
 

 

 
Abstract 

 
Multiplane Image (MPI) is a volumetric scene 

representation method that uses multiple layers of texture 
(RGB) and alpha (A) planes. It offers high deployability 
due to its compatibility with standard codecs and low 
rendering complexity. While existing MPI methods have 
shown promising results, they are constrained by either a 
limited range of pose span or necessitates transmitting 
multiple MPIs. In this paper, we present a novel framework 
to generate an efficient single MPI that integrates the 
information from multiple views. The key idea is to utilize 
the surface opacity estimates (A) to locate and retrieve 
occluded RGB pixels from other camera views that share 
matching depth, which we call Occlusion Guided 
Residuals (OGR). Additionally, we introduce an inter-
layer texture filler, which is a learned RGB texture on 
intermediate depth between MPI layers to deal with scenes 
with continuous depth with a limited number of MPI layers. 
We composite MPI using the aforementioned RGB textures 
and refine alpha layers through training with multiview 
rendering supervision. Thus, through iterations of training, 
we jointly optimize scene opacity (A) and textures (RGB) 
leading to an accurate MPI representation. Experiments 
on various multiview image and video datasets 
demonstrate that the proposed method achieves state-of-
the-art performances with data efficiency. Notably, with 
just 16 layers, the proposed method attains performance 
on par with other methods that use twice the layer number 
or fuse multiple MPIs. 

 

1. Introduction 
Volumetric scene representation has been a persistent 

area of research interest. Especially with the recent 
advancements of technologies in autonomous driving or 
virtual reality, there is a growing interest in reconstructing 
volumetric images or videos from real-world captures. 

Recently, neural scene representation has gained wide 
attention with the introduction of NeRF [1]. The NeRF 
models the scene as a continuous function of color and 
density through a neural network and offers the capability 
to simulate view-dependent effects like light reflectance. 

However, it faces issues in deployability particularly due 
to its limited generalizability to unseen scenes. Each scene 
or frame necessitates separate training. Moreover, the 
requirement to transmit Multi-Layer Perceptron (MLP) 
weights for every frame, coupled with time-consuming 
MLP computations during inference poses significant 
challenges for practical application. To address this issue, 
various works [2]-[8] are being proposed to reduce the 
model size and complexity. [6] and [7] accelerate the 
training process by directly optimizing on voxels. [2] and 
[3] use neural hash grids to use simpler models. 

Multiplane Image (MPI) is a layer-based method that 
represents the scene with a discrete number of 2D layers. It 
stores fronto-parallel planes of a scene at a discretely 
sampled range of depths. Due to its high compatibility with 
conventional image/video codecs and its low 
computational requirements for view rendering, it is by far 
the most deployable solution among other volumetric 
representations. In [9]-[11] the methods used single view 
image to generate MPI representation. Especially, AdaMPI 
[11] uses self-attention operation to generate MPI layers 
with adaptive depth distances. This adaptive depth 
optimizes the allocation of layers per scene and facilitates 
efficient layer utilization. However, the method exhibits a 
limited range of pose span due to the restricted information 
from a single view. In [12]-[14], the authors use two or 
more views to generate MPIs that are robust to a larger 
pose span. LLFF [14] takes the multiple MPI fusion 
approach where it selects and fuses the optimal set of MPIs 
for each given pose. While being able to handle a broader 
span, its individual MPIs exhibit issues such as holes in 
cumulative alpha, making it challenging to use it 
independently. Consequently, rendering a view with LLFF 
often necessitates sending multiple MPIs, resulting in 
higher data transmission requirements. There are also 
works that expand beyond the traditional MPI definition of 
fronto-parallel RGBA layers. NeX [15] uses view-
dependent coefficients and learned neural basis functions 
instead of RGB pixels. MINE [16] combines neural field 
with MPI. S-MPI [17] uses adaptively posed planes instead 
of fronto-parallel ones. But they tend to increase the data 
size or rendering complexity. 

In this paper, we overcome the limitations of the existing 
MPI methods by generating an efficient single MPI that 
integrates information from multiple views. The main 
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contributions of the proposed method are as follows: 
• We propose a MPI generation framework that can 

identify and retrieve occluded RGB pixels from other 
views. We denote these retrieved pixels as Occlusion 
Guided Residuals (OGR). 

• Through iterations of training, the proposed framework 
jointly optimizes both scene opacity (A) and textures 
(RGB) leading to an accurate MPI representation. 

• We introduce an inter-layer texture filler, which is a 
learned RGB texture to represent intermediate depth 
between MPI layers. It plays a vital role, especially in a 
scene with continuous depth. 

We showcase the effectiveness of the proposed method, 
demonstrating its ability to render high-quality novel views 
that are on par with other methods that use twice the layer 
number or fuse multiple MPIs. 

2. Preliminaries 
MPI representation: The MPI can be collectively 

expressed as  {(𝑪!", 𝑨!")}!#$
%!&' , where three channel RGB 

plane of the 𝑖() layer at camera pose 𝑠 is denoted as 𝑪!" and 
an alpha plane is denoted as 𝑨!" . The 𝑁*  indicates the 
number of layers. Throughout the paper, we denote the 
closest layer as layer 0 and the furthest as layer 𝑁* − 1.  

Novel view synthesis: Each MPI layer (𝑪!+, 𝑨!+) needs to 
be warped from the source view 𝑠 to the novel target view 
𝑡. This is done through applying a homography warping 
which establishes the correspondence between the source 
pixel coordinates (𝑥", 𝑦")  and the target pixel coordinates 
(𝑥( , 𝑦() given as: 

[𝑥!, 𝑦!, 1]" = 𝑲! )𝑹 −
𝒕𝒏#

𝑧$!
/ (𝑲𝒕)&'[𝑥(, 𝑦(, 1]", (1) 

where 𝑲" and 𝑲( are the intrinsic camera parameters at the 
source (𝑠) and target (𝑡) positions, respectively. 𝑹 and 𝒕 
are the extrinsic camera parameters describing rotation and 
translation between two camera positions. The n is the 
normal vector [0,0,1],. The depth distance between the 𝑖() 
layer to the reference camera position is 𝑧!". The distance 
between two neighboring layers does not need to be fixed 
equal interval. They can be adaptive distances based on 
different contents to provide optimal novel view rendering 
[11]. We can render a novel view 𝑰("→() using warped MPI 
layers via:    

𝑰(!→() = ∑ 𝑪$
(!→()𝑾$

(!→(),!&'
$-. , (2) 

where,      
𝑾$

(!→() = 𝑨$
(!→() ∙ ∏ :1 − 𝑨/

(!→();$&'
/-. . (3) 

The 𝑾!
("→() represents the 𝑖() layer’s visibility weight. 

Depth and Disparity: Depth information can take 
multiple forms of representation. It can be presented as the 
‘disparity’ which is the horizontal shift between left and 
right images of a stereo pair. Representative depth 
databases [18]-[20] provide stereo image pairs along with 

their disparity maps, typically normalized between 0 and 1, 
for use in various computer vision tasks. Our framework is 
also based on this disparity representation. The depth at 
which each MPI layer is placed is specified using a 
disparity vector 𝒅" = {𝑑!"}!#$

%!&' . The depth maps of 
multiple views are provided in the form of disparity maps.  

When applying homography warping (1) on MPIs, we 
need to convert the MPI’s disparity vector (𝒅") to depth 
vector (𝒛" ) which requires the scene’s depth range 
([𝑧0123 , 𝑧423]). This range is usually provided alongside the 
camera parameters, either within the dataset or predicted 
using methods such as COLMAP [21],[22]. We first 
convert the depth ranges to a corresponding disparity 
representation as, 𝑑0123 = 1/𝑧0123  and 𝑑423 = 1/𝑧423 . 
Then, we apply min-max normalization on the disparity 
vector (𝒅") to obtain the rescaled disparity vector (𝒅?"). 
Denote the 𝑖-th element of the 𝒅" as 𝑑!" and 𝑖-th element of 
the 𝒅?" as 𝑑@!". Then, 

𝑑?$! = )
𝑑$! −min(𝒅!)

max(𝒅!) −min(𝒅!)/ F𝑑0123 − 𝑑423G + 𝑑423 .
(4) 

By taking reciprocal 
 

𝑧$! = 1/𝑑?$!, (5) 
we obtain the depth value for each 𝑖-th MPI layer which 
covers the depth range [𝑧0123 , 𝑧423] of the scene. 

3. Method 
In this section, we start with the introduction to 

Occlusion Guided Residuals (OGR) which is a key 
component of our method. Then, we present the overall 
framework and the training procedures. 

3.1. Occlusion Guided Residual 
One of the key challenges in MPI representation is to 

reconstruct RGB textures that are occluded by the objects 
from previous layers. We solve this by collecting relevant 
textures from other views, which we call Occlusion Guided 
Residuals (OGR). Here, the views include the source view 
𝑠 which is the reference camera position that we construct 
MPI representation on. The rest of the views are referred to 
as target views 𝑡5	, 𝑣 ∈ [0, 𝑁5 − 2], where 𝑁5 is the total 
number of views available. The upper bound is set as 𝑁5 −
2 since we exclude the source view from here. For each 
view, we assume to have a corresponding image, a 
disparity map, and a camera pose. 

Occlusion Map Construction: The first step of 
generating OGR is to construct an Occlusion Map (𝑶"), 
which indicates occluded regions within each layer due to 
the opacity of preceding layers. Let 𝑨" be the initial alpha 
layers estimates of the source view. A vector indicating the 
disparity at which each layer is placed at is also given as 
𝒅" = {𝑑!"}!#$

%!&'. The 𝑶" is defined as: 
𝑶$! = (1 − 𝑻$!)	𝑨$!	, (6) 
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where, 

𝑻$! =PF1− 𝑨/!G
$&'

/-.

. (7) 

This 𝑻!" is the transmittance of a ray up to the 𝑖-th layer. 
Thus, the term (1 − 𝑻!") in equation (6) represents the ray 
obstruction up to the 𝑖-th layer. The 𝑶" is constructed by 
identifying regions with both high ray obstructions (1 −
𝑻!") and high alpha (𝑨!") values, which indicates opaque 
surfaces in each layer that were not revealed due to the ray 
obstruction from previous layers. Note that 𝑶" is the same 
dimension as 𝑨" given as 𝑁* × 1 × ℎ × 𝑤, where ℎ and 𝑤 
refer to vertical and horizontal resolutions of the source 
view (𝑰"), respectively.  

Fig. 1 presents a visualization of the rendered occlusion 
map (𝑶") on different camera poses. When rendering 𝑶" at 
its source camera pose, as in Fig. 1(a), we observe a sparse 
map since occluded regions are not expected to be revealed 
much from the source camera perspective. However, when 
we warp to a new camera pose, as shown in Fig. 1(b), we 
begin to observe the revealed occluded regions, which is 
information we can use to extract relevant pixels from. 

OGR Extraction: Fig. 2 illustrates the initial steps of 
the OGR extraction process. The occlusion map (𝑶") is 
first warped to other target views following the procedures 
outlined in (1), (4), and (5). This warped occlusion map 
𝑶("→("), hold information on where the occluded region of 
each layer is placed on the target views. We form initial 
OGR (𝑰𝑶𝑮𝑹

(" ) by first pulling every pixel from target image 
( 𝑰(" ) on to regions specified by 𝑶("→(").  However, as 
shown in Fig. 2, 𝑰𝑶𝑮𝑹

("  includes some elements that do not 
match the layer’s disparity. For example, the presence of a 
“guitarman” in later background layers should be removed.  

Fig. 3 outlines the process of generating masks for the 
disparity-based pixel removal process. We first generate 
disparity fidelity weights (𝑾𝑫𝑭

(" )  using the disparity map 
of the target view (𝑫(" ) and the disparity vector of the 
warped MPIs ( 𝒅("→(") ). The disparity at which each 
warped MPI plane is placed at is derived as follows: 

𝑑$
(!→(") = 𝑑$! cosF𝜃5G cosF𝜃6G . (8) 

where 𝜃; and 𝜃< refer to the yaw and pitch angles from the 

relative rotation between camera 𝑠 and 𝑡5.   
The 𝑖-th layer plane of 𝑾𝑫𝑭

("  is formulated as: 

𝑾𝑫𝑭,$
%! = 1 −

%𝑫%! − 𝑑$
('→%!)%

max
*∈[-,./0],2∈[-,3/0],$∈[-,4"/0]

+%𝑫%!(𝑥, 𝑦) − 𝑑$
('→%!)%1

. (9) 

For each layer, eq. (9) computes the normalized absolute 
difference between the target view’s disparity map (𝑫(") 
and the current layer’s disparity (𝑑$

('→%!)) and subtracts this 
term from one. As depicted in Fig. 3(a), each layer will 
yield a plane (𝑾𝑫𝑭,!

(" ) where the regions with higher value 
(closer to one) indicate the region with higher matching 
disparity to the current 𝑖-th layer's disparity. We further 
apply soft thresholding on 𝑾𝑫𝑭

("  using exponential 
weighting function to highlight only the areas with a high 
degree of disparity fidelity. The soft masking procedure is 
formulated as  

𝑴𝑫𝑭,$
(" =

𝑒𝑥𝑝F𝑎$	𝑾𝑫𝑭,$
(" G

𝑒𝑥𝑝	(𝑎$)
, (10) 

where we apply layer-adaptive parameter 𝑎! , 𝑖 ∈ [0, 𝑁*] . 
This adaptive thresholding adjusts sensitivity across 
different layers. Since the errors in the front layers 
significantly impact the rendered scene, we assign a higher 
value of 𝑎!  to strictly threshold OGRs and minimize the 
transfer of inaccurate residuals. However, enforcing high 
𝑎!  value on deeper layers restricts the overall OGR 
transfer, reducing disocclusion capability. Thus, we set 𝑎! 
adaptively to take larger values on earlier layers and 
gradually decrease on later layers as follows: 

 

Figure 1: Visualization of the rendered occlusion map at various 
camera poses.   
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Figure 2: Initial OGR extraction procedure. 

 

Figure 3: Disparity fidelity mask generation procedure 
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𝑎$ = 𝑎:2; −
𝑖

(𝑁< − 1)
(𝑎:2; − 𝑎:$0). (11) 

For 16 layer representation, we set 𝑎>2? = 20 and 𝑎>!0 =
5. Fig. 3(c) visualizes the resulting disparity fidelity mask 
(𝑴𝑫𝑭

(" ) with 16 layers. We see that only the regions with a 
high degree of disparity fidelity are indicated bright and the 
rest of the regions are indicated dark.  

The derived 𝑴𝑫𝑭
("  is then multiplied to the initial 𝑰𝑶𝑮𝑹

(" , 
allowing only the pixels with matching disparities in each 
layer to remain while removing the rest. The processed 
final OGR (𝑰𝑶𝑮𝑹

(" ) is then warped back to the source camera 
pose 𝑠 which is denoted as 𝑰𝑶𝑮𝑹

(("→"). We also warp back the 
𝑴𝑫𝑭
("  to the source camera 𝑠 which we denote as 𝑴𝑫𝑭

(("→"). 
This warped back disparity fidelity mask is used for 
various purposes including OGR combination and inter-
layer texture filler (𝑰𝒇) masking.  

Disparity Fidelity-based Combination: The collected 
𝑰𝑶𝑮𝑹
(("→")  from multiple target views (𝑣 ∈ [0,𝑁= − 2] ) are 

combined using disparity fidelity as the criteria. More 
specifically, for each layer’s pixel location, we compare the 
𝑴𝑫𝑭
(("→") values across all views and choose the view with 

the highest value. Again, the higher 𝑴𝑫𝑭
(("→")  value 

indicates closer proximity to the corresponding MPI 
layer’s disparity. The 𝑖 -th layer of the combined OGR 
(𝑰O𝑶𝑮𝑹,!) is expressed as follows: 

�̂�𝑶𝑮𝑹,$(𝑥, 𝑦) = 𝑰𝑶𝑮𝑹,$
((#(%,',()→!)(𝑥, 𝑦) (12) 

where  
𝑄(𝑥, 𝑦, 𝑖) = argmax

=
(𝑴7 𝑫𝑭,$

((5→!)(𝑥, 𝑦)) , 𝑣 ∈ [0, 𝑁= − 2], (13) 

In (13), the 𝑄(⋅) function serves as a target view index 
selector where, for each pixel position (𝑥, 𝑦)  and layer 
index (𝑖), it compares the disparity fidelity values from all 
available view 𝑣 ∈ [0, 𝑁5 − 2]. Then, it outputs the view 
index that gives the maximum value. Based on these 
selected view indices for each ( 𝑥, 𝑦, 𝑖 ), we construct 
combined OGR (𝑰O𝑶𝑮𝑹) by extracting pixel values from the 
respective view’s 𝑰𝑶𝑮𝑹

(("→"). 
One thing to note from eq. (13) is that we used lowpass 

filtered disparity fidelity mask (𝑴7 𝑫𝑭
((5→!)) computed as   

𝑴_ 𝑫𝑭,$
(("→!)(𝑥, 𝑦) = ` ` 𝐺(𝑗, 𝑘) ⋅ 𝑴𝑫𝑭,$

(("→!)(𝑥 + 𝑗, 𝑦 + 𝑘)
A

B-&A

C

/-&C

, (14) 

where 

𝐺(𝑗, 𝑘) =
1

2𝜋𝜎D 𝑒𝑥 𝑝 )−
𝑗D + 𝑘D

2𝜎D /.		 (15) 

We set 𝜎 = 3 in (15) and 𝐿 = 6, 𝑀 = 6 in (14) to have 
Gaussian kernel window sampled out to two standard 
deviations for both horizontal and vertical directions. 
 As 𝑴𝑫𝑭

(("→") is reliant on the disparity map (𝑫(") from eq. 
(9), local noise or inaccuracies on the provided 𝑫("  may 
significantly affect the quality of the combined OGR, 

leading to scatter artifacts where objects appear scattered 
and deformed. Thus, we applied the low pass operation in 
(14) to minimize local fluctuations in 𝑴𝑫𝑭

(("→"). Fig. 4 (a) 
and (b) each visualizes view selection map (𝑄) before and 
after applying low pass operation on 𝑴𝑫𝑭

(("→")  on content 
with noisy disparity map. Fig. 4 (a) shows severe local 
variations of view selections. If this view selection is used 
to construct 𝑰O𝑶𝑮𝑹 as using (12), it leads to scatter artifacts 
as depicted in Fig. 5(a) and (c). After the low pass 
operation, the OGRs are pasted in larger, more coherent 
clusters coming from the same view as shown in Fig. 4(b) 
which alleviated the artifacts as shown in Fig. 5 (b) and (d). 
Note that we are not applying the low pass operation on the 
OGR pixels but on the combination criteria 𝑴𝑫𝑭

(("→")  in 
(13). Thus, there won’t be any blurs on OGR pixels. 

Alongside the 𝑰O𝑶𝑮𝑹  generated from equation (12), we 
also generate combined disparity fidelity mask (𝑴W 𝑫𝑭 ). 
Similar to how we combined the OGRs using equation 
(12), we can form 𝑴W 𝑫𝑭 as follows: 

𝑴g 𝑫𝑭,$(𝑥, 𝑦) = 𝑴𝑫𝑭,$
((*(%,',()→!)(𝑥, 𝑦). (16) 

The resulting 𝑴W 𝑫𝑭 is a volume of dimension 𝑁* × 1 × ℎ ×
𝑤 that contains information on the extent to which 𝑰O𝑶𝑮𝑹 
maintain disparity accuracy for each layer and will be used 
in the following composite process of the MPI RGB layers. 

3.2. Inter-layer Texture Filler 
The conventional composite formulation [9], [11], [12] 

for constructing MPI RGB layers are as follows: 
𝑪$! = 𝑻$!	𝑰! + (1 − 𝑻$!)	𝑰𝒃,$ (17) 

 

Figure 4: Visualization of the view selection map for combined 
OGR (a) before and (b) after applying low pass on disparity 
fidelity mask. 

 

Figure 5: Visualization of the combined OGR: (a),(c) before 
applying low pass operation and (b),(d) after applying low pass 
on disparity fidelity mask. Red circles indicate scatter artifact 
regions. 
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where 𝑰𝒃 refers to RGB textures that are occluded in the 
reference view.  𝑻!"  is a composite weight primarily 
influenced by 𝑨"  as defined in equation (7). A typical 
approach of constructing 𝑰𝒃  is to train an inpainting 
network. However, the inpainting network has quality 
limitations and may introduce artifacts related to temporal 
inconsistency when generating MPIs for multiple frames. 

In our case, we have 𝑰O𝑶𝑮𝑹  which are RGB textures 
collected from multiple views. We additionally introduce 
inter-layer texture filler (𝑰𝒇) representing the learned RGB 
textures capable of filling in surfaces that are not covered 
by source view or OGR pixels. Consequently, we 
formulate the RGB composition as follows: 
𝑪$! = 𝑻$!	𝑰! + (1 − 𝑻$!)	h𝑴g 𝑫𝑭,$	�̂�𝑶𝑮𝑹,$ 	+ F1 −𝑴g𝑫𝑭,$G𝑰𝒇,$i. (18) 

Here, we formulate the occluded textures 𝑰𝒃, from (17) 
as the convex combination of 𝑰O𝑶𝑮𝑹  and 𝑰𝒇 , with greater 
weights assigned to 𝑰O𝑶𝑮𝑹 pixels in regions characterized by 
high 𝑴W 𝑫𝑭 values. This is rational as these regions closely 
match disparities of the current layer, making them the 
most suitable candidates for texture placement in those 
regions. The regions not covered by either 𝑰O𝑶𝑮𝑹 or 𝑰" are 
presented as (1 − 𝑻!")X1 −𝑴W 𝑫𝑭,!Y which serves as a mask 
for 𝑰𝒇. 

Fig. 6 shows the architectures of the network 
components for generating 𝑰𝒇 . We first input the source 
view’s image (𝑰" ) and disparity information (𝑫" ) to a 
Feature Encoder in Fig. 6(a) to map the RGBD information 
into multi-resolution features (𝒇"). We use widely adopted 
U-net architecture [11], [12], [16]. Then, these features are 
fed into the Inter-layer Texture Filler Generator module in 

Fig. 6(b) which is a decoder component of the U-net. In the 
initial feature processing stage, each resolution component 
of the feature maps (𝒇") are replicated 𝑁* times, effectively 
expanding the final representation to 𝑁*  layers. The 
module receives weight supervision from gradients that 
propagate the aforementioned mask, adapting 𝑰𝒇  to the 
regions with relevant textures accordingly.  

Fig. 7 demonstrates the effectiveness of the current MPI 
composition in eq. (18). Fig. 7(a) presents a disparity map 
of content with a continuous disparity along the side wall. 
Such continuous disparity poses challenges to MPI 
representation with a discrete set of disparities. Fig. 7(b) 
shows an example of a rendered novel view using MPI 
generated without inter-layer texture filler ( 𝑰𝒇 ). More 
specifically, the MPI is generated using (17) where 𝑰𝒃 =
𝑰O𝑶𝑮𝑹 . In the figure, we observe inter-layer artifacts. In 
contrast, Fig. 7(c) demonstrates how 𝑰𝒇 effectively learned 
to fill these intermediate disparity textures. 

3.3. Overall Framework 
In this section, we present the overall framework of our 

multi-view integrated MPI. Fig. 8 presents a high-level 
flow chart of our proposed method. Indicated in grey are 
modules with trainable network parameters. The 
framework here represents the flowchart at the inference 
stage and the procedural flow for network training will be 
presented in the following section. The inputs to the 
framework are multi-view images, corresponding disparity 
maps, and camera poses.  

As our objective is to generate data efficient MPI, we 
draw inspiration from AdaMPI [11] and utilize their plane 
depth adjustment architecture to output a disparity vector 
optimized for the scene (𝒅"). The Disparity Information 
Processor module receives the source view’s image (𝑰") 
and disparity map (𝑫") concatenated with initial disparity 
values  𝒅𝟎(𝑗) , 𝑗 ∈ [0, 𝑁* − 1] , initially set as uniform 
disparity distance. Then, the module processes the inputs 
through ResNet-based context encoder followed by a self-
attention operation to exchange feature-level geometry and 
appearance information among different layers. The 
module outputs the disparity vector (𝒅" ), of dimension 
𝑁* × 1, which indicates the disparity of each MPI layer and 
an Alpha Shape Mask (𝑴𝑨), of dimension 𝑁* × 1 × ℎ × 𝑤, 

 

Figure 6: Network architecture of (a) Feature Encoder (b) Inter-
layer Texture Filler Generator. 

 

Figure 7: Effect of Inter-layer texture filler (𝑰𝒇). (a) Content with 
a continuous disparity on the side wall, indicated in red circle. (b) 
Rendered novel view (b) without 𝑰𝒇 and (c) with 𝑰𝒇. 
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Figure 8: Overall flowchart of the proposed method. Zoom in for 
better clarity. 
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that contains approximate Alpha Shape on each MPI layer 
derived from 𝑫" and 𝒅". 

  The Feature Encoder module, in Fig. 6(a), receives the 
source view’s image (𝑰") and disparity map (𝑫") as inputs. 
It outputs feature maps ( 𝒇" ) that capture hierarchical 
features of the given RGBD information. The 𝒇"  is then 
received by two types of decoders. One is the Inter-layer 
Texture Filler Generator covered in Sec. 3.2 and Fig. 6(b).  

Another is the Alpha Generator which takes the feature 
maps (𝒇") from the Feature Encoder and the Alpha Shape 
Mask (𝑴𝑨) from the Disparity Information Processor to 
outputs alpha layers (𝑨" ) of dimension 𝑁* × 1 × ℎ × 𝑤 . 
This 𝑨"  is used for deriving occlusion maps and OGRs 
from Sec. 3.1. It is iteratively refined during the training 
procedure to jointly optimize the RGB textures and the 
surface geometry representation. It takes U-net decoder 
structure similar to Inter-layer Texture Filler Generator. 
Key differences are that the output dimension is adjusted 
to one-channel alpha layers and that we now take auxiliary 
information 𝑴𝑨 which is concatenated to the 𝒇". 

  The OGR Generator module, covered in Sec. 3.1, 
generates warped occlusion maps using 𝑨"  and 𝒅"  and 
collects OGR using target views’ images, disparity maps, 
and camera poses. The module combines the OGRs from 
multiple views to output combined OGR ( 𝑰O𝑶𝑮𝑹 ) of 
dimension 𝑁* × 3 × ℎ × 𝑤 . The module also collects 
Disparity Fidelity Mask (DFM) from multiple views to 
form combined DFM (𝑴W 𝑫𝑭) of dimension 𝑁* × 1 × ℎ × 𝑤 
that contains information on the extent to which these 
combined OGR pixels maintain disparity accuracy for each 
layer.  

The camera poses received by the OGR Generator are 
adjusted ones from the Camera Pose Adjust Net module. 
Similar approaches have been taken, mostly from NeRF-
based works [24], [25], where they take initial estimates of 
camera poses obtained from structure from motion (SfM) 
methods and jointly optimize the neural scene and camera 
pose. Here, we take the COLMAP [21], [22] predictions as 
the initial estimates. For rotation matrices (𝑹), we convert 
them to quaternions (𝒒) for a simpler network and stability. 
The 𝒒  and 𝒕  each go through three layers of Fully 
Connected layers (FC) with skip connection to refine the 
initial pose estimates. The adjusted quaternions (𝒒]) are 
converted back to rotation matrices (𝑹?) and combined with 
the adjusted translation vectors (�̂�) to form the adjusted 
camera pose (𝒑]). 

The MPI compositor module forms the RGB layers (𝑪") 
of MPI using eq. (18) and concatenate then with alpha 
layers (𝑨") to form MPI {(𝑪!", 𝑨!")}!#$

%!&'. The final outputs 
of the framework are the MPI {(𝑪!", 𝑨!")}!#$

%!&' and disparity 
vector {𝑑!"}!#$

%!  which are all the data that is required to be 
sent as a bitstream to the edge device side for volumetric 
representation. 

3.4. Training Networks 
On every iteration of training, we select a subset of target 

views and form an MPI {(𝑪!", 𝑨!")}!#$
%!&' and disparity vector 

{𝑑!"}!#$
%!  as in Fig. 8. Then, we warp and render the MPIs to 

other target views to supervise its volumetric 
representation capability. The loss function used for 
training the weights of the network modules is as follows: 

𝐿(G(2< = 𝐿H$!6 + 𝐿310H13 + 𝐿GII . (19) 
 Disparity Loss (𝐿D!"<):  This loss is a disparity-based 

constraint on the alpha shape (𝑴𝑨) and disparity vector 
(𝒅𝒔) used in [11] which is formulated as  

𝐿H$!623$(5 = 𝜆G3H13𝐿G3H13 + 𝜆:2!B𝐿:2!B , (20) 
where 

𝐿G3H13 =
1

𝑁< − 1
` 𝑚𝑎𝑥	(0, 𝑑$J'! − 𝑑$!)
,!&D

$-.

, (21) 

𝐿:2!B =
1

ℎ𝑤𝑁<
` ``𝑴𝑨,$(𝑥, 𝑦)

L&'

;-.

⋅ |𝑫!(𝑥, 𝑦) − 𝑑$!|
M&'

5-.

,!&'

$-.

. (22) 

Here, we set 𝜆F3D13 = 1  and 𝜆>2"G = 10 . 𝐿F3D13  is to 
penalize any switched orders among 𝒅𝒔, ensuring that 𝒅𝒔 
is guided to maintain a sorted order. The 𝐿>2"G provides 
disparity-based constraints on the alpha shape mask (𝑴𝑨). 
The 𝑴𝑨 is a volume of dimension 𝑁* × 1 × ℎ × 𝑤, where 
each layer contains the approximate alpha shape at the 
current disparity. 

Render Fidelity Loss (𝐿310D13 ):  The objective of 
𝐿310D13 is to provide supervision to MPIs, ensuring that the 
warped and rendered target view (𝑰("→(")) closely aligns 
with the ground truth target view (𝑰("). For evaluating the 
fidelity between the two images, we employ L1 loss (𝐿'), 
SSIM [26] loss (𝐿""!>), and LPIPS [27] loss (𝐿*<!<") as 
follows: 

𝐿310H13 = 𝜆'𝐿' + 𝜆!!$:𝐿!!$: + 𝜆<6$6!𝐿<6$6!. (23) 
Here, we set 𝜆' = 0.5, 𝜆""!> = 0.7, and 𝜆*<!<" = 1. 

Occlusion Loss ( 𝐿FHH ):  While multi-view-based 
training facilitates high-quality rendering on novel views, 
it can inadvertently introduce opacities optimized for 
rendering on expansive poses, potentially compromising 
the source view reconstruction or rendering on smaller 
poses. Thus, we add constraint 𝐿FHH  to minimize 
unnecessary ray obstructions. 𝐿FHH is formulated as: 

𝐿GII =
1
ℎ𝑤``𝑶r𝒔(𝑥, 𝑦)

M&'

5-.

L&'

;-.

, (24) 

where 

𝑶r$𝒔 = ` 𝑶$!𝑾$
!

,!&'

$-.

. (25) 

In (25), 𝑶!"  follows the definition in (6), and 𝑾!
"  is 

obtained from (3) with the target camera pose set as the 
source ( 𝑡 = 𝑠) . The 𝑶b𝒔  measures the amount of ray 
obstruction present at the source view. Ideally, the 
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occluded regions are not revealed from the source view. 
Therefore, through having 𝐿FHH , we sparsify 𝑶b𝒔  and 
provide supervision for 𝑨"  to reduce unnecessary ray 
obstructions.  

4. Experimental Results 

4.1.  Experimental Setup 
Dataset: For evaluation, we used Multiview video 

dataset and LLFF dataset [14]. The Multiview video 
dataset consists of two contents ‘Barn’ and ‘Breakfast’ 
from MPEG immersive video (MIV) common test 
conditions [28] and a ‘Guitarman’ content. All contents 
provide 15 views with 30 frames. LLFF dataset is an image 
dataset providing 20~30 views per content. We use 
‘Flower’, ‘Horns’, and ‘Orchids’ contents for evaluation. 
MIV content provides ground truth disparity maps. For all 
other contents, we used maps generated from Metashape 
[29]. 

Compared methods: The AdaMPI [11] serves as a 
baseline method that uses adaptive disparity distances 
optimized for the scene. Through comparison with 
AdaMPI, we demonstrate the disocclusion capability of 
our proposed method. We also compare with LLFF [14] for 
comparisons on methods that leverage multiple-view 
information differently. The proposed method integrates 
multi-view information into a single MPI, whereas LLFF 
selects and fuses the five closest MPIs based on the 
provided camera pose. AdaMPI and LLFF use the pre-
trained model on large datasets. The proposed OGRMPI is 
a per-scene modeling method. Thus, it trains on the scene 
to learn accurate scene geometry and textures. When 
training on videos, we found that a single set of weights is 
sufficient to generate MPIs for multiple consecutive frames 
without a scene change, as demonstrated through the 
results on 30 frame videos in our study. There is no need to 
train separate weights for each frame. For every iteration, 
we train on random four target views across randomly 
chosen frames. We train our method for 1000 iterations 
with SGD optimizer with an initial learning rate is 
5 × 10&I , with momentum set as 0.9. AdaMPI and 

OGRMPI both require disparity maps as inputs, and we 
used the same ones for both methods. 

4.2. Evaluation Results 
RGBA representation: Fig. 9 displays a selection of 

layers from the 16-layer MPI generated by different 
methods. Fig. 9(a) clearly reveals that a single LLFF MPI 
exhibits a lot of alpha holes, indicating the necessity for 
multiple MPI fusion to accurately represent a scene. Fig. 
9(b) reveals AdaMPI’s limitation with a single view 
approach, resulting in incorrect opaque connections from 
foreground objects to the background wall, as delineated 
by red circles. Such inaccurate opacities may impair the 
clarity of the textures behind them. Fig. 9(c) presents the 
layers of the proposed method. Our method recognizes the 
presence of textures on occluded regions through OGR and 
removes unnecessary opacities from alpha layers, 
accordingly. Thus, it accurately exposes background 
textures when viewed from other camera poses leading to 
high-quality novel view renders.  

Source view reconstruction: While MPI representation 
can facilitate novel view rendering, at its base 
functionality, it should also be able to faithfully restore the 
source view. Thus, we evaluated the source view 
reconstruction performances of each MPI method using 
PSNR, SSIM, and LPIPS. Table 1 presents results 
averaged over 30 frames of the video contents, where the 
proposed method achieved the best performances among 
all methods. 

View interpolation: We evaluate the view interpolation 
performances in various aspects. The first is on the 
intermediate positions between the available camera views. 
We take the eight adjacent neighbor camera positions with 
respect to the source camera (𝑠) and denote them as 𝑡$~𝑡J. 
For the intermediate positions, we take the midpoint 
between the source camera position 𝑠 and each of  𝑡5, 𝑣 ∈
[0,7]  and denote them as 𝑛5 . The derivation of 
intermediate position can also involve rotation 
interpolation for non-planar camera configuration, which 

 

Figure 9: Visualization of MPI layers from different methods. 
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Table 1: Multiview Video dataset - Source view reconstruction 
result  

 # 
layers 

 # 
fused 

Data 
size 

Guitarman Breakfast Barn 
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ 

LLFF 
16 1 × 1 22.31 0.836 0.169 27.97 0.927 0.047 28.58 0.953 0.039 
16 5 × 5 22.48 0.837 0.169 28.07 0.925 0.048 28.48 0.952 0.040 
32 5 × 10 22.55 0.816 0.214 32.52 0.964 0.024 29.94 0.965 0.029 

AdaMPI 16 1 × 1 43.50 0.997 0.004 40.10 0.995 0.005 38.04 0.995 0.007 
32 1 × 2 43.81 0.996 0.003 41.30 0.996 0.004 38.28 0.995 0.007 

OGRMPI 16 1 - 46.58 0.998 0.001 46.86 0.999 0.001 44.40 0.999 0.001 
 
Table 2: Multiview Video dataset - View interpolation results on 
intermediate poses. 

 # layers # fused Data size FID¯ 
Guitarman Breakfast Barn 

LLFF 
16 1 × 1 183.51 72.01 72.51 
16 5 × 5 121.90 63.02 70.34 
32 5 × 10 102.07 54.76 63.17 

AdaMPI 16 1 × 1 62.55 69.20 67.70 
32 1 × 2 61.89 63.43 66.69 

OGRMPI 16 1 - 58.27 61.02 62.14 
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uses Spherical Linear Interpolation (SLERP) [30] in 
quaternion space. As we do not have associated ground 
truth images for these intermediate views, we evaluate the 
rendered quality using Fréchet Inception Distance (FID) 
[31], which is a representative Non-Reference (NR) model 
that compares the distributions of a real and generated 
image sets. In our experiment, we use nine ground-truth 
camera views (𝑡$~𝑡J and 𝑠) for the ‘real’ distribution and 
eight views (𝑛$~𝑛J) for the ‘generated’ distribution. Since 
we have 30 frames, this translates into 270 real images and 
240 generated images per content. Table 2 shows the FID 
scores on compared methods. Overall, the proposed 
method showed competitive or better performances 
compared to methods that use higher data size. 
Additionally, Fig. 10 presents the proposed method’s 
ability to produce sharp images without occlusion artifacts. 

We also evaluated the novel view rendering 
performance on a larger pose span, extending to other 
camera poses. Following [1] we hold out 1/8 of the camera 
views as a test set and evaluate the reconstruction 
performances on it. For LLFF, we ensure that these test 
views are not included as the fusion candidate. For 
OGRMPI, we omit the test views from the training 
procedure to prevent the model from extracting OGR 
pixels or deducing surface geometry from these views. 
Tables 3 and 4 present the view interpolation results for the 
Multiview Video and LLFF datasets, respectively. When 
compared to methods using the same data size, OGRMPI 
yielded the best results on all metrics. The LLFF fusion 
approach, which employs a larger data size, achieved 
higher PSNR and SSIM results possibly due to having 
access to multiple nearby MPIs. However, in LPIPS 
evaluation, OGRMPI outperformed all other methods 
across all contents, suggesting superior perceptual quality. 
Fig. 11 shows the rendered results on other camera views. 
The perceptual evaluations further confirm that our method 
produces sharp images with fewer artifacts. 

5. Conclusion 
In this paper, we proposed a novel framework to 

generate an efficient MPI representation that integrates 
information from multiple views. We showed how 
occlusion guided residuals can be used to jointly optimize 
both scene opacity (A) and textures (RGB), leading to an 
accurate MPI representation. Experimental results show 
that the proposed MPI excels in terms of source view 
fidelity and view interpolation capabilities. Furthermore, it 
demonstrates performance comparable to that of multiple 
MPI fusion methods with much higher data size, 
showcasing its data-efficient volumetric representation 
capability. Due to its high effectiveness and deployability, 
we envision the proposed method to be employed across a 
wide range of 3D applications.  
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Figure 10: Visualization of views rendered at intermediate poses. 
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Table 3: Multiview Video dataset - Results on other camera poses. 
 # 

layers 
 # 

fused 
Data 
size 

Guitarman Breakfast Barn 
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ 

LLFF 
16 1 × 1 20.57 0.653 0.262 23.53 0.800 0.113 22.50 0.838 0.131 
16 5 × 5 21.43 0.678 0.179 26.11 0.846 0.131 24.91 0.885 0.130 
32 5 × 10 21.62 0.683 0.179 28.63 0.904 0.104 26.29 0.920 0.111 

AdaMPI 16 1 × 1 19.90 0.638 0.141 23.07 0.791 0.090 21.60 0.819 0.121 
32 1 × 2 20.10 0.665 0.129 24.11 0.805 0.085 20.82 0.799 0.123 

OGRMPI 16 1 - 21.20 0.675 0.094 24.14 0.819 0.070 23.16 0.859 0.084 
 
Table 4: LLFF dataset - Results on other camera poses. 

 # 
layers 

 # 
fused 

Data 
size 

Flower Horns Orchids 
PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ PSNR SSIM LPIPS¯ 

LLFF 16 1 × 1 25.29 0.925 0.087 19.71 0.720 0.181 16.70 0.617 0.234 
16 5 × 5 28.71 0.954 0.074 20.99 0.753 0.168 18.66 0.708 0.229 

AdaMPI 16 1 × 1 18.58 0.776 0.150 13.35 0.452 0.437 12.58 0.393 0.316 
32 1 × 2 24.32 0.905 0.085 13.43 0.461 0.440 12.83 0.413 0.300 

OGRMPI 16 1 - 26.84 0.942 0.057 20.27 0.739 0.149 16.83 0.648 0.153 
 

 

Figure 11: Visualization of views rendered at other camera poses. 
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