the attention-aware fusion module mentioned
in Section 3.2, we compute a fused pixel-aligned feature
ϕ̄F2D from a stacked pixel-aligned feature Φ̄P

2D by trans-
forming it with learnable projection matrices, applying a
self-attention mechanism, and point-wise feed-forward as
follows:

Φ̄q = Φ̄P
2DW̄q, Φ̄k = Φ̄P

2DW̄k, Φ̄v = Φ̄P
2DW̄v, (14)

Φ̄att = attention(Φ̄q, Φ̄k, Φ̄v)

= softmax(
Φ̄q(Φ̄k)

T

√
dk

),
(15)

ϕ̄F2D = FF (Φ̄att). (16)

Instead of using ϕ̄F2D alone for texture prediction, we ob-
tain ϕF2D from Section 3.2 and combine it with ϕ̄F2D to get a
concatenated feature [37] as follows:

ϕC2D = ϕF2D ⊕ ϕ̄F2D. (17)

The weighted features obtained through learnable
weights ¯γ2D and ¯γ3D are fed into the texture prediction
MLP ftex as follows:

ftex(γ̄2Dϕ
C
2D ⊕ γ̄3Dϕ̄

V
3D) 7−→ [Ĉ,Ω, λ]. (18)

Rather than directly using the RGB value Ĉ correspond-
ing to each vertex K computed by ftex, the final texture

Cfin is calculated as a linear combination [42, 58] using
the estimated parameters Ω = {ωn ∈ RK×1}Nn=1 and λ as
follows:

Cimg =

N∑
n=1

ωnB(In, π(K)), (19)

Cfin = λCimg + (1− λ)Ĉ, (20)

where Cimg is the result of sampling the RGB value cor-
responding to each vertex K from {In}Nn=1 and weighted
sum by Ω, and {ωn}Nn=1 are the weights that determine the
extent to which RGB values from each view are represented
when calculating Cimg . λ is the weight that determines the
strength of contribution of Cimg and Ĉ.

3.4. Depth/Color Projection Network

From multi-view input images {In}Nn=1 and estimated
multi-view depth maps {Dn}Nn=1, the DPN and CPN pre-
dict coarse depth volumes VD ∈ R64×64×64 and coarse
color volumes VC ∈ R64×64×64×3 as shown in Fig. 5. The
predicted depth and color volumes are used as 3D prior for
the geometry reconstructor FGEO and texture reconstructor
FTEX , respectively.

The 2D encoder fRS extracts a 2D feature map
ψ ∈ RN×2048×16×16 from the concatenated input.
ResNet50 [12] is used as the 2D encoder, and ψ is extracted
as follows:

ψ = fRS({In}Nn=1 ⊕ {Dn}Nn=1). (21)

Next, a deconvolution layer, fDC , is used to obtain a feature
map ψDC ∈ RN×256×64×64 with increased spatial resolu-
tion as follows:

ψDC = fDC(ψ). (22)

Then, we use the ‘repeat’ operation to extend the 2D fea-
ture map ψDC to the 3D space and transform it into an
R256×64×64×64-shaped feature map. Afterwards, we con-
catenate the depth coordinate tensor τ ∈ R1×64×64×64,
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Figure 5. Depth(Color) Projection Network. The depth(color)
projection network generates coarse depth(color) volume as a 3D
prior by taking {In}Nn=1 and {Dn}Nn=1 as inputs. The generated
3D volume is utilized as a 3D prior in both geometry reconstructor
and texture reconstructor.

which is divided into uniform steps from −1 to 1 to rep-
resent the depth information [37]. Then, the obtained fea-
ture map is processed through the 3D convolution operation
fCV to predict occupancy as follows:

fCV (ψDC ⊕ τ) 7−→ [0, 1]. (23)

CPN follows the same process as DPN until ψDC ⊕ τ is
fed into fCV . However, after it is fed into fCV , the color
map is predicted instead of the occupancy as follows:

fCV (ψDC ⊕ τ) 7−→ [0, 1]3. (24)

3.5. Loss Functions

We sample M 3D query points to train the geometry re-
constructor FGEO. For each query point, the mean squared
error between the predicted occupancy Ô by fgeo and the
ground-truth (GT) occupancy O∗ are used as the loss func-
tion:

Lgeo =
1

M

M∑
i=1

(Ôi −O∗
i )

2. (25)

The texture reconstructor has two outputs: intermediate
texture Ĉ predicted by ftex and final texture Cfin calcu-
lated by a linear combination. We apply the L1 loss to both
outputs [58] as follows:

Lcolor =
1

K

K∑
i=1

(∥Ĉi − C∗
i ∥1 + ∥Cfini

− C∗
i ∥1), (26)

where C∗
i is the GT texture for the ith vertex of Θ. As

shown in Eq. (19) and Eq. (20), the larger the value of λ,
the more we can get the RGB values of {In}Nn=1. Therefore,
we use a loss [42] to avoid making the value of λ small by
using a loss as follows:

Lλ = −E[log(λ)]. (27)

The final loss for the texture reconstructor is defined as fol-
lows:

Ltex = Lcolor + Lλ. (28)

Our proposed DPN predicts a probability d̂ between 0
and 1 within a 64 × 64 × 64 grid from the input, and pro-
duces a coarse depth volume VD indicating occupancy. The
GT 3D volume map has the same size and shape, and the
network is trained to minimize the difference from the GT
occupancy d∗ using binary cross entropy loss as follows:

Ldpn =
1

N

N∑
i=1

[d∗i log(d̂i) + (1− d∗i ) log(1− d̂i)]. (29)

CPN predicts continuous color values ĉ between 0 and
1 within the 64 × 64 × 64 grid from the input, and pro-
duces a coarse color volume VC indicating texture. The net-
work uses mean squared error to minimizes the difference
between the predicted color values ĉ and GT color values c∗

by using the mean squared error as follows:

Lcpn =
1

N

N∑
i=1

∥ĉi − c∗i ∥22. (30)

4. Experimental Results
4.1. Implementation Details

To train all methods, the THuman2.0 [53] dataset was
used, with the training images subjected to color jittering
augmentation. We sampled 8,000 points from the mesh
of each human subject during the training process. For
all methods requiring SMPL [29] parameters, we used
the parameters predicted by the pre-trained GCMR [22].
When training our method, the DPN, CPN, geometry recon-
structor, and texture reconstructor were trained separately.
Adam [19] was used as the optimizer and the learning rate
was set to 1e-4. We utilized four RTX 4090 GPUs for
training, with approximately 24 h required for the DPN and
CPN, and approximately 36 h required for the geometry and
texture reconstructors.

4.2. Datasets

The THuman2.0 dataset provides 526 high-quality 3D
human scans along with GT SMPL parameters. We used
495 human scans for training and 31 human scans for eval-
uation. All the training images were generated through a

682



THuman2.0 BUFF
Models P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓ P2S ↓ Chamfer ↓ Normal ↓ MSE ↓ LPIPS ↓

PIFu [37] 2.644 3.016 0.122 0.089 0.133 4.186 4.739 0.196 0.099 0.190
PaMIR [58] 1.544 1.568 0.063 0.055 0.080 1.181 1.209 0.052 0.013 0.076

DeepMultiCap [57] 1.311 1.313 0.052 0.049 0.065 0.875 0.885 0.039 0.011 0.061
Ours 0.921 0.923 0.039 0.040 0.056 0.839 0.842 0.035 0.010 0.058

Table 1. Quantitative result for THuman2.0 and BUFF datasets.

(c) (d) (e) (f)(b)(a)

Figure 6. Qualitative result for THuman2.0 and BUFF datasets. (a) 1 of 4views, (b) GT mesh, (c) PIFu, (d) PaMIR, (e) DeepMultiCap,
(f) Ours. The bottom row is the results from the BUFF dataset.

rendering process from a 3D human mesh at every degree
using OpenGL. To test the generalization ability of the pro-
posed method, we employed the BUFF [54] dataset. BUFF
provides a sequence of human meshes for five subjects, with
two clothing styles and three motions. We used all 143
meshes for the evaluation, and the evaluation images were
similarly generated using OpenGL.

4.3. Evaluation Metrics

The P2S distance evaluates the precision of mesh re-
construction by averaging the shortest distance between
points on the predicted mesh and the actual mesh surface.
The chamfer distance evaluates the geometric similarity be-
tween the predicted mesh and the actual mesh by select-
ing points from both meshes and averaging their distances.
Normal difference quantifies the discrepancy between the
four normal maps of the predicted mesh and the GT normal
map, calculated after simulating a virtual camera rotation at
0°, 90°, 180°, and 270°, and subsequently reprojecting into
2D.

Texture inference performance was evaluated using by
two metrics, MSE and LPIPS [56], after the mesh was re-
projected to 2D. MSE measures the accuracy as the root
mean square of the pixel difference between the predicted
and GT textures. LPIPS evaluates the similarity between
image patches using a trained VGG [41] network.

4.4. Comparison with Existing Methods

We compared our proposed model with previous multi-
view methods, namely, PIFu [37], PaMIR [58], and Deep-
MultiCap [57]. For a fair comparison, all the methods were
processed in the same environment, and trained on THu-
man2.0 dataset. We render 4-view images as the input.
As reported in Table 1, the proposed method significantly
outperforms other existing methods by the large margins
on THuman2.0. Among existing methods, DeepMultiCap
also fuses 2D features by attention-aware method, while our
method consistently outperforms DeepMultiCap. Even in
the BUFF dataset, the performance gap with other models
is relatively small, but the proposed method still achieves
the best performance. In addition, as shown in Fig. 6, our
model produces more plausible results for both geometry
and texture. In particular, the detailed geometry parts (e.g.,
hand and wrist) and face textures are generated plausibly.
We guess that this is due to the effect of the DPN and CPN
that create the coarse volumes.

4.5. Ablation Experiments

2D feature fusion method. In this experiment, we ex-
plore the effect of 2D feature fusion methods on 3D clothed
human reconstruction using PIFu [37] as a baseline. We
evaluate the performance of different 2D feature fusion
methods while preserving the z-coordinate, the 3D feature
in PIFu. We compare existing fusion methods: (1) average-
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(b) (c) (d) (e)2 of 4 
views

(a)

Figure 7. Qualitative comparison of 2D feature fusion meth-
ods. (a) GT mesh, (b) average, (c) SMPLX-vis, (d) occlusion, (e)
attention (ours). Best viewed in PDF with zoom.

2D fusion 3D prior P2S Chamfer Normal
average [37]

Z-coord [37]

2.645 3.020 0.122
SMPLX-vis [47] 2.817 2.957 0.126

occlusion [6] 1.378 1.340 0.053
attention [57] 1.038 1.043 0.043

Table 2. Ablation results for the 2D feature fusion method.

pooling [37], (2) SMPL-X visibility [47], (3) occlusion-
aware fusion method [6], and (4) attention-aware fusion
method [57]. Average-pooling simply averages the features
of multiple views, which means that the features of impor-
tant views, including key features, are not fully reflected. In
Fig. 7(b), we observe that cropping occurs at the limbs, such
as arms and legs. In the case of the feature selection method
that utilizes SMPL-X visibility to determine features, dif-
ferences from the actual mesh occur due to the estimated
SMPL-X, which causes noise on the surface as shown in
Fig. 7(c). The occlusion-aware feature fusion method uses
the occlusion of the SMPL mesh obtained through ray trac-
ing to control the influence of the features, and shows rel-
atively favorable results, but has limitations when it is dif-
ficult to accurately estimate the SMPL mesh. On the other
hand, as shown in Table 2 and Fig.7(e), the attention-based
2D feature fusion method can effectively fuse multiple fea-
tures and perform well in non-SMPL environments.

3D prior. After fixing the best performing attention-
aware fusion method, we compare our coarse depth vol-
ume with other 3D priors, namely, (1) z-cooordinate [37],
(2) voxelized SMPL volume [58], and (3) depth volume by
heuristic depth projection [42]. It can be seen in the Fig. 8
that the existing 3D priors lose the details of the clothes or
body, but our prior recovers the details well and appropri-
ately. Furthermore, our method demonstrates quantitative
improvement over existing methods, as shown in Table 3.

Learnable parameters. We conducted an ablation ex-
periment for our proposed learnable parameters γ2D ∈ R
and γ3D ∈ R, which adjust the influence of 2D and 3D fea-
tures to optimize learning and thereby improve 3D human
reconstruction. The results of this experiment can be found
in Table 4, which shows the effectiveness of our approach.

(b) (c) (d) (e)2 of 4 views (a)

Figure 8. Qualitative comparison of 3D prior methods. (a) GT
mesh, (b) Z-coordinate, (c) voxelized SMPL, (d) depth volume by
depth projection, (e) coarse depth volume (ours).

2D fusion 3D prior P2S Chamfer Normal

attention

Z-coord [37] 1.038 1.043 0.043
VSM [58] 0.955 0.960 0.040
DP [42] 0.951 0.951 0.040

CDV(ours) 0.939 0.944 0.039
Table 3. Ablation results for the 3D prior method. Please note
that Z-coord, VSM, DP, and CDV denote z-coordinate, voxelized
SMPL, depth volume by depth projection, and coarse depth vol-
ume, respectively.

Moodels P2S Chamfer Normal
ours w/o γ 0.939 0.944 0.039

ours 0.921 0.922 0.039
Table 4. Ablation results for the learnable weights.

5. Conclusion

In this study, we developed a method for reconstruct-
ing high quality 3D clothed human from calibrated sparse
multi-view images. Herein, the 2D features are fused us-
ing through an attention-based fusion module, and the 3D
features are extracted using the coarse depth volume out-
put from the DPN as a 3D prior. These features are trans-
formed into weighted features using learnable weights, and
the occupancy is predicted using features that reflect their
importance. We proposed a texture reconstructor that uses
the coarse color volume predicted by the CPN as a 3D
prior. Our experiments demonstrated that the 3D coarse vol-
ume significantly improves mesh reconstruction compared
with other 3D priors, and highlighted the effectiveness of
attention-based 2D fusion module. The proposed method
outperforms existing methods in terms of both qualitative
and quantitative results.
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