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Figure 1. The proposed Depth Guided Branched Diffusion (DGBD) enables simultaneous control over non-perspective and perspective
information. Given a prompt, depth map from one view and camera location of other views the framework generates views by propagating
shape and size attributes from the depth map and aligning with the prompt and perspective. Moreover, the generated results are multi-view
consistent.

Abstract

This paper presents an innovative approach to multi-
view generation that can be comprehensively controlled
over both perspectives (viewpoints) and non-perspective
attributes (such as depth maps). Our controllable dual-
branch pipeline, named Depth Guided Branched Diffu-

sion (DGBD), leverages depth maps and perspective in-
formation to generate images from alternative viewpoints
while preserving shape and size fidelity. In the first
DGBD branch, we fine-tune a pre-trained diffusion model
on multi-view data, introducing a regularized batch-aware
self-attention mechanism for multi-view consistency and
generalization. Direct control over perspective is then
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achieved through cross-attention conditioned on camera
position. Meanwhile, the second DGBD branch introduces
non-perspective control using depth maps. Qualitative and
quantitative experiments validate the effectiveness of our
approach, surpassing or matching the performance of state-
of-the-art novel view and multi-view synthesis methods.

1. Introduction
Generative models have achieved significant success in
high-fidelity image generation. This progress has pri-
marily been facilitated by the arrival of diffusion models
[2, 7, 28–30]. Recent endeavors within the domain of dif-
fusion models have sought to adapt the pre-trained diffu-
sion models, specifically, text-to-image diffusion models
[4, 20, 23, 24, 35], originally conceived for 2D image gener-
ation, to address the task of multi-view and 3D synthesis [8–
12, 16, 17, 26, 31, 33, 38]. Text-to-multi-view generation
involves the generation of a set of views based on a prompt
and a specified viewpoint. In other words, given a text and
a designated camera position, the objective of text-to-multi-
view is to produce an image that aligns with both the pro-
vided caption and geometric parameters, while maintaining
coherence across multiple viewpoints. The viewpoint, in
this context, refers to the camera location of the target view.
In addition, controllable text-to-multi-view generation of-
fers simultaneous manipulation of the shape and size of the
object in the generated view through depth maps and ad-
justment of the viewpoint based on perspective information.
One application of multi-view generation lies in its integra-
tion into the 3D artist’s asset generation pipeline.

Diffusion-based multi-view synthesis methods provide
direct control over perspective, enabling the generation of
views from multiple camera locations. Additionally, be-
yond offering perspective control, they leverage either an
image or text as guiding inputs. While these methods ex-
hibit promising results, they still encounter challenges re-
lated to controllability and maintenance of multi-view con-
sistency. To address these issues, this paper presents a holis-
tic dual-branch pipeline for multi-view generation, called
Depth Guided Branched Diffusion (DGBD). Our method
receives a textual caption, depth map from the first view,
and camera location of the second view, and its objective is
to synthesize an output view that represents the prompt by
transferring the shape and size information from the given
depth and incorporating the perspective information from
the given viewpoint: see Fig. 1 for an overview.

The proposed DGBD pipeline comprises of two
branches: the perspective branch and the non-perspective
branch. In the perspective branch, a pre-trained diffusion
model, Stable Diffusion [23], is modified and fine-tuned on
the 3D dataset, Objaverse [1]. The following two alterations
are applied to the U-Net of Stable Diffusion. First, the

self-attention modules are replaced by a novel regularized
batch-aware self-attention to introduce multi-view consis-
tency and generalizability. Second, the camera position is
injected into the U-Net of Stable Diffusion through a cross-
attention mechanism to achieve a geometry-aware model.
The non-perspective branch makes a trainable copy of the
encoder of the pre-trained perspective branch’s U-Net with-
out the perspective projection layer and fine-tunes it using
depth information motivated by Controlnet’s [36] set-up.

The contributions of this paper are multi-fold:
• A novel formulation of multi-view generation with con-

current control over text, shape, size, and perspective.
• A controllable dual-branch pipeline allowing control over

shape and size through non-perspective features, and
viewpoint control by means of camera location.

• Introducing regularized batch-aware self-attention (RBA)
mechanism for view consistency and generalization.

• Extensive experiments and an ablation study are con-
ducted on the Objaverse and Google Scanned Objects [3]
datasets to demonstrate the proficiency of the proposed
method, exceeding or equating the performance of state-
of-the-art diffusion-based novel view and multi-view syn-
thesis methods.

2. Related Work
2D diffusion models. Diffusion models [7, 28, 29], par-
ticularly text-to-image diffusion models [19, 21, 23], have
demonstrated their capability for enabling high-quality and
diverse 2D image generation by training on extensive im-
age datasets. GLIDE [15] enhances image fidelity by in-
tegrating classifier-free guidance [6] in diffusion models.
Conversely, DALLE-2 [20] leverages CLIP [18] features
to improve text-to-image alignment. Additionally, Latent
Diffusion Models (LDMs) [23] propose training within an
autoencoder’s latent space for faster training. These mod-
els are inherently geometry-unaware. Thus, their direct ap-
plicability to 3D and multi-view synthesis remains limited.
To mitigate this restriction, substantial modifications to the
existing frameworks are necessary. Moreover, additional
mechanisms are required to address multi-view consistency.

Diffusion-based 3D generation. State-of-the-art
diffusion-based 3D generation techniques [9, 11, 17, 26,
33, 38] utilize differentiable image generators such as Neu-
ral Radiance Fields (NeRF) [14] and the knowledge of a
pre-trained text-to-image diffusion model as a prior for 3D
generation. This category of methods mandates a time-
consuming optimization process to derive an object-specific
3D representation. Particularly, Dreamfusion [17] and
Score Jacobian Chaining (SJC) initialize [33] a NeRF-based
differentiable generator and optimize it using the gradients
of a pre-trained diffusion model. Primary issues associated
with these score distillation methods are color saturation,
diversity across samples, and consistency of objects from
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Figure 2. Two-stage training procedure for the DGBD pipeline: (1) The initial phase involves selecting views, prompts, and camera
coordinates as inputs to the first branch. (2) In the second stage, the perspective branch’s encoder is duplicated, and permuted depth maps,
selected views, and prompts enter the second branch. The dual-branch pipeline generates views aligned with camera location and attributes
like shape and size propagated from depth. It uses a regularized batch-aware self-attention in the U-Net. Though visualized in pixel space,
in practice we work within latent space.

view to view. The first two challenges are addressed by
DreamTime [9] through the substitution of time-based sam-
pling with non-uniform sampling, aligning the sampling
process with NeRF optimization. However, it still faces
challenges with object-consistency. Collaborative Score
Distillation [11] proposes a generalization of DreamFu-
sion’s framework by modifying the objective function to in-
clude multiple samples of the same scene, yielding 3D syn-
thesis with object consistency maintained across multiple
views. Meanwhile, 3DFuse [26] obtains and injects coarse
view-specific depth information in a pre-trained LDM from
the generated image and optimized prompt embedding to
tackle 3D incoherence. On the other hand, SparseFusion
[38] presents a two-stage approach to address the issue of
3D inconsistency. The process initially employs a view-
conditioned LDM to obtain a distribution over possible im-
ages given reference views and a random query viewpoint.
Next, distillation is applied aimed at mode seeking, which
yields a 3D representation specific to an object.

Diffusion-based novel view and multi-view genera-
tion. In this stream of approaches [12, 27, 31] geometry
information is directly incorporated into a pre-trained LDM
conditioned on either a reference image or text and fine-
tuned to facilitate novel view or multi-view synthesis. On
the one hand, Zero-1-to-3 [12] tackles novel view synthesis
given a condition view and a relative viewpoint by inject-
ing camera information into a pre-trained LDM via cross-
attention modules and concatenating the given input view
with the image being denoised to obtain object-consistency
across viewpoints. On the other hand, a correspondence-
aware attention mechanism is introduced by MVDiffusion
[31] between the modules of the U-Net, aiming to yield
view-consistent images. Additionally, in MVDREAM [27],
the authors condition the diffusion process on the camera
extrinsic matrix and use 3D attentions with simultaneous

training on the LAION dataset [25].

3. Method
This section begins with a problem definition of control-
lable multi-view synthesis that allows simultaneous con-
trol over text, depth, and perspective. Then, each branch
of the proposed DGBD multi-view generation method is
described: the perspective branch and the non-perspective
branch.

3.1. Controllable Multi-View Generation

Controllable multi-view generation aims at synthesizing an
image aligning with the given prompt and propagating the
given depth information from the first view and the percep-
tive information from the second view. Formally, given a
depth map D1 ∈ R1×H×W from the first view and cam-
era location V2 ∈ R3 from the second view, the proposed
pipeline generates an output image X2 ∈ R3×H×W from
the second view coherent with the shape and size informa-
tion of the given depth and viewpoint from camera location
where H and W are the height and width of the depth map.

The naive approach of training both branches from the
beginning does not produce satisfactory results: neither the
perceptive nor the non-perspective information is propa-
gated to the generated output. Hence, we introduce a two-
stage dual-branch training strategy. An overview of the
proposed pipeline’s training is shown in Fig. 2. In the
first stage, the perspective branch is fine-tuned from Stable-
Diffusion-v1-5 (SD-v1-5) [23] by conditioning the model
on text prompt, perspective information and using regular-
ized batch-aware self-attention for multi-view consistency
(see Sec. 3.3). In the second stage, inspired by ControlNet
[36], a trainable copy of the latter without perspective in-
jection layer is made and fine-tuned using depth guidance.
Specifically, in the second stage of the training, a batch of
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(a)  horizontal rotation (b) vertical rotation

Figure 3. Visual results of the perspective branch of the proposed DGBD framework on different prompts. Given a textual prompt and
camera locations (five in this case), this branch generates images of the same object consistently from the given viewpoints.
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Figure 4. The proposed RBA module. The RBA module com-
prises regular self-attention and batch-aware self-attention with a
stochastic switch.

images from the same object is given to the first and second
branches, corresponding camera locations are given to the
first branch, and shuffled depth maps are given to the second
branch. At inference, the influence of the depth map can be
controlled via depth control scale similar to how condition-
ing maps are controlled in ControlNet. An ablation study is
provided in Sec. 4.5 to demonstrate the effect of the depth
control scale with additional results in the appendix.

3.2. Perspective Branch

The goal of the perspective branch is to generate a view con-
ditioned on the given text and camera location. Formally,
given a prompt y and a viewpoint V ∈ RN×3, this branch
aims to train a model, f , to generate views of the same ob-
ject from N camera positions consistent with the text:

X̂ = f(y, V ), (1)

where X̂ ∈ RN×3×H×W . Additionally, the object should
be coherent across the viewpoints. In this branch, pre-
trained SD-v1-5 is fine-tuned after modifying its U-Net to
handle view consistency and geometry. It is hypothesized
that the knowledge of SD-v1-5 trained on millions of 2D

Toy action figure of a man in a suit of armor with a sword

Winged Toy Pony

Figure 5. Diversity of generated samples of the perspective branch.
The camera location and caption are fixed.

images can be transferred to tackle geometry-aware multi-
view generation. The following two modifications are ap-
plied to the U-Net of SD-v1-5. First, regularized batch-
aware self-attention is introduced and all self-attention
modules in the U-Net are replaced to tackle multi-view con-
sistency and generalization. Second, geometry control is
introduced by conditioning the model on the camera posi-
tion using cross-attention. Fig. 3 shows some results of the
perspective branch (see the appendix for additional results).

3.3. Choice of self-attention: regularized batch-
aware self-attention

The proposed regularized batch-aware self-attention (RBA)
is shown in Fig. 4. The RBA module consists of reg-
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Zero-1-to-3 MVDREAM Ours

Image ✓ ✗ ✗
Text ✗ ✓ ✓

Perspective ✓ ✓ ✓
Non-Perspective ✗ ✗ ✓

Table 1. Controllability analysis among state-of-the-art novel view
and multi-view generation methods and ours.

ular self-attention and batch-aware self-attention. Regu-
lar self-attention module [32] in the U-Net architecture of
SD-v1-5 is defined as follows. Given a feature map x ∈
RB×(H×W )×C , where B is the batch-size, H and W are
the height and width of the feature map, and C is the num-
ber of channels, it is first linearly projected to query, key
and value Q,K, V ∈ RB×(H×W )×C , and then the output
of the self-attention module is computed as follows:

Self-Attn(Q,K, V ) = Softmax(
QKT

√
C

)V. (2)

In the case of batch-aware attention, the feature map is
x ∈ R1×(B×H×W )×C and self-attention is computed sim-
ilar to Eq. (2). Hence, in the case of batch-aware atten-
tion, each feature map in a batch attends itself and all other
feature maps in a batch. RBA applies batch-aware atten-
tion with probability p and regular attention with probability
1− p. Thus, the RBA module is formalized as:

RBA(B,R) = ZB + (1− Z)R, (3)

where B and R are the outputs of batch-aware self-
attention and regular self-attention, and Z ∼ Bernoulli(p).
In our experiments, we empirically set p = 0.1 during train-
ing and find that it helps with view consistency and gener-
alization. During the inference stage p is set to 1.

It is empirically discovered that training only with batch-
aware self-attention results in generation of box-like objects
and forgetting of concepts. Additionally, the generated re-
sults are not consistent with the given prompt. On the con-
trary, training with the proposed RBA module avoids over-
fitting, introduces multi-view consistency, and improves
convergence. An ablation study on RBA is presented in
Sec. 4.5. On the implementation level, all components of
the RBA module are initialized and fine-tuned from the reg-
ular self-attention modules of SD-v1-5.

Additionally, replacing the regular self-attention mod-
ules in SD-v1-5’s U-Net with the proposed RBA module
keeps the characteristic of generating diverse results across
samples of the original model. Fig. 5 shows two examples
with fixed camera position, prompt, and different latents.
The generated samples differ in detail and are diverse.

Zero-1-to-3 MVDREAM Ours

PSNR ↑ 10.30 9.69 10.90
SSIM ↑ 0.67 0.62 0.67
LPIPS ↓ 0.26 0.33 0.27

A-LPIPS ↓ 0.15 0.24 0.10
CLIPScore ↑ NA 20.98 21.27

Table 2. Quantitative comparison among state-of-the-art diffusion-
based novel view and multi-view generation methods and ours
with zero depth control scale (i.e. no depth guidance) on a ran-
dom sample of 400 objects from Google Scanned Objects dataset.
NA stands for not applicable.

Geometry control: The U-Net of SD-v1-5 does not pos-
sess information about the geometry of the generated sam-
ples. To introduce perspective control over the generated
examples the absolute camera location, V , is concatenated
with the textual embedding and linearly projected to the di-
mensionality of the embedding space of the text and then
injected into the model via cross-attention similar to how
Zero-1-to-3 [12] injects relative camera position with the
given condition view. The camera position is expressed in a
spherical coordinate system. We assume the object’s center
is the origin and the camera faces it.

3.4. Non-perspective Branch

In the second branch of DGBD, non-perceptive control
is introduced to SD-v1-5. After training the perspective
branch, a trainable copy of the U-Net’s encoder without
the geometry control is made and it is fine-tuned by adding
depth guidance. In this stage of the training, the objective
is to propagate non-perceptive information from the given
depth D1 and generate a view aligning with the given view-
point V2. During training, views are sampled from the given
object for a batch and they are input to the first branch along
with prompts and camera locations. Additionally, the depth
maps are shuffled and they are input to the second branch
with a batch of views and prompts. Specifically, the depth
maps are fed to the learnable encoder mirroring the method
in Controlnet with zero convolution layers. The output of
the dual-branch pipeline is a batch of views where each el-
ement of the batch possesses non-perspective information
such as shape and size from the given depth maps and aligns
with the given camera location. Fig. 1 provides results of
the DGBD method (see the appendix for additional results).

4. Experiments
4.1. Dataset

The proposed DGBD pipeline is fine-tuned on a subset of
Objaverse [1], a large-scale dataset of 3D objects, with
prompts provided by Cap3D [13]. Almost 413K objects are
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Zero-1-to-3

MVDREAM

Ours

Original Views

3D model of an orange android Razer Kraken Gaming Headset in Black and Green 3D model of Nike Air Zoom basketball shoes with purple and green accents

Figure 6. Visual comparison of baseline diffusion-based novel view and multi-view synthesis methods and ours with zero depth control
scale (i.e. no depth guidance). Our method achieves better visual results with high-fidelity than Zero-1-to-3 and similar or more detailed
and illuminated objects (e.g. headset) than MVDREAM. Input to Zero-1-to-3 is indicated using a dashed outline.

used for training. For each object, 32 views are rendered.
The polar angle, azimuth angle, and the distance from the
center are uniformly sampled from [60, 120], [0, 360] and
[0.8, 1.5]. The horizontal field of view is fixed to 49.1◦. All
images are rendered at 512 × 512 resolution with random
area lighting using the BLENDER EEVEE engine. Our
dataset comprises roughly 13M images. Depth maps are
approximated using MiDaS [22].

4.2. Baselines and Evaluation Metrics

In this section an analysis is presented, encompassing as-
pects of controllability, quantitative and qualitative evalu-
ation with a focus on comparing the proposed DGBD ap-
proach to state-of-the-art diffusion-based novel view and
multi-view generation methods: Zero-1-to-3 [12] and MV-
DREAM [27].

A random sample of 400 objects are used from Google
Scanned Objects (GSO), a dataset of scanned photo-
realistic items [3]. For each object, five images are rendered
from different angles covering frontal and lateral views.
Cap3D is applied to obtain text prompts. For Zero-1-to-
3 an original view is input to the method. v1.5 model re-
leased by MVDREAM is used for a fair comparison. The
following five azimuth angles are used in MVDREAM and
our method: 330◦, 270◦, 0◦, 90◦, 180◦. The elevation angle
is fixed to 90◦ for our method which corresponds to 0◦ in
Zero-1-to-3 and MVDREAM. The corresponding azimuth
angles in Zero-1-to-3 are −30◦,−90◦, 0◦ (given as an in-
put), 90◦, 180◦. In this section, the depth control scale is

set to zero (only the perspective branch works at inference),
unless mentioned otherwise. Thus, the results obtained by
our model are fairly comparable with MVDREAM. We also
include a comparison with Zero-1-to-3 as, to the best of
our knowledge, it is the first known work fine-tuning a pre-
trained diffusion model for novel view synthesis. The fol-
lowing metrics are computed for quantitative comparison:
PSNR, SSIM [34] and LPIPS [37]. A-LPIPS [8] is reported
as an assessment of multi-view consistency among the gen-
erated views. Moreover, CLIPScore [5] is used to compare
text-to-image alignment of our method and MVDREAM.

4.3. Comparison with Baselines

Tab. 1 presents a controllability analysis between the base-
lines and the proposed method. Zero-1-to-3 conducts novel
view synthesis given only an input view and hence offers
control over the input image and perspective. MVDREAM
provides control over a prompt and camera position. Al-
ternatively, DGBD affords guidance over perspective, non-
perspective (shape and size), and textual information.

Tab. 2 demonstrates a quantitative comparison between
the baselines and ours on the GSO dataset. PSNR, SSIM,
and LPIPS are computed by comparing the generated out-
put against a ground truth render from the same viewpoint.
To get the A-LPIPS score, LPIPS is calculated and averaged
across five adjacent views of the same object. The proposed
DGBD pipeline achieves better PSNR and A-LPIPS values
and similar SSIM and LPIPS scores in comparison to base-
lines. Also, DGBD suppresses MVDREAM by CLIPScore.
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Input Depth Target View 0 0.2 0.5 0.8 1

Depth Control Scale

A 3D cartoon fox character with a long tail, wearing a red shirt, and holding a sword

A small blue 3D toy robot with glasses and a black eye, resembling a penguin

Figure 7. Effect of depth control scale of the proposed DGBD framework. Given a textual caption, input depth, and the camera viewpoint
of the target view, the method generates an output view corresponding with the given prompt, perceptive and transferring shape and size
information from the depth map, and as the depth control scale increases the propagation of this information in the generated view increases.

(c) RBA

(b) Batch-Aware 
Self-Attention

3D model of a hay ball a 3d model of an acoustic guitar a 3d model of a red motorbike

(a) Regular Self-Attention

Figure 8. Ablation study on the proposed RBA module. (a) Regular self-attention lacks multi-view consistency. (b) Training with batch-
aware self-attention results in catastrophic forgetting. (c) Training with RBA improves multi-view consistency and generalizability. In this
example, the depth control scale is set to zero (i.e. no depth guidance).

Fig. 6 demonstrates a qualitative comparison among the
baseline methods, ours and the original renders. The in-
put view to Zero-1-to-3 is indicated using a dashed outline.
The results generated with the proposed DGBD method
with zero depth control scale have higher visual quality
with more details, shadows, and light information and bet-
ter multi-view consistency than Zero-1-to-3. In certain in-
stances, the proposed DGBD method yields output views
with highly detailed objects and more light information
such as in the example of shoe and headset than MV-
DREAM. Conversely, MVDREAM pays more attention to
details available in the text (e.g. Nike logo). In some
cases, it is challenging for MVDREAM to generate a view

from an oblique angle as in the ”orange android” example.
Additionally, in our experiments, we notice that both MV-
DREAM and the proposed DGBD pipeline can hallucinate
the given camera location and generate the same view given
two different camera locations in a batch.

4.4. Influence of depth control scale

Fig. 7 (see additional results in the appendix) provides a vi-
sual comparison of the generated results by the proposed
method with different depth control scales (from 0 to 1) on
a validation set from Objaverse. For smaller values of the
depth control scale, the influence of the given depth map
reduces and the method has more freedom in generating an
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A 3D rendering of a square table with a wooden top and metal legs 3D model of a large gray Stanley toolbox with yellow latches and lid

Input Depth

Original Views

Inference with ControlNet 
depth model

Ours

Figure 9. Ablation study on the proposed DGBD pipeline. Combining its perspective branch unwittingly with the ControlNet depth model
at inference generates inconsistent views relying on depth and disregarding the provided camera location. The proposed pipeline introduces
view consistency, transfers shape, and size attributes from the depth map, and aligns with the given viewpoint. In this experiment, the depth
control scale is set to one.

image aligning with the prompt and camera location. Par-
ticularly, when the depth control scale is set to zero, the
method performs multi-view generation without consider-
ing the structural attributes form the depth map. Higher
depth control scale values intensify depth map impact, prop-
agating shape and size to the output view.

4.5. Ablation Study

An ablation study is conducted in this section on two pri-
mary components of the proposed method on a validation
set from Objaverse. First, the proposed RBA module is jux-
taposed with regular and batch-aware self-attention (Fig. 8).
The regular self-attention module inherently lacks multi-
view consistency (Fig. 8 (a)). This is vividly exempli-
fied in the ”ball” and ”guitar” cases. Training the model
with batch-aware self-attention results in concept forget-
ting and generation of box-like objects without considering
the given prompt (Fig. 8 (b)). On the other hand, train-
ing the model using the proposed regularized batch-aware
self-attention with p = 0.1 improves generalizability and
introduces multi-view consistency (Fig. 8 (c)).

Second, the proposed DGBD pipeline is compared
against combining the perspective branch with ControlNet
depth model [36] during inference (Fig. 9). Naively com-
bining the perspective branch with the ControlNet depth
model does not handle the proposed problem of control-
lable multi-view synthesis. First, the generated output fol-

lows the given depth and ignores the perspective informa-
tion. Second, the generated views are not consistent. In
contrast, the generated output by the proposed dual-branch
method successfully propagates shape and size information
from the input depth and generates views aligning with the
given perspective. Moreover, the proposed pipeline ensures
multi-view consistency.

5. Conclusion
This paper introduces DGBD, a novel controllable multi-
view generation method. DGBD is a dual-branch pipeline
that adjusts perspective and non-perspective attributes con-
currently. Given a prompt, depth map from one view, and
camera position of another view, DGBD generates an out-
put view with shape and size propagated from the depth
map and aligns with caption and perspective. The perspec-
tive branch of DGBD is fine-tuned from Stable Diffusion, a
text-to-image model, with two key modifications: replacing
self-attention modules with novel regularized batch-aware
self-attention for multi-view consistency and introducing
geometry control via cross-attention. In the non-perspective
branch, an encoder copy is created, omitting the geometry
projection layer, and fine-tuned using shuffled depth maps
for alternative view generation. Our approach achieves su-
perior or comparable results, validated through qualitative
and quantitative assessments. Our future work will extend
DGBD to controlling multi-view generation in the wild.
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