

Abstract

Multiplane Image (MPI) is a volumetric scene

representation method that uses multiple layers of texture
(RGB) and alpha (A) planes. It offers high deployability
due to its compatibility with standard codecs and low
rendering complexity. While existing MPI methods have
shown promising results, they are constrained by either a
limited range of pose span or necessitates transmitting
multiple MPIs. In this paper, we present a novel framework
to generate an efficient single MPI that integrates the
information from multiple views. The key idea is to utilize
the surface opacity estimates (A) to locate and retrieve
occluded RGB pixels from other camera views that share
matching depth, which we call Occlusion Guided
Residuals (OGR). Additionally, we introduce an inter-
layer texture filler, which is a learned RGB texture on
intermediate depth between MPI layers to deal with scenes
with continuous depth with a limited number of MPI layers.
We composite MPI using the aforementioned RGB textures
and refine alpha layers through training with multiview
rendering supervision. Thus, through iterations of training,
we jointly optimize scene opacity (A) and textures (RGB)
leading to an accurate MPI representation. Experiments
on various multiview image and video datasets
demonstrate that the proposed method achieves state-of-
the-art performances with data efficiency. Notably, with
just 16 layers, the proposed method attains performance
on par with other methods that use twice the layer number
or fuse multiple MPIs.

1. Introduction
Volumetric scene representation has been a persistent

area of research interest. Especially with the recent
advancements of technologies in autonomous driving or
virtual reality, there is a growing interest in reconstructing
volumetric images or videos from real-world captures.

Recently, neural scene representation has gained wide
attention with the introduction of NeRF [1]. The NeRF
models the scene as a continuous function of color and
density through a neural network and offers the capability
to simulate view-dependent effects like light reflectance.

However, it faces issues in deployability particularly due
to its limited generalizability to unseen scenes. Each scene
or frame necessitates separate training. Moreover, the
requirement to transmit Multi-Layer Perceptron (MLP)
weights for every frame, coupled with time-consuming
MLP computations during inference poses significant
challenges for practical application. To address this issue,
various works [2]-[8] are being proposed to reduce the
model size and complexity. [6] and [7] accelerate the
training process by directly optimizing on voxels. [2] and
[3] use neural hash grids to use simpler models.

Multiplane Image (MPI) is a layer-based method that
represents the scene with a discrete number of 2D layers. It
stores fronto-parallel planes of a scene at a discretely
sampled range of depths. Due to its high compatibility with
conventional image/video codecs and its low
computational requirements for view rendering, it is by far
the most deployable solution among other volumetric
representations. In [9]-[11] the methods used single view
image to generate MPI representation. Especially, AdaMPI
[11] uses self-attention operation to generate MPI layers
with adaptive depth distances. This adaptive depth
optimizes the allocation of layers per scene and facilitates
efficient layer utilization. However, the method exhibits a
limited range of pose span due to the restricted information
from a single view. In [12]-[14], the authors use two or
more views to generate MPIs that are robust to a larger
pose span. LLFF [14] takes the multiple MPI fusion
approach where it selects and fuses the optimal set of MPIs
for each given pose. While being able to handle a broader
span, its individual MPIs exhibit issues such as holes in
cumulative alpha, making it challenging to use it
independently. Consequently, rendering a view with LLFF
often necessitates sending multiple MPIs, resulting in
higher data transmission requirements. There are also
works that expand beyond the traditional MPI definition of
fronto-parallel RGBA layers. NeX [15] uses view-
dependent coefficients and learned neural basis functions
instead of RGB pixels. MINE [16] combines neural field
with MPI. S-MPI [17] uses adaptively posed planes instead
of fronto-parallel ones. But they tend to increase the data
size or rendering complexity.

In this paper, we overcome the limitations of the existing
MPI methods by generating an efficient single MPI that
integrates information from multiple views. The main

OGRMPI: An Efficient Multiview Integrated Multiplane Image based on

Occlusion Guided Residuals

Dae Yeol Lee Guan-Ming Su Peng Yin
 Dolby Laboratories, Sunnyvale, CA, USA

dvlee@dolby.com guanmingsu@ieee.org pyin@dolby.com

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

794

contributions of the proposed method are as follows:
• We propose a MPI generation framework that can

identify and retrieve occluded RGB pixels from other
views. We denote these retrieved pixels as Occlusion
Guided Residuals (OGR).

• Through iterations of training, the proposed framework
jointly optimizes both scene opacity (A) and textures
(RGB) leading to an accurate MPI representation.

• We introduce an inter-layer texture filler, which is a
learned RGB texture to represent intermediate depth
between MPI layers. It plays a vital role, especially in a
scene with continuous depth.

We showcase the effectiveness of the proposed method,
demonstrating its ability to render high-quality novel views
that are on par with other methods that use twice the layer
number or fuse multiple MPIs.

2. Preliminaries
MPI representation: The MPI can be collectively

expressed as {(𝑪!", 𝑨!")}!#$
%!&' , where three channel RGB

plane of the 𝑖() layer at camera pose 𝑠 is denoted as 𝑪!" and
an alpha plane is denoted as 𝑨!" . The 𝑁* indicates the
number of layers. Throughout the paper, we denote the
closest layer as layer 0 and the furthest as layer 𝑁* − 1.

Novel view synthesis: Each MPI layer (𝑪!+, 𝑨!+) needs to
be warped from the source view 𝑠 to the novel target view
𝑡. This is done through applying a homography warping
which establishes the correspondence between the source
pixel coordinates (𝑥", 𝑦") and the target pixel coordinates
(𝑥(, 𝑦() given as:

[𝑥!, 𝑦!, 1]" = 𝑲!)𝑹 −
𝒕𝒏#

𝑧$!
/ (𝑲𝒕)&'[𝑥(, 𝑦(, 1]", (1)

where 𝑲" and 𝑲(are the intrinsic camera parameters at the
source (𝑠) and target (𝑡) positions, respectively. 𝑹 and 𝒕
are the extrinsic camera parameters describing rotation and
translation between two camera positions. The n is the
normal vector [0,0,1],. The depth distance between the 𝑖()
layer to the reference camera position is 𝑧!". The distance
between two neighboring layers does not need to be fixed
equal interval. They can be adaptive distances based on
different contents to provide optimal novel view rendering
[11]. We can render a novel view 𝑰("→() using warped MPI
layers via:

𝑰(!→() = ∑ 𝑪$
(!→()𝑾$

(!→(),!&'
$-. , (2)

where,
𝑾$

(!→() = 𝑨$
(!→() ∙ ∏ :1 − 𝑨/

(!→();$&'
/-. . (3)

The 𝑾!
("→() represents the 𝑖() layer’s visibility weight.

Depth and Disparity: Depth information can take
multiple forms of representation. It can be presented as the
‘disparity’ which is the horizontal shift between left and
right images of a stereo pair. Representative depth
databases [18]-[20] provide stereo image pairs along with

their disparity maps, typically normalized between 0 and 1,
for use in various computer vision tasks. Our framework is
also based on this disparity representation. The depth at
which each MPI layer is placed is specified using a
disparity vector 𝒅" = {𝑑!"}!#$

%!&' . The depth maps of
multiple views are provided in the form of disparity maps.

When applying homography warping (1) on MPIs, we
need to convert the MPI’s disparity vector (𝒅") to depth
vector (𝒛") which requires the scene’s depth range
([𝑧0123 , 𝑧423]). This range is usually provided alongside the
camera parameters, either within the dataset or predicted
using methods such as COLMAP [21],[22]. We first
convert the depth ranges to a corresponding disparity
representation as, 𝑑0123 = 1/𝑧0123 and 𝑑423 = 1/𝑧423 .
Then, we apply min-max normalization on the disparity
vector (𝒅") to obtain the rescaled disparity vector (𝒅?").
Denote the 𝑖-th element of the 𝒅" as 𝑑!" and 𝑖-th element of
the 𝒅?" as 𝑑@!". Then,

𝑑?$! =)
𝑑$! −min(𝒅!)

max(𝒅!) −min(𝒅!)/ F𝑑0123 − 𝑑423G + 𝑑423 .
(4)

By taking reciprocal

𝑧$! = 1/𝑑?$!, (5)
we obtain the depth value for each 𝑖-th MPI layer which
covers the depth range [𝑧0123 , 𝑧423] of the scene.

3. Method
In this section, we start with the introduction to

Occlusion Guided Residuals (OGR) which is a key
component of our method. Then, we present the overall
framework and the training procedures.

3.1. Occlusion Guided Residual
One of the key challenges in MPI representation is to

reconstruct RGB textures that are occluded by the objects
from previous layers. We solve this by collecting relevant
textures from other views, which we call Occlusion Guided
Residuals (OGR). Here, the views include the source view
𝑠 which is the reference camera position that we construct
MPI representation on. The rest of the views are referred to
as target views 𝑡5	, 𝑣 ∈ [0, 𝑁5 − 2], where 𝑁5 is the total
number of views available. The upper bound is set as 𝑁5 −
2 since we exclude the source view from here. For each
view, we assume to have a corresponding image, a
disparity map, and a camera pose.

Occlusion Map Construction: The first step of
generating OGR is to construct an Occlusion Map (𝑶"),
which indicates occluded regions within each layer due to
the opacity of preceding layers. Let 𝑨" be the initial alpha
layers estimates of the source view. A vector indicating the
disparity at which each layer is placed at is also given as
𝒅" = {𝑑!"}!#$

%!&'. The 𝑶" is defined as:
𝑶$! = (1 − 𝑻$!)	𝑨$!	, (6)

795

where,

𝑻$! =PF1− 𝑨/!G
$&'

/-.

. (7)

This 𝑻!" is the transmittance of a ray up to the 𝑖-th layer.
Thus, the term (1 − 𝑻!") in equation (6) represents the ray
obstruction up to the 𝑖-th layer. The 𝑶" is constructed by
identifying regions with both high ray obstructions (1 −
𝑻!") and high alpha (𝑨!") values, which indicates opaque
surfaces in each layer that were not revealed due to the ray
obstruction from previous layers. Note that 𝑶" is the same
dimension as 𝑨" given as 𝑁* × 1 × ℎ × 𝑤, where ℎ and 𝑤
refer to vertical and horizontal resolutions of the source
view (𝑰"), respectively.

Fig. 1 presents a visualization of the rendered occlusion
map (𝑶") on different camera poses. When rendering 𝑶" at
its source camera pose, as in Fig. 1(a), we observe a sparse
map since occluded regions are not expected to be revealed
much from the source camera perspective. However, when
we warp to a new camera pose, as shown in Fig. 1(b), we
begin to observe the revealed occluded regions, which is
information we can use to extract relevant pixels from.

OGR Extraction: Fig. 2 illustrates the initial steps of
the OGR extraction process. The occlusion map (𝑶") is
first warped to other target views following the procedures
outlined in (1), (4), and (5). This warped occlusion map
𝑶("→("), hold information on where the occluded region of
each layer is placed on the target views. We form initial
OGR (𝑰𝑶𝑮𝑹

(") by first pulling every pixel from target image
(𝑰(") on to regions specified by 𝑶("→("). However, as
shown in Fig. 2, 𝑰𝑶𝑮𝑹

(" includes some elements that do not
match the layer’s disparity. For example, the presence of a
“guitarman” in later background layers should be removed.

Fig. 3 outlines the process of generating masks for the
disparity-based pixel removal process. We first generate
disparity fidelity weights (𝑾𝑫𝑭

(") using the disparity map
of the target view (𝑫(") and the disparity vector of the
warped MPIs (𝒅("→(")). The disparity at which each
warped MPI plane is placed at is derived as follows:

𝑑$
(!→(") = 𝑑$! cosF𝜃5G cosF𝜃6G . (8)

where 𝜃; and 𝜃< refer to the yaw and pitch angles from the

relative rotation between camera 𝑠 and 𝑡5.
The 𝑖-th layer plane of 𝑾𝑫𝑭

(" is formulated as:

𝑾𝑫𝑭,$
%! = 1 −

%𝑫%! − 𝑑$
('→%!)%

max
*∈[-,./0],2∈[-,3/0],$∈[-,4"/0]

+%𝑫%!(𝑥, 𝑦) − 𝑑$
('→%!)%1

. (9)

For each layer, eq. (9) computes the normalized absolute
difference between the target view’s disparity map (𝑫(")
and the current layer’s disparity (𝑑$

('→%!)) and subtracts this
term from one. As depicted in Fig. 3(a), each layer will
yield a plane (𝑾𝑫𝑭,!

(") where the regions with higher value
(closer to one) indicate the region with higher matching
disparity to the current 𝑖-th layer's disparity. We further
apply soft thresholding on 𝑾𝑫𝑭

(" using exponential
weighting function to highlight only the areas with a high
degree of disparity fidelity. The soft masking procedure is
formulated as

𝑴𝑫𝑭,$
(" =

𝑒𝑥𝑝F𝑎$	𝑾𝑫𝑭,$
(" G

𝑒𝑥𝑝	(𝑎$)
, (10)

where we apply layer-adaptive parameter 𝑎! , 𝑖 ∈ [0, 𝑁*] .
This adaptive thresholding adjusts sensitivity across
different layers. Since the errors in the front layers
significantly impact the rendered scene, we assign a higher
value of 𝑎! to strictly threshold OGRs and minimize the
transfer of inaccurate residuals. However, enforcing high
𝑎! value on deeper layers restricts the overall OGR
transfer, reducing disocclusion capability. Thus, we set 𝑎!
adaptively to take larger values on earlier layers and
gradually decrease on later layers as follows:

Figure 1: Visualization of the rendered occlusion map at various
camera poses.

!!!"!#
!$"!%
!&!'!(

!!!"!#
!$"!%
!&!'!(

(a) Source view

Camera poses

(b) Other target view

Camera poses

Figure 2: Initial OGR extraction procedure.

Figure 3: Disparity fidelity mask generation procedure

Alpha (!!)Occlusion Map
ConstructionWarp

Camera poses
(#$! → #$"!)

Disparity vector ('!)

Target image (("!)

×

Initial OGR (($%&"!)

76543210

15141312111098

!: Layer index

Occlusion Map ()!)

Warped Occlusion Map
()(!→"!))

Disparity Fidelity
Computation

Target Disparity map (!!!)

(a) Disparity Fidelity Weights (#"#
!!)

Soft mask

(c) Disparity Fidelity Mask ($"#
!!)

Warp

Camera poses
(&'!! → &'$)

Warped	mask	
($"#

(!!→$))

Later layer

Earlier layer

!"#
$!

"
"#$!

(b) Soft Mask Function (#"#
!! → $"#

!!)

Disparity vector (3($→!!))

796

𝑎$ = 𝑎:2; −
𝑖

(𝑁< − 1)
(𝑎:2; − 𝑎:$0). (11)

For 16 layer representation, we set 𝑎>2? = 20 and 𝑎>!0 =
5. Fig. 3(c) visualizes the resulting disparity fidelity mask
(𝑴𝑫𝑭

(") with 16 layers. We see that only the regions with a
high degree of disparity fidelity are indicated bright and the
rest of the regions are indicated dark.

The derived 𝑴𝑫𝑭
(" is then multiplied to the initial 𝑰𝑶𝑮𝑹

(" ,
allowing only the pixels with matching disparities in each
layer to remain while removing the rest. The processed
final OGR (𝑰𝑶𝑮𝑹

(") is then warped back to the source camera
pose 𝑠 which is denoted as 𝑰𝑶𝑮𝑹

(("→"). We also warp back the
𝑴𝑫𝑭
(" to the source camera 𝑠 which we denote as 𝑴𝑫𝑭

(("→").
This warped back disparity fidelity mask is used for
various purposes including OGR combination and inter-
layer texture filler (𝑰𝒇) masking.

Disparity Fidelity-based Combination: The collected
𝑰𝑶𝑮𝑹
(("→") from multiple target views (𝑣 ∈ [0,𝑁= − 2]) are

combined using disparity fidelity as the criteria. More
specifically, for each layer’s pixel location, we compare the
𝑴𝑫𝑭
(("→") values across all views and choose the view with

the highest value. Again, the higher 𝑴𝑫𝑭
(("→") value

indicates closer proximity to the corresponding MPI
layer’s disparity. The 𝑖 -th layer of the combined OGR
(𝑰O𝑶𝑮𝑹,!) is expressed as follows:

�̂�𝑶𝑮𝑹,$(𝑥, 𝑦) = 𝑰𝑶𝑮𝑹,$
((#(%,',()→!)(𝑥, 𝑦) (12)

where
𝑄(𝑥, 𝑦, 𝑖) = argmax

=
(𝑴7 𝑫𝑭,$

((5→!)(𝑥, 𝑦)) , 𝑣 ∈ [0, 𝑁= − 2], (13)

In (13), the 𝑄(⋅) function serves as a target view index
selector where, for each pixel position (𝑥, 𝑦) and layer
index (𝑖), it compares the disparity fidelity values from all
available view 𝑣 ∈ [0, 𝑁5 − 2]. Then, it outputs the view
index that gives the maximum value. Based on these
selected view indices for each (𝑥, 𝑦, 𝑖), we construct
combined OGR (𝑰O𝑶𝑮𝑹) by extracting pixel values from the
respective view’s 𝑰𝑶𝑮𝑹

(("→").
One thing to note from eq. (13) is that we used lowpass

filtered disparity fidelity mask (𝑴7 𝑫𝑭
((5→!)) computed as

𝑴_ 𝑫𝑭,$
(("→!)(𝑥, 𝑦) = ` ` 𝐺(𝑗, 𝑘) ⋅ 𝑴𝑫𝑭,$

(("→!)(𝑥 + 𝑗, 𝑦 + 𝑘)
A

B-&A

C

/-&C

, (14)

where

𝐺(𝑗, 𝑘) =
1

2𝜋𝜎D 𝑒𝑥 𝑝)−
𝑗D + 𝑘D

2𝜎D /.		 (15)

We set 𝜎 = 3 in (15) and 𝐿 = 6, 𝑀 = 6 in (14) to have
Gaussian kernel window sampled out to two standard
deviations for both horizontal and vertical directions.
 As 𝑴𝑫𝑭

(("→") is reliant on the disparity map (𝑫(") from eq.
(9), local noise or inaccuracies on the provided 𝑫(" may
significantly affect the quality of the combined OGR,

leading to scatter artifacts where objects appear scattered
and deformed. Thus, we applied the low pass operation in
(14) to minimize local fluctuations in 𝑴𝑫𝑭

(("→"). Fig. 4 (a)
and (b) each visualizes view selection map (𝑄) before and
after applying low pass operation on 𝑴𝑫𝑭

(("→") on content
with noisy disparity map. Fig. 4 (a) shows severe local
variations of view selections. If this view selection is used
to construct 𝑰O𝑶𝑮𝑹 as using (12), it leads to scatter artifacts
as depicted in Fig. 5(a) and (c). After the low pass
operation, the OGRs are pasted in larger, more coherent
clusters coming from the same view as shown in Fig. 4(b)
which alleviated the artifacts as shown in Fig. 5 (b) and (d).
Note that we are not applying the low pass operation on the
OGR pixels but on the combination criteria 𝑴𝑫𝑭

(("→") in
(13). Thus, there won’t be any blurs on OGR pixels.

Alongside the 𝑰O𝑶𝑮𝑹 generated from equation (12), we
also generate combined disparity fidelity mask (𝑴W 𝑫𝑭).
Similar to how we combined the OGRs using equation
(12), we can form 𝑴W 𝑫𝑭 as follows:

𝑴g 𝑫𝑭,$(𝑥, 𝑦) = 𝑴𝑫𝑭,$
((*(%,',()→!)(𝑥, 𝑦). (16)

The resulting 𝑴W 𝑫𝑭 is a volume of dimension 𝑁* × 1 × ℎ ×
𝑤 that contains information on the extent to which 𝑰O𝑶𝑮𝑹
maintain disparity accuracy for each layer and will be used
in the following composite process of the MPI RGB layers.

3.2. Inter-layer Texture Filler
The conventional composite formulation [9], [11], [12]

for constructing MPI RGB layers are as follows:
𝑪$! = 𝑻$!	𝑰! + (1 − 𝑻$!)	𝑰𝒃,$ (17)

Figure 4: Visualization of the view selection map for combined
OGR (a) before and (b) after applying low pass on disparity
fidelity mask.

Figure 5: Visualization of the combined OGR: (a),(c) before
applying low pass operation and (b),(d) after applying low pass
on disparity fidelity mask. Red circles indicate scatter artifact
regions.

view1

view2

view3

view6

view8

view11

view12

view13

View positions

(a) Before low pass (b) After low pass

View selection map (Q)

Barn (layer 15) Breakfast (layer 14)

(a) Before low pass (b) After low pass (c) Before low pass (d) After low pass

Combined OGR (!"!"#)

797

where 𝑰𝒃 refers to RGB textures that are occluded in the
reference view. 𝑻!" is a composite weight primarily
influenced by 𝑨" as defined in equation (7). A typical
approach of constructing 𝑰𝒃 is to train an inpainting
network. However, the inpainting network has quality
limitations and may introduce artifacts related to temporal
inconsistency when generating MPIs for multiple frames.

In our case, we have 𝑰O𝑶𝑮𝑹 which are RGB textures
collected from multiple views. We additionally introduce
inter-layer texture filler (𝑰𝒇) representing the learned RGB
textures capable of filling in surfaces that are not covered
by source view or OGR pixels. Consequently, we
formulate the RGB composition as follows:
𝑪$! = 𝑻$!	𝑰! + (1 − 𝑻$!)	h𝑴g 𝑫𝑭,$	�̂�𝑶𝑮𝑹,$ 	+ F1 −𝑴g𝑫𝑭,$G𝑰𝒇,$i. (18)

Here, we formulate the occluded textures 𝑰𝒃, from (17)
as the convex combination of 𝑰O𝑶𝑮𝑹 and 𝑰𝒇 , with greater
weights assigned to 𝑰O𝑶𝑮𝑹 pixels in regions characterized by
high 𝑴W 𝑫𝑭 values. This is rational as these regions closely
match disparities of the current layer, making them the
most suitable candidates for texture placement in those
regions. The regions not covered by either 𝑰O𝑶𝑮𝑹 or 𝑰" are
presented as (1 − 𝑻!")X1 −𝑴W 𝑫𝑭,!Y which serves as a mask
for 𝑰𝒇.

Fig. 6 shows the architectures of the network
components for generating 𝑰𝒇 . We first input the source
view’s image (𝑰") and disparity information (𝑫") to a
Feature Encoder in Fig. 6(a) to map the RGBD information
into multi-resolution features (𝒇"). We use widely adopted
U-net architecture [11], [12], [16]. Then, these features are
fed into the Inter-layer Texture Filler Generator module in

Fig. 6(b) which is a decoder component of the U-net. In the
initial feature processing stage, each resolution component
of the feature maps (𝒇") are replicated 𝑁* times, effectively
expanding the final representation to 𝑁* layers. The
module receives weight supervision from gradients that
propagate the aforementioned mask, adapting 𝑰𝒇 to the
regions with relevant textures accordingly.

Fig. 7 demonstrates the effectiveness of the current MPI
composition in eq. (18). Fig. 7(a) presents a disparity map
of content with a continuous disparity along the side wall.
Such continuous disparity poses challenges to MPI
representation with a discrete set of disparities. Fig. 7(b)
shows an example of a rendered novel view using MPI
generated without inter-layer texture filler (𝑰𝒇). More
specifically, the MPI is generated using (17) where 𝑰𝒃 =
𝑰O𝑶𝑮𝑹 . In the figure, we observe inter-layer artifacts. In
contrast, Fig. 7(c) demonstrates how 𝑰𝒇 effectively learned
to fill these intermediate disparity textures.

3.3. Overall Framework
In this section, we present the overall framework of our

multi-view integrated MPI. Fig. 8 presents a high-level
flow chart of our proposed method. Indicated in grey are
modules with trainable network parameters. The
framework here represents the flowchart at the inference
stage and the procedural flow for network training will be
presented in the following section. The inputs to the
framework are multi-view images, corresponding disparity
maps, and camera poses.

As our objective is to generate data efficient MPI, we
draw inspiration from AdaMPI [11] and utilize their plane
depth adjustment architecture to output a disparity vector
optimized for the scene (𝒅"). The Disparity Information
Processor module receives the source view’s image (𝑰")
and disparity map (𝑫") concatenated with initial disparity
values 𝒅𝟎(𝑗) , 𝑗 ∈ [0, 𝑁* − 1] , initially set as uniform
disparity distance. Then, the module processes the inputs
through ResNet-based context encoder followed by a self-
attention operation to exchange feature-level geometry and
appearance information among different layers. The
module outputs the disparity vector (𝒅"), of dimension
𝑁* × 1, which indicates the disparity of each MPI layer and
an Alpha Shape Mask (𝑴𝑨), of dimension 𝑁* × 1 × ℎ × 𝑤,

Figure 6: Network architecture of (a) Feature Encoder (b) Inter-
layer Texture Filler Generator.

Figure 7: Effect of Inter-layer texture filler (𝑰𝒇). (a) Content with
a continuous disparity on the side wall, indicated in red circle. (b)
Rendered novel view (b) without 𝑰𝒇 and (c) with 𝑰𝒇.

512×(ℎ×#)/32

(a) Feature Encoder

4×
(ℎ
×#

)

64×(ℎ×#)/2

64×(ℎ×#)/4

128×(ℎ×#)/8
256×(ℎ×#)/16

Image (!!)
Disparity Map (#")

4

64

128

256
512

max pool 2x2

64 conv 3x3, ReLU
up-conv 2x2

Feature
processing

#!×(512)

#!×(192)#!×(256)

#!×(192)

#!×(128+96)

#!×(96)

#!×(64+48)

#!×(48)

#!×(64+24)

#!×(12)

#!×(3)

#!×(3)
sigmoid

(b) Inter-layer Texture Filler Generator

Inter-layer texture filler (!%)

Feature
maps
($")

$!×3×ℎ×#

(b) Without inter-layer texture filler(!!)(a) Continuous disparity
along the side wall

(c) With inter-layer texture filler(!!)

Figure 8: Overall flowchart of the proposed method. Zoom in for
better clarity.

Image (!!)
Disparity Map (#")

Camera Pose ($")

Feature
Encoder

Inter-layer Texture
Filler Generator

Alpha
Generator

Disparity
Information
Processor

Images (!#!)
Disparity Maps (##!)

Camera Poses ($#!)

Occlusion Guided
Residual (OGR)

Generator

Alpha Shape Mask (%$)

Disparity vector (&")

Source View (')

Target Views ((%)
Camera Pose

Adjust Net
Camera Poses ($)

Adjusted
Camera Poses ($))

MPI
compositor

Source Alpha (*")

Inter-layer texture filler (!&)

Output MPI ((,", *"))

Disparity vector (&")

Feature maps (.")

Combined	OGR	(!;'())
Combined	DFM	(%? *+)

798

that contains approximate Alpha Shape on each MPI layer
derived from 𝑫" and 𝒅".

 The Feature Encoder module, in Fig. 6(a), receives the
source view’s image (𝑰") and disparity map (𝑫") as inputs.
It outputs feature maps (𝒇") that capture hierarchical
features of the given RGBD information. The 𝒇" is then
received by two types of decoders. One is the Inter-layer
Texture Filler Generator covered in Sec. 3.2 and Fig. 6(b).

Another is the Alpha Generator which takes the feature
maps (𝒇") from the Feature Encoder and the Alpha Shape
Mask (𝑴𝑨) from the Disparity Information Processor to
outputs alpha layers (𝑨") of dimension 𝑁* × 1 × ℎ × 𝑤 .
This 𝑨" is used for deriving occlusion maps and OGRs
from Sec. 3.1. It is iteratively refined during the training
procedure to jointly optimize the RGB textures and the
surface geometry representation. It takes U-net decoder
structure similar to Inter-layer Texture Filler Generator.
Key differences are that the output dimension is adjusted
to one-channel alpha layers and that we now take auxiliary
information 𝑴𝑨 which is concatenated to the 𝒇".

 The OGR Generator module, covered in Sec. 3.1,
generates warped occlusion maps using 𝑨" and 𝒅" and
collects OGR using target views’ images, disparity maps,
and camera poses. The module combines the OGRs from
multiple views to output combined OGR (𝑰O𝑶𝑮𝑹) of
dimension 𝑁* × 3 × ℎ × 𝑤 . The module also collects
Disparity Fidelity Mask (DFM) from multiple views to
form combined DFM (𝑴W 𝑫𝑭) of dimension 𝑁* × 1 × ℎ × 𝑤
that contains information on the extent to which these
combined OGR pixels maintain disparity accuracy for each
layer.

The camera poses received by the OGR Generator are
adjusted ones from the Camera Pose Adjust Net module.
Similar approaches have been taken, mostly from NeRF-
based works [24], [25], where they take initial estimates of
camera poses obtained from structure from motion (SfM)
methods and jointly optimize the neural scene and camera
pose. Here, we take the COLMAP [21], [22] predictions as
the initial estimates. For rotation matrices (𝑹), we convert
them to quaternions (𝒒) for a simpler network and stability.
The 𝒒 and 𝒕 each go through three layers of Fully
Connected layers (FC) with skip connection to refine the
initial pose estimates. The adjusted quaternions (𝒒]) are
converted back to rotation matrices (𝑹?) and combined with
the adjusted translation vectors (�̂�) to form the adjusted
camera pose (𝒑]).

The MPI compositor module forms the RGB layers (𝑪")
of MPI using eq. (18) and concatenate then with alpha
layers (𝑨") to form MPI {(𝑪!", 𝑨!")}!#$

%!&'. The final outputs
of the framework are the MPI {(𝑪!", 𝑨!")}!#$

%!&' and disparity
vector {𝑑!"}!#$

%! which are all the data that is required to be
sent as a bitstream to the edge device side for volumetric
representation.

3.4. Training Networks
On every iteration of training, we select a subset of target

views and form an MPI {(𝑪!", 𝑨!")}!#$
%!&' and disparity vector

{𝑑!"}!#$
%! as in Fig. 8. Then, we warp and render the MPIs to

other target views to supervise its volumetric
representation capability. The loss function used for
training the weights of the network modules is as follows:

𝐿(G(2< = 𝐿H$!6 + 𝐿310H13 + 𝐿GII . (19)
 Disparity Loss (𝐿D!"<): This loss is a disparity-based

constraint on the alpha shape (𝑴𝑨) and disparity vector
(𝒅𝒔) used in [11] which is formulated as

𝐿H$!623$(5 = 𝜆G3H13𝐿G3H13 + 𝜆:2!B𝐿:2!B , (20)
where

𝐿G3H13 =
1

𝑁< − 1
` 𝑚𝑎𝑥	(0, 𝑑$J'! − 𝑑$!)
,!&D

$-.

, (21)

𝐿:2!B =
1

ℎ𝑤𝑁<
` ``𝑴𝑨,$(𝑥, 𝑦)

L&'

;-.

⋅ |𝑫!(𝑥, 𝑦) − 𝑑$!|
M&'

5-.

,!&'

$-.

. (22)

Here, we set 𝜆F3D13 = 1 and 𝜆>2"G = 10 . 𝐿F3D13 is to
penalize any switched orders among 𝒅𝒔, ensuring that 𝒅𝒔
is guided to maintain a sorted order. The 𝐿>2"G provides
disparity-based constraints on the alpha shape mask (𝑴𝑨).
The 𝑴𝑨 is a volume of dimension 𝑁* × 1 × ℎ × 𝑤, where
each layer contains the approximate alpha shape at the
current disparity.

Render Fidelity Loss (𝐿310D13): The objective of
𝐿310D13 is to provide supervision to MPIs, ensuring that the
warped and rendered target view (𝑰("→(")) closely aligns
with the ground truth target view (𝑰("). For evaluating the
fidelity between the two images, we employ L1 loss (𝐿'),
SSIM [26] loss (𝐿""!>), and LPIPS [27] loss (𝐿*<!<") as
follows:

𝐿310H13 = 𝜆'𝐿' + 𝜆!!$:𝐿!!$: + 𝜆<6$6!𝐿<6$6!. (23)
Here, we set 𝜆' = 0.5, 𝜆""!> = 0.7, and 𝜆*<!<" = 1.

Occlusion Loss (𝐿FHH): While multi-view-based
training facilitates high-quality rendering on novel views,
it can inadvertently introduce opacities optimized for
rendering on expansive poses, potentially compromising
the source view reconstruction or rendering on smaller
poses. Thus, we add constraint 𝐿FHH to minimize
unnecessary ray obstructions. 𝐿FHH is formulated as:

𝐿GII =
1
ℎ𝑤``𝑶r𝒔(𝑥, 𝑦)

M&'

5-.

L&'

;-.

, (24)

where

𝑶r$𝒔 = ` 𝑶$!𝑾$
!

,!&'

$-.

. (25)

In (25), 𝑶!" follows the definition in (6), and 𝑾!
" is

obtained from (3) with the target camera pose set as the
source (𝑡 = 𝑠) . The 𝑶b𝒔 measures the amount of ray
obstruction present at the source view. Ideally, the

799

occluded regions are not revealed from the source view.
Therefore, through having 𝐿FHH , we sparsify 𝑶b𝒔 and
provide supervision for 𝑨" to reduce unnecessary ray
obstructions.

4. Experimental Results

4.1. Experimental Setup
Dataset: For evaluation, we used Multiview video

dataset and LLFF dataset [14]. The Multiview video
dataset consists of two contents ‘Barn’ and ‘Breakfast’
from MPEG immersive video (MIV) common test
conditions [28] and a ‘Guitarman’ content. All contents
provide 15 views with 30 frames. LLFF dataset is an image
dataset providing 20~30 views per content. We use
‘Flower’, ‘Horns’, and ‘Orchids’ contents for evaluation.
MIV content provides ground truth disparity maps. For all
other contents, we used maps generated from Metashape
[29].

Compared methods: The AdaMPI [11] serves as a
baseline method that uses adaptive disparity distances
optimized for the scene. Through comparison with
AdaMPI, we demonstrate the disocclusion capability of
our proposed method. We also compare with LLFF [14] for
comparisons on methods that leverage multiple-view
information differently. The proposed method integrates
multi-view information into a single MPI, whereas LLFF
selects and fuses the five closest MPIs based on the
provided camera pose. AdaMPI and LLFF use the pre-
trained model on large datasets. The proposed OGRMPI is
a per-scene modeling method. Thus, it trains on the scene
to learn accurate scene geometry and textures. When
training on videos, we found that a single set of weights is
sufficient to generate MPIs for multiple consecutive frames
without a scene change, as demonstrated through the
results on 30 frame videos in our study. There is no need to
train separate weights for each frame. For every iteration,
we train on random four target views across randomly
chosen frames. We train our method for 1000 iterations
with SGD optimizer with an initial learning rate is
5 × 10&I , with momentum set as 0.9. AdaMPI and

OGRMPI both require disparity maps as inputs, and we
used the same ones for both methods.

4.2. Evaluation Results
RGBA representation: Fig. 9 displays a selection of

layers from the 16-layer MPI generated by different
methods. Fig. 9(a) clearly reveals that a single LLFF MPI
exhibits a lot of alpha holes, indicating the necessity for
multiple MPI fusion to accurately represent a scene. Fig.
9(b) reveals AdaMPI’s limitation with a single view
approach, resulting in incorrect opaque connections from
foreground objects to the background wall, as delineated
by red circles. Such inaccurate opacities may impair the
clarity of the textures behind them. Fig. 9(c) presents the
layers of the proposed method. Our method recognizes the
presence of textures on occluded regions through OGR and
removes unnecessary opacities from alpha layers,
accordingly. Thus, it accurately exposes background
textures when viewed from other camera poses leading to
high-quality novel view renders.

Source view reconstruction: While MPI representation
can facilitate novel view rendering, at its base
functionality, it should also be able to faithfully restore the
source view. Thus, we evaluated the source view
reconstruction performances of each MPI method using
PSNR, SSIM, and LPIPS. Table 1 presents results
averaged over 30 frames of the video contents, where the
proposed method achieved the best performances among
all methods.

View interpolation: We evaluate the view interpolation
performances in various aspects. The first is on the
intermediate positions between the available camera views.
We take the eight adjacent neighbor camera positions with
respect to the source camera (𝑠) and denote them as 𝑡$~𝑡J.
For the intermediate positions, we take the midpoint
between the source camera position 𝑠 and each of 𝑡5, 𝑣 ∈
[0,7] and denote them as 𝑛5 . The derivation of
intermediate position can also involve rotation
interpolation for non-planar camera configuration, which

Figure 9: Visualization of MPI layers from different methods.

(b) AdaMPI(a) LLFF (c) OGRMPI

! = 15! = 13
! = 11

! = 9

! = 15! = 13
! = 11

! = 9

! = 15! = 13
! = 11

! = 9
M

PI
 la

ye
rs

Re
nd

er
ed

 v
ie

w
Table 1: Multiview Video dataset - Source view reconstruction
result

 #
layers

 #
fused

Data
size

Guitarman Breakfast Barn
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯

LLFF
16 1 × 1 22.31 0.836 0.169 27.97 0.927 0.047 28.58 0.953 0.039
16 5 × 5 22.48 0.837 0.169 28.07 0.925 0.048 28.48 0.952 0.040
32 5 × 10 22.55 0.816 0.214 32.52 0.964 0.024 29.94 0.965 0.029

AdaMPI 16 1 × 1 43.50 0.997 0.004 40.10 0.995 0.005 38.04 0.995 0.007
32 1 × 2 43.81 0.996 0.003 41.30 0.996 0.004 38.28 0.995 0.007

OGRMPI 16 1 - 46.58 0.998 0.001 46.86 0.999 0.001 44.40 0.999 0.001

Table 2: Multiview Video dataset - View interpolation results on
intermediate poses.

 # layers # fused Data size FID¯
Guitarman Breakfast Barn

LLFF
16 1 × 1 183.51 72.01 72.51
16 5 × 5 121.90 63.02 70.34
32 5 × 10 102.07 54.76 63.17

AdaMPI 16 1 × 1 62.55 69.20 67.70
32 1 × 2 61.89 63.43 66.69

OGRMPI 16 1 - 58.27 61.02 62.14

800

uses Spherical Linear Interpolation (SLERP) [30] in
quaternion space. As we do not have associated ground
truth images for these intermediate views, we evaluate the
rendered quality using Fréchet Inception Distance (FID)
[31], which is a representative Non-Reference (NR) model
that compares the distributions of a real and generated
image sets. In our experiment, we use nine ground-truth
camera views (𝑡$~𝑡J and 𝑠) for the ‘real’ distribution and
eight views (𝑛$~𝑛J) for the ‘generated’ distribution. Since
we have 30 frames, this translates into 270 real images and
240 generated images per content. Table 2 shows the FID
scores on compared methods. Overall, the proposed
method showed competitive or better performances
compared to methods that use higher data size.
Additionally, Fig. 10 presents the proposed method’s
ability to produce sharp images without occlusion artifacts.

We also evaluated the novel view rendering
performance on a larger pose span, extending to other
camera poses. Following [1] we hold out 1/8 of the camera
views as a test set and evaluate the reconstruction
performances on it. For LLFF, we ensure that these test
views are not included as the fusion candidate. For
OGRMPI, we omit the test views from the training
procedure to prevent the model from extracting OGR
pixels or deducing surface geometry from these views.
Tables 3 and 4 present the view interpolation results for the
Multiview Video and LLFF datasets, respectively. When
compared to methods using the same data size, OGRMPI
yielded the best results on all metrics. The LLFF fusion
approach, which employs a larger data size, achieved
higher PSNR and SSIM results possibly due to having
access to multiple nearby MPIs. However, in LPIPS
evaluation, OGRMPI outperformed all other methods
across all contents, suggesting superior perceptual quality.
Fig. 11 shows the rendered results on other camera views.
The perceptual evaluations further confirm that our method
produces sharp images with fewer artifacts.

5. Conclusion
In this paper, we proposed a novel framework to

generate an efficient MPI representation that integrates
information from multiple views. We showed how
occlusion guided residuals can be used to jointly optimize
both scene opacity (A) and textures (RGB), leading to an
accurate MPI representation. Experimental results show
that the proposed MPI excels in terms of source view
fidelity and view interpolation capabilities. Furthermore, it
demonstrates performance comparable to that of multiple
MPI fusion methods with much higher data size,
showcasing its data-efficient volumetric representation
capability. Due to its high effectiveness and deployability,
we envision the proposed method to be employed across a
wide range of 3D applications.

Acknowledgements
We would like to express our gratitude to Vijay Kamarshi
for his insightful discussions and assistance throughout the
research.

Figure 10: Visualization of views rendered at intermediate poses.

Ba
rn

(e) OGR_16ly_1MPI(d) ADA_16ly_1MPI(c) LLFF_32ly_5MPI(b) LLFF_16ly_5MPI(a) LLFF_16ly_1MPI

G
ui
ta
rm
an

Br
ea
kf
as
t

Table 3: Multiview Video dataset - Results on other camera poses.
 #

layers
 #

fused
Data
size

Guitarman Breakfast Barn
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯

LLFF
16 1 × 1 20.57 0.653 0.262 23.53 0.800 0.113 22.50 0.838 0.131
16 5 × 5 21.43 0.678 0.179 26.11 0.846 0.131 24.91 0.885 0.130
32 5 × 10 21.62 0.683 0.179 28.63 0.904 0.104 26.29 0.920 0.111

AdaMPI 16 1 × 1 19.90 0.638 0.141 23.07 0.791 0.090 21.60 0.819 0.121
32 1 × 2 20.10 0.665 0.129 24.11 0.805 0.085 20.82 0.799 0.123

OGRMPI 16 1 - 21.20 0.675 0.094 24.14 0.819 0.070 23.16 0.859 0.084

Table 4: LLFF dataset - Results on other camera poses.

 #
layers

 #
fused

Data
size

Flower Horns Orchids
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯

LLFF 16 1 × 1 25.29 0.925 0.087 19.71 0.720 0.181 16.70 0.617 0.234
16 5 × 5 28.71 0.954 0.074 20.99 0.753 0.168 18.66 0.708 0.229

AdaMPI 16 1 × 1 18.58 0.776 0.150 13.35 0.452 0.437 12.58 0.393 0.316
32 1 × 2 24.32 0.905 0.085 13.43 0.461 0.440 12.83 0.413 0.300

OGRMPI 16 1 - 26.84 0.942 0.057 20.27 0.739 0.149 16.83 0.648 0.153

Figure 11: Visualization of views rendered at other camera poses.

H
or
ns

(e) Ground Truth(d) OGR_16ly_1MPI(c) ADA_16ly_1MPI(b) LLFF_16ly_5MPI(a) LLFF_16ly_1MPI

Fl
ow
er

O
rc
hi
ds

801

References
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.

Ramamoorthi, and R. Ng, "Nerf: Representing scenes as
neural radiance fields for view synthesis," Commun. ACM,
vol. 65, no. 1, pp. 99–106, 2021.

[2] T. Müller, A. Evans, C. Schied, and A. Keller, "Instant
neural graphics primitives with a multiresolution hash
encoding," ACM Trans. Graph., vol. 41, no. 4, pp. 1-15,
2022.

[3] R. Li, M. Tancik, and A. Kanazawa, "Nerfacc: A general
nerf acceleration toolbox," arXiv preprint arXiv:2210.04847,
2022.

[4] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, "Tensorf:
Tensorial radiance fields," in Proc. Eur. Conf. Comput. Vis.,
Springer Nature Switzerland, pp. 333–350, Oct. 2022.

[5] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
"Plenoctrees for real-time rendering of neural radiance
fields," in Proc. IEEE/CVF. Int. Conf. Comput. Vis., pp.
5752–5761, 2021.

[6] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, "Plenoxels: Radiance fields without neural
networks," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pp. 5501–5510, 2022.

[7] C. Sun, M. Sun, and H. T. Chen, "Direct voxel grid
optimization: Super-fast convergence for radiance fields
reconstruction," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 5459–5469, 2022.

[8] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B.
Mildenhall, and J. T. Barron, "Nerv: Neural reflectance and
visibility fields for relighting and view synthesis," in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 7495–
7504, 2021.

[9] R. Tucker and N. Snavely, "Single-view view synthesis with
multiplane images," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 551-560, 2020.

[10] Q. Li and N. K. Kalantari, "Synthesizing light field from a
single image with variable mpi and two network fusion,"
ACM Trans. Graph., vol. 39, no. 6, Article 229, 2020.

[11] Y. Han, R. Wang, and J. Yang, "Single-view view synthesis
in the wild with learned adaptive multiplane images," in
ACM SIGGRAPH Conf. Proc., pp. 1-8, 2022.

[12] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely,
"Stereo magnification: Learning view synthesis using
multiplane images," ACM Trans. Graph., vol. 37, no. 4,
2018.

[13] P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi,
R. Ng, and N. Snavely, "Pushing the boundaries of view
extrapolation with multiplane images," in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pp. 175–184, 2019.

[14] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K.
Kalantari, R. Ramamoorthi, R. Ng, and A. Kar., "Local light
field fusion: Practical view synthesis with prescriptive
sampling guidelines," ACM Trans. Graph., vol. 38, no. 4, pp.
1–14, 2019.

[15] S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S.
Suwajanakorn, "Nex: Real-time view synthesis with neural
basis expansion," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 8534–8543, 2021.

[16] J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and G. H. Lee,
"Mine: Towards continuous depth mpi with nerf for novel

view synthesis," in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
pp. 12578–12588, 2021.

[17] M. Zhang, J. Wang, X. Li, Y. Huang, Y. Sato, and Y. Lu,
"Structural multiplane image: Bridging neural view
synthesis and 3D reconstruction," in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pp. 16707–16716, 2023.

[18] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets
robotics: The KITTI dataset," Int. J. Robot. Res., vol. 32, no.
11, pp. 1231–1237, 2013.

[19] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,
N. Nešić, X. Wang, and P. Westling, "High-resolution stereo
datasets with subpixel-accurate ground truth," in Proc.
German Conf. Pattern Recognit., Springer Int. Publ., vol. 36,
pp.31-42, 2014.

[20] T. Schops, J. L. Schonberger, S. Galliani, T. Sattler, K.
Schindler, M. Pollefeys, and A. Geiger, "A multi-view
stereo benchmark with high-resolution images and multi-
camera videos," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 3260–3269, 2017.

[21] J. L. Schonberger and J. M. Frahm, "Structure-from-motion
revisited," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pp. 4104–4113, 2016.

[22] J. L. Schönberger, E. Zheng, J. M. Frahm, and M. Pollefeys,
"Pixelwise view selection for unstructured multi-view
stereo," in Proc. Eur. Conf. Comput. Vis., Springer Int. Publ.,
vol. 14, pp. 501–518, 2016.

[23] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow,
"Digging into self-supervised monocular depth estimation,"
in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 3828–3838,
2019.

[24] C. H. Lin, W. C. Ma, A. Torralba, and S. Lucey, "Barf:
Bundle-adjusting neural radiance fields," in Proc.
IEEE/CVF Int. Conf. Comput. Vis., pp. 5741–5751, 2021.

[25] S. F. Chng, S. Ramasinghe, J. Sherrah, and S. Lucey,
"Gaussian activated neural radiance fields for high fidelity
reconstruction and pose estimation," in Proc. Eur. Conf.
Comput. Vis., Springer Nature Switzerland, pp. 264–280,
Oct. 2022.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
"Image quality assessment: from error visibility to structural
similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp.
600–612, 2004.

[27] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
"The unreasonable effectiveness of deep features as a
perceptual metric," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 586–595, 2018.

[28] MPEG document MDS22394 WG 4 N 307, "Common test
conditions for MPEG immersive video," Feb. 2023.

[29] Agisoft, "Metashape," available online:
https://www.agisoft.com [Accessed on: Mar. 2024]

[30] K. Shoemake, "Animating rotation with quaternion curves,"
in Proc. Annu. Conf. Comput. Graph. Interact. Tech., pp.
245–254, 1985.

[31] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.
Hochreiter, "GANs trained by a two time-scale update rule
converge to a local Nash equilibrium," in Adv. Neural Inf.
Process. Syst., vol. 30, 2017.

802

