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Abstract

Recent works in hand-object reconstruction mainly focus
on the single-view and dense multi-view settings. On the
one hand, single-view methods can leverage learned shape
priors to generalise to unseen objects but are prone to inac-
curacies due to occlusions. On the other hand, dense multi-
view methods are very accurate but cannot easily adapt to
unseen objects without further data collection. In contrast,
sparse multi-view methods can take advantage of the ad-
ditional views to tackle occlusion, while keeping the com-
putational cost low compared to dense multi-view methods.
In this paper, we consider the problem of hand-object re-
construction with unseen objects in the sparse multi-view
setting. Given multiple RGB images of the hand and ob-
ject captured at the same time, our model SVHO combines
the predictions from each view into a unified reconstruction
without optimisation across views. We train our model on
a synthetic hand-object dataset and evaluate directly on a
real world recorded hand-object dataset with unseen ob-
jects. We show that while reconstruction of unseen hands
and objects from RGB is challenging, additional views can
help improve the reconstruction quality.

1. Introduction
Reconstructing hand and object shapes from visual in-

put has a lot of applications ranging from AR/VR to
robotics [17, 21, 23, 29]. For example, in a human-to-robot
handover scenario, the retrieved shapes help guide the robot
to estimate possible grasps on the object while avoiding
contact with the human hand. In this case, the accuracy
of the reconstruction method is important, as a poorly es-
timated object shape will cause the grasp to fail, while a
poorly estimated hand shape can cause injury to the human
if the robot is unsure where the human hand is. Moreover,
if the human attempts to handover an unseen object to the
robot, the robot should be able to adapt to this new object
on the fly without additional data collection to ensure the
naturalness of the interaction.

Joint hand-object shape reconstruction from RGB has
seen impressive progress in recent years [3–5, 7, 11, 13, 25,
30] due to the availability of high-quality parametric hand
models [20] and neural implicit representations [18] for
modelling complex 3D shapes. However, these methods are
still rarely applied in the human-to-robot handover scenario
either due to poor reconstruction quality or large data col-
lection requirements.

Recent hand-object shape reconstruction methods can be
separated into two categories, namely single-view or dense
multi-view methods. Single-view methods can reconstruct
hand-object shapes in a single forward pass by leveraging
learned 3D shape priors from large hand-object interaction
datasets [3–5, 7, 11, 13, 25, 30]. However, predicting the
shape of unknown hands and objects from a single-view
is challenging as the diversity of the hand poses and ob-
ject shapes is vast. Moreover, when the object or hand is
occluded or under motion blur, the reconstruction quality
suffers greatly [4, 5, 30].

Using multiple views can alleviate the problem of oc-
clusion by providing redundancy in the input. Neural im-
plicit shape representation enables detailed reconstruction
of unknown shapes from densely captured images of the ob-
ject from multiple viewpoints [10, 19, 24, 31]. However, the
reconstruction suffers where the object is occluded, which
is common in the hand-object interaction scenario. More-
over, obtaining and optimising on dense multi-view images
is time consuming and is not suitable in scenarios where the
model has to adapt quickly to an unseen object.

Sparse multi-view methods provide a balanced approach
between single-view and dense multi-view methods but has
not been investigated in the hand-object reconstruction task.
Compared to single-view methods, the additional views can
help alleviate issues caused by occlusion or challenging
poses. On the other hand, the data requirement is lower
compared to dense multi-view methods, which enables ap-
plications where the model has to reconstruct unseen ob-
jects without further data collection or training.

In this paper, we propose SVHO, a sparse multi-view
method for hand-object reconstruction. Our proposed
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Figure 1. Single-view methods suffer from occlusion, while dense multi-view methods require a large amount of collected images. We
propose to use sparse multi-view input to improve the reconstruction quality while keeping the data requirements low.

method takes as input the RGB images and the correspond-
ing global hand poses from each view. The model predicts
the hand and object shapes independently from each view
and combines them to form a final reconstruction. We train
our model entirely on the synthetic dataset ObMan [11] and
evaluate on the real-world recorded dataset DexYCB [2]
with unseen objects.

In summary, our contributions are:

• We propose a sparse multi-view setting for hand-object
reconstruction

• We analyse our proposed sparse multi-view recon-
struction method on up to 8 input views of unseen ob-
jects

2. Related works
2.1. 3D shape representations

Early works in hand-object shape estimation focused on
using triangular meshes as a representation for the hand and
object shape [11, 25]. The MANO model [20] provided a
low dimensional representation that can be decoded back
to a complete hand mesh efficiently. On the other hand,
predicting meshes for unknown objects is challenging, es-
pecially for non genus 0 shapes [9]. Neural implicit shape
representations [6, 18] have recently emerged as a popular
choice for representing shapes in 3D due to their versatile
capabilities of representing complex shapes, and have been
adopted in hand object reconstruction works [3–5, 13, 30].

2.2. Single-view hand-object reconstruction

Works on hand-object shape reconstruction mainly fol-
low the encoder-decoder architecture. An image encoder
encodes the input image to the latent space, and then a 3D
shape decoder maps the latent vectors to triangular meshes
or signed distance fields (SDFs). A dual branch network
was proposed in [11], each with a ResNet-18 [12] encoder
pre-trained on ImageNet [22] to estimate features for the
hand and object respectively. The hand features are passed
through a fully connected layer to estimate the shape and
pose parameters for the MANO [20] hand model and scale
and translation parameters to help determine the size of the
object. The object features are passed to AtlasNet [9] to es-
timate the object shape as an atlas of mesh surfaces in nor-
malised vertices. A contact loss was also proposed to en-
courage contact between the hand and the object. However,
there is no exchange of information between the hand and
object shape estimation branch, which both contains impor-
tant information for each other’s task (e.g. estimating con-
tact surfaces).

Later works explored the idea of sharing features be-
tween the hand and the object to improve the reconstruction
quality. Relevant information between the hand and object
can be shared via attention-guided graph convolution to im-
prove both the estimation of the hand and object shape in
an iterative manner [25]. However, the approach requires
calculating the attention value of a fully connected graph
formed from the hand and object mesh in multiple itera-
tions, which can be time consuming. The speed and accu-
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racy of the graph convolution architecture can be improved
by introducing a dense mutual attention mechanism [27].
This removes the need to optimise the shapes in iterative
steps. However, the features are shared in the global latent
space, which can be difficult to optimise.

Several works have improved reconstruction results by
estimating local shape features instead of a single global la-
tent feature [4,5,30]. The estimation of the object shape can
be conditioned on the estimated hand shape [30]. After esti-
mating the hand shape using an off-the-shelf estimator, the
object is reconstructed in the hand-wrist frame. Each query
3D position is projected back to the 2D image to retrieve the
corresponding image features and the distance to each hand
joint is encoded as additional features for the reconstruc-
tion of the object. Similar projection based feature retrieval
was also proposed in [4, 5], while also estimating object
poses in addition to hand poses as condition to the shape
reconstruction process. Most recently, a NeRF-based hand-
object reconstruction model was proposed for single-view
reconstruction which can be trained directly from multi-
view images using photometric loss and does not require
3D ground-truth shape as supervision [7].

2.3. Multi-view hand-object reconstruction

Multi-view reconstruction of hand and object relies on
the optimisation of the predicted shape and appearance
based on densely collected images with predicted hand
global pose [10,19,24,31]. NeRF [15] based methods were
proposed to represent the hand and object shape [10, 24].
The pose and shape of the hand and object are optimised
by minimising the photometric loss between the rendered
colour and the observed colour. These methods require a
prerecorded video of the interaction and are not able to in-
fer the shape in a new view. Moreover, the occluded parts of
the object cannot be reconstructed as it is never observed by
the camera. A diffusion-based prior was proposed to esti-
mate the geometry of the parts occluded in the video [31]. A
model was proposed to generalise to sparse novel views at
test time [19]. However, the model has to be trained offline
first with sparse view images of the same hand and object
separately.

3. Proposed method
We aim to reconstruct the shape of the hand and the

shape of the hand-held object from sparse multi-view im-
ages. We first predict the hand and object shape from
each camera view independently in the canonical coordi-
nate space. We then combine them to obtain a single final
output.

We train autoencoders to encode hand and object shapes
independently in the canonical coordinate space. We train
a Patchwise VQ-VAE (P-VQ-VAE) [16] to autoencode the
hand and object into 3D discrete latent cubes with cor-

Figure 2. We first encode hand and object shape independently
using Patchwise VQ-VAE (P-VQ-VAE). This provides a compact
representation to train our hand object shape prior.

responding shape codebooks. This allows us to treat the
shape estimation problem as a classification problem with
the classes being the codebook indices.

During test time, we obtain 2D features from the input
image. We then form a 3D feature grid by projecting the 3D
points in the canonical coordinate space to the image space
using the global hand pose. We reconstruct the hand and
object shapes in the canonical coordinate space and com-
bine the classification probabilities of the different views.
The final mesh is obtained using the trained decoder and
the marching cubes algorithm [14].

3.1. Autoencoding hands and objects

We train autoencoders to map the 3D shape of the hand
and the object into 3D discrete latent cubes Zh ∈ N8×8×8

and Zo ∈ N8×8×8, respectively. We use P-VQ-VAE [16]
as the encoder architecture. The input SDF R128×128×128

is first divided into 8× 8× 8 = 512 patches of R16×16×16.
Each patch is encoded individually with 3D convolutional
layers into a latent vector ze ∈ RV which combine to give
the continuous latent cube of Z ′ ∈ R8×8×8×V . We then
learn a codebook B ∈ RK×V with K elements of ek ∈ RV ,
and discretize the continuous latent cube by mapping each
patch’s latent vector ze ∈ RV to its nearest element ei in
the codebook [26].

z = ei, where i = argmink||ze − ek||2, (1)

where i is the index of the element ei in the codebook near-
est to the encoder output ze, and z ∈ RV is the mapped la-
tent code. We save the extracted index i for each patch and
reshape them back into the 3D cube Z ∈ N8×8×8. Note
that we omit the subscript h and o as the same process is
repeated for the hand and object.

By learning the codebook B we obtain a compact dis-
crete latent representation of the hand and object shape.
This representation preserves the local shape information of
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Figure 3. Our pipeline for hand object shape reconstruction from multi-view images. Predicted probabilities from individual views are
averaged to get the final prediction.

the hand and object as each latent code corresponds to the
local shape input only. Together, the latent cube is decoded
jointly to ensure the consistency of the global shape. The
continuous codes Z ′ ∈ R8×8×8×V are first retrieved using
the codebook B and discrete latent cube Z and enhanced
with 3D convolutional layers across neighbouring patches
to ensure spatial consistency.

We learn a decoder D to map latent codes e and 3D
position p = (x, y, z) to predicted SDF value ŝ. We
use a 5-layer MLP decoder to be consistent with pre-
vious works [4, 5]. To retrieve the latent code e, the
mixed codes are upsampled using trilinear interpolation to
R128×128×128×V , and the corresponding code is retrieved
using the query 3D position p. We first obtain the corre-
sponding latent cube index (i, j, k) = M(p) with the in-
dexing function M . We then retrieve e = Z ′

ijk as the latent
code for position p. We optimise the loss LAE to train the
autoencoders:

LAE = ||s− ŝ||+ ||sg[ze]− e||22 + β||ze − sg[e]||22, (2)

where s and ŝ are the ground-truth and predicted signed dis-
tance field (SDF) values respectively, sg is the stop gradi-
ent operator, and e is the nearest element in codebook B
to encoder output ze. The first term minimises the differ-
ence between the reconstructed and input shape, while the
second and third terms are the vector quantisation loss and
commitment loss [26].

3.2. Reconstruction from multi-view images

After the autoencoders are trained, we run the encoder on
the training set to extract the training pairs {I, Zh, Zo, π},
where I is the RGB image and π is the ground-truth trans-
formation from the camera coordinate frame to the hand-
wrist coordinate frame.

We first train our model on the single-view reconstruc-
tion task. We use ResNet-18 [12] to encode the input im-

age into 2D features. Spatially aligned 3D features are re-
trieved by projecting the query 3D point back to the 2D im-
age space using the hand pose. We treat the reconstruction
task as a classification task with the codebook indices as the
classes [16]. We use 3D convolutional layers to process the
spatially aligned 3D features and output P̂ ∈ R8×8×8×K

which corresponds to the predicted probabilities of each
codebook index at each location in 3D space. We train the
model using a weighted cross-entropy where a weight of
0.25 is given to the index corresponding to an empty space
and a weight of 0.75 is given to all other indices equally as
the dataset is biased towards empty space.

To reconstruct the hand and object shapes from multi-
ple views C with input images I = {I1, ..., I|C|}, we first
obtain independent reconstructions from each camera view
c. We aggregate the results across different views as P by
averaging the predicted probabilities of the selected views.

P =
1

|C ′|
∑
c∈C′

P̂c, (3)

where C ′ ⊆ C is the subset of views selected for recon-
struction. After P is obtained, we select the codebook in-
dex i at each location with the highest predicted probability
to form the predicted latent cube Ẑ. We retrieve the con-
tinuous latent cube Ẑ ′ by indexing the codebook B and we
use the trained decoder D to obtain the predicted SDF val-
ues ŝ. Finally, we obtain the reconstructed mesh RC′ using
marching cubes [14] from the predicted SDF values.

4. Experiments
4.1. Datasets

ObMan [11] We train our model on the synthetic only
dataset ObMan containing 8 object categories (bottles,
bowls, cans, jars, knifes, cellphones, cameras and remote
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Figure 4. Autoencoder reconstruction of 3D hand and objects

controls) from ShapeNet [1]. Each sample contains an
annotated hand grasp with the corresponding ground-truth
hand and object mesh. We follow AlignSDF [5] and discard
the samples with too many double-sided triangles, resulting
in a training set of 87190 samples and a testing set of 6285
samples.

DexYCB [2] We use DexYCB as a testing dataset that in-
cludes multi-view video recordings of humans performing
grasping of objects. The dataset contains 20 unique objects
from the YCB-Video dataset [28]. Following AlignSDF [5],
we only consider the samples in the S0 split where the min-
imum distance between the hand and the object mesh is
less than 5mm. For each object, we randomly sample 100
frames, where each frame contains 8 RGB images from the
8 camera views, the ground-truth hand and object mesh, and
the annotated hand pose. This results in a total of 2000 sam-
pled frames, with 16000 images.

4.2. Implementation details

Our goal is to mimic the scenarios in human-robot in-
teractions where the robot has to adapt quickly to unseen
objects grasped by humans. Therefore, we train our model
entirely on the synthetic ObMan dataset, and we evaluate
the performance on the DexYCB dataset where the objects
used are unseen.

We first train our P-VQ-VAE to autoencode hand and
objects independently on the training set of ObMan. We
use a codebook size of 512 with a latent code of length
128, and we sample the hand and object SDF as a truncated
SDF (TSDF) of size 128 × 128 × 128. Due to instability
in the codebook training, we perform codebook restart [8]
on codes that are not used every 25 batches. We double this
duration every time the coodebook is restarted. Once the
model is trained, we run the encoders on the training set to
obtain the latent cube Z for each sample.

We then pair these sampled latent cubes Z with their cor-
responding RGB image and global hand pose to form the
training set for the image reconstruction model. Our image
reconstruction model outputs the probabilities for each en-

Table 1. Results for autoencoding hand and object shapes (CD -
Chamfer distance; FS - F-score)

CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑

0.015 0.798 0.999 0.437 0.822 0.953

try in the codebook at each location in the latent cube. We
choose the predicted codebook index with the highest prob-
ability to perform the reconstruction. We retrieve the con-
tinuous latent cube Z ′ from the codebook and use marching
cubes to obtain the final mesh at the 0 level set.

4.3. Metrics

Following gSDF [4], we first align the predicted and
ground-truth hand mesh with the global hand pose. The
object meshes are transformed also using the global hand
pose. We use Chamfer distance (cm2) and F-score to eval-
uate the reconstruction quality of the predicted hand and
object meshes.

4.4. Results

4.4.1 3D shape autoencoding

We evaluate our P-VQ-VAE autoencoder on the testing set
of ObMan. Our model takes as input the ground-truth TSDF
and outputs the reconstructed TSDF of the same size. We
found that our autoencoder can accurately reconstruct hands
and objects of various poses and shapes (Table 1).

Figure 4 shows example visualisations of hand and ob-
ject reconstructions from the object classes bottles, can, re-
mote and knife. Since the latent codes extracted by the
shape encoder will act as a ground-truth for the image re-
construction method, it is important to ensure the quality
of the autoencoder’s reconstruction as it acts as the upper-
bound for our image reconstruction model.

4.4.2 Multi-view RGB reconstruction

We evaluate our multi-view hand-object shape reconstruc-
tion model on the DexYCB dataset. To analyse the impact

807



(a) Hand reconstruction

(b) Object reconstruction

Figure 5. Average F-score and standard deviation across 6 runs for
(a) hand and (b) object reconstruction when varying the number of
input views

of the number of views on the reconstruction quality, we
vary the number of input views to the model from 1 to 8. For
each sample, we randomly select the corresponding number
of views from the 8 available views. We repeat the exper-
iment for each number of views 6 times and we report the
mean and standard deviation across the runs.

Figure 5 shows the average Chamfer distance and F-
score of hand and object with varying numbers of views.
For the hand, the F-score increases consistently as the num-
ber of views increases. For the object, the F-score peaks
at 2 views and decreases as the number of views increases
further. The Chamfer distance follows the same trend but
in reverse as lower Chamfer distance is better. Since the
images are centered around the wrist, the model can ef-
fectively take advantage of the multiple views to improve
the features for hand reconstruction since the position of
the hand in the image is known. However, as the number
of views increases, other objects in the scene can distract
the model from recognising the target object being grasped.
Thus, more views can actually negatively impact the recon-
struction quality of the object. This issue can be mitigated

Figure 6. Average F-score across 6 runs per object when varying
the number of input views

by introducing a hand-object segmentation model, to allow
our reconstruction model to focus on the target object only,
and improve the object reconstruction quality with the in-
creasing number of views.

We further analyse the F-score per object with varying
numbers of views in Figure 6. We observe that the recon-
struction quality of each object changes differently to the
increasing number of views. Objects that have good recon-
struction quality at a single-view benefits the most when the
number of views increases, while objects that have lower
reconstruction quality become worse when the number of
views increases.

We also observe that objects that stand out from the
background can benefit the most from the increasing num-
ber of views, for example mustard bottle, power drill and
foam brick. This further supports the need for hand-object
segmentation masks to allow our reconstruction model to
fully take advantage of the multiple views when recon-
structing the object.

We show additional qualitative results in Figure 7. For
the gelatine box in the first example, we observe that the
first view used I1 has a cluttered background with colours
similar to that of the gelatine box. As the model receives
the second view I2 and third view I3, the reconstruction
improves as the object can be clearly separated from the
dark background. However, further increasing the number
of views causes the reconstruction to deteriorate, as more
and more objects appear in the background. Similar issues
can be observed in the fourth view I4 and the sixth view
I6 of the large marker and the banana as the target object
blends with the background or other objects in the scene.
Self occlusion by the hand on the object can also cause the
reconstruction to deteriorate especially for smaller objects.
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Figure 7. Qualitative reconstruction results from multi-view RGB. The top row shows the 8 views used in the reconstruction. The bottom
row shows (from left to right) the reconstruction obtained using 1 to 8 views.

5. Conclusion

In this paper, we tackled the challenging problem of
sparse multi-view reconstruction of unseen (hand-held) ob-
jects. We showed that our model can take advantage of the
additional information from multiple views for reconstruc-
tion. However, in cluttered scenes, increasing the number
of views may negatively impact the reconstruction quality
of the object. Our future work includes the introduction of
a hand-object segmentation model as a pre-processing step
for the model to better take advantage of the multiple views.

Acknowledgement

This project made use of time on Tier 2 HPC facility
JADE2, funded by EPSRC (EP/T022205/1).

References

[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5

[2] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S Narang, Karl
Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A
benchmark for capturing hand grasping of objects. In CVPR,
pages 9044–9053, 2021. 2, 5

[3] Yujin Chen, Zhigang Tu, Di Kang, Ruizhi Chen, Linchao
Bao, Zhengyou Zhang, and Junsong Yuan. Joint hand-object
3d reconstruction from a single image with cross-branch
feature fusion. IEEE Transactions on Image Processing,
30:4008–4021, 2021. 1, 2

[4] Zerui Chen, Shizhe Chen, Cordelia Schmid, and Ivan Laptev.
gsdf: Geometry-driven signed distance functions for 3d
hand-object reconstruction. In CVPR, pages 12890–12900,
2023. 1, 2, 3, 4, 5

[5] Zerui Chen, Yana Hasson, Cordelia Schmid, and Ivan
Laptev. Alignsdf: Pose-aligned signed distance fields for
hand-object reconstruction. In ECCV, pages 231–248.
Springer, 2022. 1, 2, 3, 4, 5

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, pages 5939–5948,
2019. 2

[7] Hongsuk Choi, Nikhil Chavan-Dafle, Jiacheng Yuan, Volkan
Isler, and Hyunsoo Park. Handnerf: Learning to reconstruct
hand-object interaction scene from a single rgb image. In
ICRA, 2024. 1, 3

809



[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook
Kim, Alec Radford, and Ilya Sutskever. Jukebox: A gen-
erative model for music. arXiv preprint arXiv:2005.00341,
2020. 5

[9] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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