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Figure 1. Comparison of the densification process and the final image of the original 3D Gaussian Splatting (3DGS) and our efficient
densification method. Intermediate iterations are shown with spheres of equal opacity to demonstrate the density of the Gaussians. The
right-most column indicates the final image with PSNR, data size, and the number of Gaussians, respectively.

Abstract

Many variants of Neural Radiance Fields (NeRF) have
been explored in pursuit of high-quality results with rea-
sonable data size and real-time rendering speed. 3D Gaus-
sian Splatting (3DGS) gained popularity due to its ability
to render quality images in real-time; however, it still faces
challenges with large data sizes. Meanwhile, the densifi-
cation process of 3DGS plays a large role in deciding the
quality and the data size of a model. Hence, it is crucial to
devise a densification method that can populate Gaussians
efficiently so that quality can be enhanced and fewer Gaus-
sians are used. An efficient densification method that results
in fewer Gaussians can also promote efficiency in training
time, GPU memory usage, and rendering speed.

Hence, we propose a novel, efficient densification
method based on color cues, aiming to achieve a more
compact Gaussian model without sacrificing image qual-
ity. By expanding the original 3DGS densification scheme,
we identify weaknesses in the original method that lead to
redundant Gaussians and compromise quality. In contrast
to the original approach, which relies solely on the 2D posi-
tion gradient, our method additionally leverages the spher-
ical harmonics (SH) gradient to consider color cues. This
approach resolves the inefficiencies of the original densifi-

cation by aligning with the expanded scheme. Our method
achieves at least 9× data size reduction with increased per-
ceptual quality, accompanied by additional efficiencies in
training time, GPU memory usage, and rendering speed.

1. Introduction
Recently proposed 3D Gaussian Splatting (3DGS) [12] is
one of the most effective methods for novel view synthe-
sis (NVS), achieving photo-realistic quality and real-time
rendering. The anisotropic Gaussians employed by 3DGS
contribute to its rendering quality, while the differentiable
rasterizer, optimized with CUDA, enables real-time perfor-
mance. However, the requirement for numerous Gaussians
to represent a scene, each with multiple features, leads to a
challenge of large model size. To promote practical usages
of 3DGS for various applications of NVS, enhancements
that can generate smaller models without compromising on
quality or rendering speed are necessary.

The densification process in 3DGS is crucial as it en-
hances the model by adding Gaussians to a coarser rep-
resentation, resulting in finer quality. The densification
method significantly influences both the data size and qual-
ity of the model. Failing to create Gaussians that express
an object can cause a severe drop in quality, and adding
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multiple unnecessary Gaussians can increase the model size
without improving the final image. The original 3DGS den-
sification scheme exhibits weaknesses by overlooking spe-
cific scenarios, generating redundant Gaussians, and fail-
ing to reconstruct fine patterns. Meanwhile, existing works
that target to reduce the model size of 3DGS suggest us-
ing vector quantization or multi-layer perceptrons (MLP)
to compress the features of a Gaussian [6, 14, 16]. These
compression-based approaches are not lossless and can in-
evitably result in the degradation of scene quality. There-
fore, it is necessary to devise a densification process capable
of populating Gaussians at adequate positions to maintain a
small model size while enhancing quality.

In our work, we discover a simple but effective mod-
ification to the densification process that populates Gaus-
sians in a way that can reduce the data size but improve
the rendering quality, preserving finer details. The origi-
nal 3DGS incorporates a densification process where 2D
position gradients detect under/over-reconstruction of ge-
ometry. However, relying solely on the 2D position gra-
dient neglects the need for more Gaussians from the color
difference and amplifies the necessity for more Gaussians
when unnecessary. Instead, we propose a novel densifica-
tion method for 3DGS that leverages the view-independent
(0th) spherical harmonics (SH) coefficient gradient to dis-
cern cues from color, measuring the necessity for additional
Gaussians. Concurrently, densification using the 2D posi-
tion gradient is employed more coarsely, focusing on details
in areas where structure-from-motion (SfM) fails to provide
fine structure.

The results showed that our densification method could
reduce the data size by at least 9× with further quality im-
provement. While the metric-based quality results remain
comparable, our approach demonstrates quality enhance-
ment in visualization results. By reducing the number of
Gaussians, the new method also results in faster rendering,
faster training, and less GPU memory usage during training.

In summary, our contributions are as follows:
• We suggest a thorough densification scheme for 3DGS

that identifies the limitations of the original method.
• We propose a simple and effective 3DGS densification

method utilizing color cues that are complementary to ex-
isting 3DGS compression schemes.

• We achieve at least 9× reduction of model size while im-
proving the perceptual rendering quality.

• We also achieve significant improvement in many effi-
ciency metrics, including training time, GPU memory,
and rendering speed.

2. Related Works
We briefly overview 3D Gaussian Splatting and its densi-
fication method and review various techniques previously
applied to NeRF variants to reduce model size.

2.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [12] represents a scene with
multiple 3D Gaussians that can be rendered into an image
through ”splatting” [24, 25] to 2D space. Each Gaussian
is described by its position x, rotation q, scaling s, opacity
α, and spherical harmonics (SH) coefficients. These fea-
tures are optimized through training using a differentiable
rendering process. The 3DGS framework employs a fast
differentiable rasterizer with CUDA kernels, enabling real-
time image rendering.

One notable feature of the original 3DGS is its densifica-
tion process, also referred to as the adaptive density control.
3DGS training begins with an initial set of sparse points ob-
tained from structure-from-motion (SfM) and densifies over
iterations, enabling a denser set that better represents the
scene. The original 3DGS focuses on regions where geo-
metric features are under or over-represented. From obser-
vation, the original 3DGS intuitively uses 2D position gra-
dients to identify candidates for densification. Gaussians
with average 2D position gradient over a threshold τpos are
densified. Candidate Gaussians with small scales are cloned
identically, while candidate Gaussians with large scales are
split into smaller Gaussians with shifted positions.

2.2. Compact NeRF Variants

Many approaches have been made to address the challenge
of reducing the size of NeRF models, enabling their prac-
tical deployment in diverse scenarios, including network
streaming, mobile devices, and resource-constrained envi-
ronments like microcontrollers (MCUs). Approaches to
compress the original network-based NeRF models have
employed various techniques, such as neural weights quan-
tization [8, 21], network distillation [18], and the use of
entropy-penalized functions [3].

As notable variants of NeRF emerged to tackle NeRF’s
remaining challenges, a subsequent wave of research has
delved into compression techniques aimed at reducing
model size. Plenoxels [7] introduced the concept of us-
ing a sparse voxel grid with density and spherical harmonic
coefficients for sample point computation through trilinear
interpolation. InstantNGP [15] suggested utilizing a hash
grid and an occupancy grid to accelerate computation. Ten-
soRF [4] proposed factorizing the full volume field into
multiple compact tensors for memory efficiency. These
grid-based approaches inspired further research in compres-
sion. Vector quantization, as seen in works like [11, 20, 22],
and efficient pruning, as demonstrated in [5, 22, 23], were
commonly deployed to reduce model size. Other techniques
include combining a low-resolution 3D grid and higher-
resolution 2D planes [17], leveraging the level of detail for
voxel and octree [19], and baking sparse voxel features into
a 3D texture atlas [10].

Making 3DGS smaller is in its early stages, with ongo-
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Figure 2. Our expanded densification scheme. The original 3DGS suggests the scenarios in the orange box. When true geometry is under-
reconstructed by a smaller Gaussian, the Gaussian is cloned. When true geometry is over-reconstructed by a larger Gaussian, the Gaussian
is split. However, the right column illustrates sub-cases where cloning or splitting is unnecessary despite under/over-reconstruction. In
addition, the third row introduces a new scenario where color is under-represented, in contrast to the true color depicted by the grid.

ing efforts to adapt techniques previously employed in other
NeRF variants. Preprints such as [6, 14, 16] showcase
the utilization of Multi-Layer Perceptrons (MLPs) or quan-
tization codebooks to reduce the amount of data required
to represent a Gaussian. These approaches also incorpo-
rate trained binary masks or importance metrics to enhance
pruning effectiveness [6, 14], and entropy encoding and
run-length encoding to compress the list of Gaussians [16].
Many approaches aim to adapt previously developed meth-
ods to 3DGS, focusing on compressing the final Gaussians
by altering the data representations to conserve memory. In
contrast, our work focuses on providing a 3DGS-specific
solution by introducing a novel densification method that
changes the way Gaussians are populated.

3. Method
We propose a new densification method based on color cues
to incorporate into the original 3DGS. By analyzing the
inefficiencies in the current densification method relying
on positional gradients, we introduce a novel architecture
leveraging color-based gradients for densification. Addi-
tionally, we integrate a pruning method from previous work
to enhance the opacity-based pruning of 3DGS and suggest
minor precision adjustments.

3.1. Inefficiency Analysis of the Original 3DGS Den-
sification

The original densification method has inefficiencies in two
aspects. Firstly, the original densification overestimates the
necessity for a new Gaussian. The orange box in Figure 2
shows the densification scheme used by the original 3DGS.

color

transmittance

Opacity

x of conic matrix

y of conic matrix

clampedtransmittance

-G    dx

0.5    W

-G    dy

Same of Green

Red

Same of Blue

    = min(0.99, opacity    G)

2D Position Gradient

0th Spherical Harmonics Gradient

Figure 3. Breakdown of gradients mentioned in this paper. The
upper section depicts the 2D position gradient of each Gaussian,
while the lower section depicts the 0th spherical harmonics gradi-
ent of each Gaussian. Values for pixels are in yellow, while values
for Gaussians are in blue.

The original 3DGS utilizes each Gaussian’s 2D position
gradient to determine whether a Gaussian is under/over-
reconstructed and employs the scale of each Gaussian to dif-
ferentiate between under and over-reconstruction. The right
column in Figure 2 illustrates instances where the 2D posi-
tion gradient can be large, but cloning or splitting is unnec-
essary. Optimization of scale and rotation of a single Gaus-
sian is enough to represent the true geometry. Since there
are no ground truth Gaussians to compare with, the original
paper uses the 2D position gradient to roughly capture the
difference between the true scene and each Gaussian, lead-
ing to aggressive densification that results in a large model
with an inefficient Gaussian population.

Secondly, relying on the 2D position gradient as a cue
is insufficient for addressing the ‘color under-represented’
scenario depicted in Figure 2. This scenario occurs when
a single Gaussian cannot represent multiple colors in the
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scene, necessitating the detection of significant color differ-
ences to create new Gaussians. This situation frequently
arises when training real scenes with complex patterns.
(e.g., for the Mip-NeRF 360 dataset, grass in ‘bicycle’,
‘stump’, and ‘garden’, and pavement in ‘treehill’) In Fig-
ure 3, the upper row demonstrates how the 2D position gra-
dient incorporates Gaussian density (G), position, and color
information during back-propagation. Since other factors
dilute color information, it is hard to detect color differences
using only the 2D position gradient. Consequently, the orig-
inal 3DGS densification can lead to slower convergence, as
additional Gaussians must be formed indirectly. Moreover,
necessary Gaussians failing to form may result in a model
with lower quality in areas with intricate patterns.

3.2. Efficient Densification Based on Color Cues

To overcome the inefficiencies inherent in the original den-
sification method, we devised a new method capable of ac-
commodating our expanded scheme. In order to capture the
color under-represented scenario, we utilize the gradient of
the 0th SH coefficient. Utilizing the 0th SH gradient is a
practical choice for incorporating color cues. This is at-
tributed to the fact that it is a constant multiple of the RGB
gradient and is explicitly stored in the model, in contrast
to the RGB gradient, which only serves as an intermediate
value for back-propagation. If the accumulated gradient of
the 0th SH is large enough, we infer the necessity for addi-
tional Gaussians in that region to represent multiple colors.
Hence, we clone and split to make more Gaussians using
the 0th SH gradient as the color cue. On the other hand, as
we have analyzed redundancies in the 2D position gradient-
based method, we adopt the position-based gradient more
coarsely, only to strengthen geometric information.

The densification unfolds in two steps: Firstly, every 100
iterations, Gaussians with accumulated 0th spherical har-
monics gradient larger than τcolor are identified as poten-
tially color under-representing, and they are cloned or split
based on scale. Secondly, on a more coarse level (every
700 iterations), Gaussians with substantial 2D position gra-
dients are identified as potentially under/over-reconstructed
and cloned or split based on scale. The selection of gradient
thresholds can be generalized into two categories, depend-
ing on whether the scene is indoor or outdoor. The entire
densification process is outlined in Algorithm 1.

The proposed method successfully overcomes the two
inefficiencies of the original approach. Firstly, the addition
of a color-cued densification step can cover broader cases
than the original. By utilizing the 0th SH gradient as a cue,
Gaussians that need to represent different colors but exhibit
a small 2D position gradient—such as the example in the
third row of Figure 2—can be duplicated to capture more
diverse colors effectively. The lower part of Figure 3 il-
lustrates the calculation of the 0th SH gradient, where the

Algorithm 1: 3DGS Training with Our Efficient
Densification Method

for every iteration do
render image
calculate loss and back-propagate
save the norm of 0th SH gradient
save the norm of 2D position gradient

if iteration % 100 == 0 then
// color-based densification
for Gaussian with accum. 0th SH grad. > τcolor do

if scale < τscale then clone else split
end

end
if iteration % 700 == 0 then

// position-based densification
for Gaussian with accum. 2D position grad. > τpos do

if scale < τscale then clone else split
end

end
end

gradient of each pixel is propagated to the gradient of each
Gaussian through color. This shows that the 0th SH gra-
dient can better incorporate color information compared to
the 2D position gradient, where color information is diluted.

Secondly, the 2D position gradient is now applied more
coarsely than in the original method, sharing its former
role with color-cued densification and thereby eliminating
redundancy. Relying solely on the 2D position gradient
caused the formation of redundant Gaussians, as it couldn’t
discern when duplication was necessary (refer to the first
two rows of Figure 2), consequently requiring aggressive
duplication. The new method enables the 2D position gra-
dient to split its role with the color-cued densification. The
coarse 2D position gradient-cued densification contributes
explicitly to reinforcing the structure of the scene, while the
color-cued densification creates additional Gaussians to en-
hance representation capabilities.

3.3. Pruning and Compressed Representation

To investigate the combined impact of pruning and our
novel densification method, we implemented a trainable
pruning mask as suggested in [14]. This binary mask M
can be calculated using the straight-through estimator [2]
and an additional mask parameter m ∈ IRN as follows,

Mn = sg(1[σ(mn) > ϵ]− σ(mn)) + σ(mn),

where the sg(·) is the stop gradient operator, 1 is the indi-
cator function and σ(·) is the sigmoid function. Then the
binary mask is used to regulate the scale s ∈ IR3 and opac-
ity o ∈ [0, 1]N (e.g., ŝn = Mnsn, ôn = Mnon). We treat
the mask parameter as an additional feature of a Gaussian.
The mask values are trained and learned alongside other
features. The loss of the 3DGS is modified to reflect the
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Dataset Mip-NeRF 360 Tank&Temples

Method SSIM PSNR LPIPS Train FPS Disk
GPU
Mem Splats SSIM PSNR LPIPS Train FPS Disk

GPU
Mem Splats

Plenoxels† 0.626 23.08 0.463 25m49s 6.79 2.1GB 0.719 21.08 0.379 25m5s 13.0 2.3GB
INGP-Base† 0.671 25.30 0.371 5m37s 11.7 13MB 0.23 21.72 0.330 5m26s 17.1 13MB
INGP-Big† 0.699 25.59 0.331 7m30s 9.73 48MB 0.745 21.92 0.305 6m50s 14.4 48MB
M-NeRF360† 0.792 27.69 0.237 48h 0.06 8.6MB 0.759 22.22 0.257 48h 0.14 8.6MB
3DGS† 0.815 27.21 0.214 41m33s 134 734MB 0.841 23.14 0.183 26m54s 154 411MB

3DGS 0.813 27.49 0.222 31m6s 104 747MB 8.54GB 3158k 0.845 23.68 0.178 15m48s 141 432MB 4.14GB 1825k
Ours 0.797 27.07 0.249 20m42s 166 73MB 5.98GB 646k 0.830 23.18 0.198 11m33s 231 42MB 2.95GB 370k

Table 1. Quantitative evaluation of our method evaluated on Mip-NeRF 360 and Tank&Temples datasets. Baseline evaluations marked
with † are adapted from the original 3DGS paper evaluated on an NVIDIA A6000 GPU. For comparison, we re-evaluate 3DGS and our
approach on an NVIDIA 3090 GPU. ‘Train’, ‘Disk’, ‘GPU Mem’, ‘Splats’ denote training time, disk storage, peak GPU memory usage
while training, and the number of Gaussians, respectively.

pruning mask as follows,

L = (1− λ)L1 + λLD−SSIM + λmask
1

N

N∑
n=1

σ(mn)

We further optimize our approach by storing features in 2-
byte floats instead of 4-byte floats. Our ablation studies
demonstrate that this compression does not compromise im-
age quality, as the precision was found to be excessive.

4. Experiments
4.1. Experimental Settings

4.1.1 Datasets and Metrics

We test our approach on 13 large-scale real scenes. 13 360-
degree scenes include five outdoor and four indoor scenes
from Mip-NeRF 360 dataset [1], as well as the two out-
door scenes from Tank&Temples dataset [13] and two in-
door scenes from Deep Blending dataset [9] chosen by
the original 3DGS paper. We compare rendering quality
in peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and perceptual similarity through LPIPS. Training
time, rendering FPS, and disk storage are also compared.
For comparison with the original 3DGS, peak GPU Mem-
ory usage and the number of Gaussians are also examined.

4.1.2 Compared Baselines

We compare our approach with methods that can render
novel views from large scenes with high quality. These in-
clude Plenoxels [7], InstantNGP [15], Mip-NeRF360 [1],
and the original 3DGS [12]. The experimental results on
baselines, excluding 3DGS, are adapted from the original
3DGS paper.

4.1.3 Implementation Details

Different sets of hyperparameters were chosen for indoor
and outdoor datasets. The 2D position gradient thresh-

Dataset Deep Blending

Method SSIM PSNR LPIPS Train FPS Disk
GPU
Mem Splats

Plenoxels† 0.795 23.06 0.510 27m49s 11.2 2.7GB
INGP-Base† 0.797 23.62 0.423 6m31s 3.26 13MB
INGP-Big† 0.817 24.96 0.390 8m 2.79 48MB
M-NeRF360† 0.901 29.40 0.245 48h 0.09 8.6MB
3DGS† 0.903 29.41 0.243 36m02s 137 676MB

3DGS 0.900 29.44 0.247 25m31s 114 663MB 6.95GB 2803k
Ours 0.902 29.71 0.255 15m16s 208 72MB 4.29GB 644k

Table 2. Quantitative evaluation of our method on Deep Blending
dataset. Baseline evaluations marked with † are adapted from the
original 3DGS paper, and 3DGS is reevaluated for fairness.

old (τpos) was kept at 0.0002, consistent with the origi-
nal 3DGS, and the densification interval based on the 2D
position gradient was set to 700. For outdoor scenes, the
0th SH gradient threshold (τcolor) was set to 0.000002, and
the λmask for loss was set as 0.05. For indoor scenes, the
0th SH gradient threshold (τcolor) was set to 0.00002, and
the λmask for loss was set as 0.01. These hyperparame-
ters were initially selected through a grid search and have
demonstrated generalizability to scenes with shared indoor
or outdoor characteristics.

4.2. Experimental Results

4.2.1 Quantitative Results

Quantitative results for Mip-NeRF360 and Tank&Temples
are summarized in Table 1, and results for Deep Blending
are summarized in Table 2. Results show that Mip-NeRF
360 excels in rendering quality but has an impractically low
rendering speed below 1 FPS. Voxel-based approaches like
Plenoxels and InstantNGP show moderate rendering speed
but fall behind in quality and model size. While 3DGS out-
performs many metrics compared to other NeRF variants,
showing high fidelity with real-time rendering speed, it falls
behind in model size. Our approach achieves quantitative
image quality comparable to the 3DGS model but with a
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Figure 4. Qualitative comparison of our approach and the original 3DGS. Our approach shows comparable or better quality in metrics
while having a smaller data size. Qualitatively, our method outperforms the original 3DGS in representing detailed regions, such as the
grass behind the flower bed or the pavement below the truck. Details in this figure are best viewed zoomed in.

model size reduction of at least 9×. Notably, our method
exhibits faster training times and smaller peak GPU mem-
ory usage during training than the original 3DGS, hence ac-
quiring time and memory efficiency. This efficiency is at-
tributed to the creation of fewer Gaussians during training,
leading to reduced data and faster rendering for loss calcu-
lation. Additionally, the rendering FPS is higher for our ap-
proach than the original 3DGS because the 3DGS rendering
pipeline includes a preprocessing stage done per Gaussian.

4.2.2 Qualitative Results

Figure 4 presents a qualitative comparison between our ap-
proach and the original 3DGS using examples selected from
various datasets: ‘flowers’ from the outdoor Mip-NeRF
360, ‘room’ from the indoor Mip-NeRF 360, ‘playroom’
from Deep Blending, and ‘truck’ from Tank&Temples. Re-
sults demonstrate that our approach resulted in a model with
at least ×9 reduction in memory while maintaining compa-
rable quality. Notably, our method improved quality for ar-
eas with small patterns, such as the grass behind the flower
bed for the flowers dataset and the pavement and car stain
for the truck dataset. Please refer to and zoom in on the red
circles in Figure 4. This enhancement is a direct result of
our novel densification method, which utilizes color cues to
cover the expanded scenario illustrated in Figure 2. In the
case of the playroom dataset, higher PSNR was achieved
despite the smaller data size.

3DGS Ours

Iter.
1500

Final
ModelGround Truth

PSNR: 26.96 PSNR: 27.03

Figure 5. Magnified rendered image from iteration 1500 and the
final model on ‘stump’ from MipNeRF-360. The blue box high-
lights the efficacy of our densification approach in representing
complex patterns, and the red box illustrates the impact of our
densification process in creating Gaussians only when necessary.
Details in this figure are best viewed zoomed in.

The impact of the novel densification process can be di-
rectly observed by examining the evolving Gaussians. In
Figure 1, Gaussians are illustrated in equally sized spheres
with constant opacity to convey the density of the scene. As
seen from the figure, our approach successfully reconstructs
the scene with similar quality with a much coarser model.
Figure 5 shows the images of the same region from ‘stump’
of MipNeRF360 trained with 3DGS and our method. The
blue box indicates a complex pattern on the tree bark. In
our approach at iteration 1500, this region already exhibits
multiple Gaussians to effectively represent the intricate pat-
tern, resulting from using the 0th SH gradient as a cue for
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Dataset Stump of Mip-NeRF 360

Method SSIM PSNR LPIPS Train FPS Disk
GPU
Mem Splats

3DGS 0.770 26.72 0.242 33m19s 89 1038MB 8.38GB 4387k
coarse 3DGS 0.752 26.27 0.279 21m43s 121 509MB 5.40GB 2152k
3DGS+pruning 0.772 26.67 0.249 27m 155 282MB 7.30GB 1193k

only color 0.748 26.14 0.264 31m8s 106 870MB 7.43GB 3679k
only color
+pruning 0.752 26.22 0.267 25m55s 157 271MB 7.38GB 1148k

color+coarse 0.771 26.68 0.247 24m19s 126 620MB 6.02GB 2620k
color+coarse
+pruning 0.771 26.70 0.252 22m9s 180 237MB 5.63GB 1001k

color+coarse
+pruning+fp16 0.768 26.65 0.254 22m9s 178 113MB 5.63GB 1001k

Table 3. Quantitative evaluation of ablation studies. Bolded meth-
ods contain our approach. ‘coarse’ denotes coarse position-based
densification, and ‘pruning’ denotes trainable pruning masks.
‘fp16’ denotes precision reduction to 16-bit floating points. Eval-
uated on an NVIDIA 3090 GPU.

densification. Conversely, the original approach at itera-
tion 1500 struggles to create additional Gaussians to rep-
resent diverse colors, leading to slower convergence and
lower quality. The red box indicates a region with branches
and leaves. Both models start from the same SfM points
to reconstruct branches. However, the original 3DGS at it-
eration 1500 creates redundant Gaussians, represented as
the numerous semi-transparent thin Gaussians (circled with
red ellipsoids, best viewed zoomed in) that contribute less
to the final image. In comparison, the red box for our ap-
proach demonstrates the creation of only a few additional
Gaussians, highlighting the strength of our new approach in
adding Gaussians precisely when needed. The final model
images of the two approaches are of similar quality, proving
that the semi-transparent thin Gaussians were redundant in
reconstructing the scene.

4.3. Ablation Studies

We conduct ablation studies to validate the contribution
of our novel densification method compared to other tech-
niques. Our contribution is to combine color and coarse
position-based densification, while the effects of other tech-
niques, such as pruning using a trained mask and precision
reduction, are jointly observed.

4.3.1 Comparison with the Original 3DGS

As we have identified an inefficiency in the original den-
sification method, which tends to create redundant Gaus-
sians, tuning the hyperparameters to make the densification
more conservative is a potential solution. To address this
issue, we experimented by densifying every 300 iterations
instead of the current frequency of 100 (‘coarse 3DGS’ in
Table 3). Results in Table 3 exhibit worse image quality

Color + Coarse + Pruning

3DGS

Only Color

Ground Truth

Figure 6. Images from the ablation studies for ‘stump’. Notice the
change in detail in the shadows and bark. Details in this figure are
best viewed zoomed in.

across all three metrics despite having more Gaussians than
our approach (‘color + coarse’ in Table 3). This shows that
position-based densification alone is insufficient for acquir-
ing efficient Gaussians like our approach.

The results presented in Table 3 demonstrate that incor-
porating a trained pruning mask with the original 3DGS
(‘3DGS + pruning’ in Table 3) needs more Gaussians to
achieve comparable qualities to our approach (‘color +
coarse + pruning’ in Table 3). Despite similar qualities,
our approach results in fewer Gaussians, making a slight
enhancement in terms of data size. Additionally, our ap-
proach outperforms the pruning approach in terms of train-
ing time by 20% and peak GPU memory usage by 21%. The
difference arises from the intermediate Gaussian numbers
during training. Although the final number of Gaussians is
similar, Figure 8 shows that using a pruning mask with the
original 3DGS densifies with redundant Gaussians in a sim-
ilar manner to the original 3DGS, while our approach adds
the Gaussians conservatively only when needed. As a re-
sult, our approach demonstrates efficiency gains in terms of
training time and GPU usage.

Our method also demonstrates better qualitative perfor-
mance in representing complex patterns, particularly when
compared to pruning. Figure 7 illustrates the rendered im-
ages for the methods in ablation studies. Using a pruning
mask with the original 3DGS leads to blurred regions, while
our approach using color cues succeeds in reconstructing in-
tricate patterns of the pavement.

4.3.2 Joint Effects of Our Approach

The results of using only the color-cued densification are
presented in the ‘only color’ and ‘only color + pruning’ of
Table 3. Using only color cues for densification results in
lower quality metrics despite more Gaussians (‘only color’
and ‘only color + pruning’), compared to our comprehen-
sive approach that utilizes both color cues and 2D position
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Color + Coarse + PruningGround Truth 3DGS 3DGS + Pruning Only Color

Figure 7. Images from the ablation studies for ‘treehill’. Notice the change in detail in the zoomed-in pavement. Details in this figure are
best viewed zoomed in.

3DGS
3DGS+pruning
color+coarse+pruning

Figure 8. The number of Gaussians in intermediate itera-
tions for the original 3DGS (3DGS), 3DGS with pruning mask
(3DGS+pruning), and our approach (color+coarse+pruning) in the
ablation studies.

gradients (‘color + coarse’ and ‘color + coarse + pruning’).
This is because the SH gradient cannot detect under/over-
reconstructed regions, leading to an inaccurate reconstruc-
tion of position and geometry information from the coarse
SfM points. The deficiency in geometric detail, visible in
the barks (circled red) of ‘Only Color’ in Figure 6, sup-
ports the idea that the original 2D position gradient den-
sification plays the role of reconstructing geometry. How-
ever, there are also quality gains in the shadows (circled
blue) compared to the original 3DGS, as an artifact of using
color-based densification. This validates the effectiveness
of our comprehensive approach, where color-cued densi-
fication and 2D position-based densification serve distinct
purposes, as detailed in 3.2.

Reducing the precision of Gaussian features can fur-
ther reduce the data size. While different approaches like
MLP or vector quantization are available, we took a simple
method of reducing the feature precision to check the pos-
sibility of compression. Table 3 illustrates that compression
can further reduce the data size to half without much reduc-
tion in quality metrics. This shows that other data compres-

sion methods in previous or future 3DGS works can be used
on top of ours to gain further benefit.

5. Conclusion
In this work, we enhance the adaptive density control of the
original 3DGS to populate Gaussians better for improved
efficiency in both time and memory. We expand the den-
sification scheme to cover a broader range of real image
scenarios, and we suggest a new densification methodology
that aligns with this expanded scheme. Our densification
methodology leverages color cues and 2D position gradi-
ents to detect the need for additional Gaussians to repre-
sent color and complex geometry, respectively. By address-
ing the inefficiencies of the original densification method,
our comprehensive approach significantly reduces the in-
troduction of redundant Gaussians. Moreover, it achieves
qualitative improvements in image quality, particularly in
handling complex patterns. Jointly used with masked prun-
ing and precision reduction, our novel densification method
demonstrates substantial decreases in the number of Gaus-
sians and data size. Reduction of the number of Gaussians
inherits other efficiency benefits such as accelerated train-
ing time, reduced GPU memory usage, and faster rendering
speed. Our novel methodology holds potential for adoption
across various 3DGS variants, offering efficiency benefits
in memory and time. Additionally, it will encourage dis-
cussion on strategies to populate Gaussians effectively to
enhance quality.
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[3] Thomas Bird, Johannes Ballé, Saurabh Singh, and Philip A
Chou. 3d scene compression through entropy penalized neu-
ral representation functions. In 2021 Picture Coding Sympo-
sium (PCS), pages 1–5. IEEE, 2021. 2

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2

[5] Chenxi Lola Deng and Enzo Tartaglione. Compressing ex-
plicit voxel grid representations: fast nerfs become also
small. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1236–1245,
2023. 2

[6] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, De-
jia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps.
arXiv preprint arXiv:2311.17245, 2023. 2, 3

[7] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 2, 5

[8] Cameron Gordon, Shin-Fang Chng, Lachlan MacDonald,
and Simon Lucey. On quantizing implicit neural represen-
tations. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 341–350, 2023.
2

[9] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (ToG), 37(6):1–15, 2018. 5

[10] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 2

[11] Seungyeop Kang and Sungjoo Yoo. Ternarynerf: Quantizing
voxel grid-based nerf models. In 2022 IEEE International
Workshop on Rapid System Prototyping (RSP), pages 8–14.
IEEE, 2022. 2

[12] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 1, 2, 5

[13] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics (ToG), 36
(4):1–13, 2017. 5

[14] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko,
and Eunbyung Park. Compact 3d gaussian representation for
radiance field. arXiv preprint arXiv:2311.13681, 2023. 2, 3,
4

[15] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM transactions on graphics
(TOG), 41(4):1–15, 2022. 2, 5

[16] Simon Niedermayr, Josef Stumpfegger, and Rüdiger West-
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