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Abstract

Most existing 3D point cloud analysis approaches em-
ploy traditional supervised methods, which require large
amounts of labeled data, and data annotation is labor-
intensive, and costly. On the other hand, although many ex-
isting works use either raw 3D point clouds or multiple 2D
depth images, their joint use is relatively under-explored.
To address these issues, we propose PointOfView, a novel,
multi-modal few-shot 3D point cloud classification model,
to classify never-before-seen classes with only a few anno-
tated samples. A 2D multi-view learning branch is proposed
for processing multiple projection images, and it contains
two sub-branches to extract information at individual im-
age level as well as among all six depth images. In addition,
we propose a multi-scale 2D pooling layer, which employs
various 2D max-pooling and 2D average pooling opera-
tions, with different pooling sizes. This allows fusing fea-
tures at different scales. The second main branch processes
raw 3D point clouds by first sorting them, and then using
DGCNN to extract features. We perform within-dataset and
cross-domain experiments on ModelNel40, ModelNet40-C
and ScanobjectNN datasets, and compare with six state-
of-the-art baselines. The results show that our approach
outperforms all baselines in all experimental settings and
achieve the state-of-the-art performance.

1. Introduction

With the rapid development and ever-increasing availability
of 3D sensing technology, point cloud analysis has attracted
increasing attention from the research community. 3D point
cloud data is employed in a wide range of applications, in-
cluding self-driving cars, unmanned vehicles, and robotics.

In recent years, many supervised learning approaches
have been proposed for point cloud analysis tasks, such
as point cloud classification, segmentation and comple-
tion. Based on the input modality, these approaches can
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Figure 1. Projection images of different objects of the same class,
missing different parts.

be broadly classified into 3 categories, namely volumetric-
based, point-based and multi-view-based methods [14].
Volumetric-based methods first transfer point clouds to a set
of voxels, and then use a 3D Convolutional Neural Network
(CNN) to extract features. Point-based methods utilize raw
point clouds as input. With multi-view-based approaches,
each 3D object is represented by multiple depth images,
which are obtained by projecting the raw 3D point cloud
onto planes from different angles.

However, supervised methods require large amounts of
labeled data for training, which limits their applicability,
since annotation is a costly and time consuming process.
In addition, when faced with unseen classes, these methods
cannot provide satisfactory performance. To address these
issues, few-shot learning (FSL) has been introduced. FSL
allows learning similarities and differences between sam-
ples instead of focusing on class-specific features, and thus,
allows a network to generalize to novel classes, with only
a few annotated samples for each unseen class. In FSL, a
sample in the query set is matched to a sample in the support
set, which contains a limited number of labeled instances.

Considering this matching nature of the problem, 3D
point clouds introduce additional challenges, since they
are often affected by occlusion, and suffer from missing
points. For instance, in Fig. 1, the top and bottom vases have
missing points on their left and right sides, respectively,
making the matching of the 3D point clouds more difficult.
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Yet, some of their 2D projection images, obtained from dif-
ferent view angles, still look similar, which will allow their
embeddings to be closer. This example and the further ev-
idence in [2] illustrate the advantages of using multi-view
images. Yet, point cloud projection process is influenced
by view angles and information is inevitably lost during the
process. Employing raw data as input can better preserve
the original spatial information and internal structure.

With the pros and cons of multi-view images and 3D
point clouds, it is a natural next step to exploit 3D point
cloud data and multi-view image data simultaneously to ob-
tain better 3D shape representation. In this paper, we pro-
pose PointOfView, a 2-branch backbone for few-shot (FS)
point cloud classification. An overview of our approach is
presented in Fig. 2. In the 3D point cloud learning branch,
we employ DGCNN [25] as the backbone, since it was
shown [28] that DGCNN outperforms other backbones in
3D FS point cloud classification. For the 2D multi-view
learning branch, we propose a novel, multi-view image pro-
cessing model with two sub-branches to extract information
at individual image level as well as among all six depth im-
ages (global information).

In addition to using two modalities, local features are
also of great importance for better classification. With FSL,
labeled data for each class is limited. Thus, it is essential
to extract more informative features from the limited data.
Hence, to discover intricate patterns, we propose two local
feature extractors, for 3D point cloud and multi-view image
processing, to extract more descriptive and distinguishing
local features. DGCNN uses EdgeConv to incorporate lo-
cal neighborhood information. With a similar motivation,
we also consider capturing local information to assist final
classification. Instead of simply using the points with maxi-
mum feature value in each strip/bin, as done in CMFF [27],
we propose sorting the point cloud first, after sorting the
point cloud along the gravity axis, we divide the points into
multiple strips. Then, by applying global max pooling and
average pooling in each strip, we can get local features from
semantically more meaningful parts of an object. In the 2D
multi-view learning branch, to better learn local informa-
tion, we propose a multi-scale 2D pooling method. ViewNet
and CMFF [2, 27] perform global max-pooling on each hor-
izontally split strip, and keep only the highest value features
from each strip, which will cause loss of spatial informa-
tion. In contrast, we employ 3-level 2D max pooling and
2D average pooling (4 × 4, 8 × 8, 16 × 16) on the whole
feature map, and then aggregate local features from various
scales at the end to learn more distinguishing local features.

Main contributions of this work include the following:
• We propose a novel network, PointOfView, for FS 3D

point cloud classification, which simultaneously extracts
both global and local features from raw 3D point cloud
data and visual features from multi-view 2D image data.

• For the 2D multi-view learning branch, we propose an ef-
fective structure, composed of two sub-branches, which
aggregates individual image-level features and features
from groups of images (global information), and incor-
porates a smoothing layer.

• We propose multi-scale 2D pooling for the 2D multi-view
learning branch, which can learn local spatial features at
different scales. In the 3D point cloud learning branch,
we sort the raw point cloud data along the gravity axis to
effectively learn spatial part representations.

• We perform within-dataset and cross-domain experi-
ments, and compare with six state-of-the-art (SOTA)
baselines. The results show that our approach outper-
forms all baselines in all experimental settings, and
demonstrates better generalizability.

• We perform detailed ablation studies to further analyze
the effectiveness of different components.

2. Related Work
2.1. Point Cloud Classification
As mentioned above, point cloud classification methods can
be classified into three broad categories. Volumetric-based
methods [15, 30] map each point into an occupancy grid,
which is sent through 3D CNN networks to perform pre-
diction. Multi-view projection approaches render a group
of 2D images by projecting points onto planes from differ-
ent angles. Each image goes through 2D CNN networks to
extract view-based features. MVCNN [20] renders snap-
shots from 12 views, and then processes them indepen-
dently with a CNN model. Yet, MVCNN does not distin-
guish between different views, and treats them equally. To
address this, GVCNN [4] exploits the relationship between
different views (8 or 12) by grouping the set of views based
on their discrimination scores. Later on, SimpleView [6]
showed that projecting a point cloud onto only 6 (vs. 8
or 12) orthogonal planes, and passing the projection im-
ages through ResNet [7] can work well. Recently, Chen
et al. [2] proposed a multi-view based backbone for FS 3D
point cloud classification by using 6 projection images.

Point-based methods directly employ raw point clouds.
PointNet [16] uses shared point-wise MLPs to extract point
features, and then applies max-pooling to obtain permuta-
tion invariant features. Yet, PointNet does not capture lo-
cal features. To address this issue, Qi et al. [17] proposed
PointNet++, a hierarchical network, to capture local fea-
tures from the neighborhood of each point. In DGCNN [25],
a graph is constructed in the feature space and dynamically
updated after each layer, such that neighbors of each point
change as the point propagates through the network.

2.2. Few-shot Learning

In general, most existing FSL algorithms follow the meta-
learning framework, and can be classified into three cate-
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Figure 2. The framework of our proposed method. ‘VP’, ‘smoothing’ and ‘MaxP’ represent view pooling, smoothing layer, and max-
pooling operation, respectively. In 2D multi-view branch, image-level sub-branch (pink box) learns features of each projected image, and
group-level sub-branch (blue box) learns global features from combinations of six projections. Then, the output features from group-level
branch go through multi-scale 2d pooling. In 3D point cloud learning branch, sorted point cloud is sent to DGCNN. Then, pyramid pooling
is used to learn part representation. Finally, the features from 2D multi-view and 3D point cloud learning branch are concatenated.

gories: metric-, optimization- and model-based methods.
Metric-based methods strive to preserve class neighbor-

hood structure, by keeping the learned features from the
same class closer, and vice versa. Matching Networks [24]
use one network for support and one network for query sam-
ples, and employ Long Short Term Memory (LSTM) to ob-
tain full context embedding for support samples. Prototyp-
ical Networks [19] encode query and support samples into
a shared embedding space, and then compute the category
prototypes by taking the average of support samples. Query
category is determined by using the squared Euclidean dis-
tance between a query sample and the prototypes of each
category in the feature space.

Optimization-based methods focus on training models
that can achieve rapid adaptation. MAML [5], a pioneer-
ing work, aims to find a set of initialization parameters such
that these learned parameters can achieve the optimal results
with a small number of gradient steps.

Model-based methods aim at finding the parameters by
using the knowledge learned from different tasks. The goal
of FSL is to use the knowledge learned before and learn new
information quickly. Hence, some works use memory func-
tions. MANN model [18] modifies the training settings and
proposes a new addressing mechanism for assigning atten-
tion weights to memory vectors.

2.3. 3D Multi-modal Methods

3D point clouds usually have complex structures, mak-
ing it hard for a single modality to fully describe a 3D
shape. Hence, multi-modal approaches [27, 29] have been
proposed in this endeavor. FusionNet [8] jointly employs

voxelized data and multi-view images for 3D object clas-
sification. MV3D [3] fuses point cloud data from LiDAR
and RGB images from camera to perform 3D object detec-
tion. Point cloud data is projected into bird’s eye view and
fusion is performed at image level. Cross-modality feature
fusion network (CMFF) [27] fuses 3D point cloud data and
2D projection images for FS 3D point cloud classification.
DGCNN and ResNet are used to extract features from point
clouds and 2D depth images, respectively. Different from
CMFF, we propose multi-scale pooling and sorting meth-
ods in 2D multi-view and 3D point cloud branch, respec-
tively, to extract better local features. Moreover, we pro-
pose a 2D multi-view feature extractor to learn information
at both single-image and group-image levels.

3. Proposed Method

We propose a multi-modal network, PointOfView (POV),
for FS 3D point cloud classification, by fusing point cloud
data and 2D multi-view depth images. Our goals include (i)
exploiting the complementary strengths of these modalities,
(ii) extracting more distinguishing local features, and (iii)
obtaining a better shape representation from both local and
global parts, and (iv) achieve better cross-domain general-
ization thorough combination of global and local features.

3.1. Problem Statement
Let D = {P, V } be a given dataset, where P ∈ RM×3

denotes an unordered point set containing M points, with
their 3D coordinates, and V ∈ R6×H×W denotes the ren-
dered 2D image, which is obtained by projecting P onto
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six orthogonal views [6] as illustrated in Fig. 3. H and W
denote the height and width of the projection depth image.

In standard FS classification, given a labeled dataset
of base classes Cbase, the goal is to train a predictor for
novel classes Cnovel, with only few labeled samples, where
Cbase ∩ Cnovel = ∅. In N -way K-shot Q-query FS clas-
sification, the support set S = {PS

i , V S
i , ySi }

N×K
i=1 contains

K-many labeled samples for each of the N classes. The
query set Q = {PQ

i , V Q
i , yQi }N×Q

i=1 contains samples from
the same N classes with Q samples for each class. The goal
is to classify N ×Q point clouds into N classes.

3.2. Backbone
The framework of our model, which contains two main
branches, is presented in Fig. 2.

The 2D multi-view learning branch, the upper branch
in Fig. 2, takes six projection images (left, right, back,
front, top and bottom views) as input. We employ a struc-
ture composed of two sub-branches. The image-level sub-
branch is used to extract features from each projection
image independently by a set of convolutional layers and
2D max-pooling operations. Group-level sub-branch learns
more global information by using combinations of six pro-
jection images. This sub-branch is also composed of con-
volutional layers and 2D max-pooling. To connect these
two sub-branches, and obtain more global and descriptive
features from individual image features, we propose an im-
proved View Pooling module [2]. This module allows to ag-
gregate features, obtained from the image-level branch, as
shown in Fig. 4. More specifically, six feature maps, from
six projection images, are combined in five different ways.
Since shapes of objects from opposite projections look sim-
ilar, and their features are more likely to be closer, we com-
bine features from three opposite pairs ({(left, right), (top,
bottom), (front back)}). The remaining combinations are
two triplets {(top, front, left), (bottom, back, right)}, each
of which and the two combined can describe a 3D shape suf-
ficiently well. Finally, image-level features and group fea-
tures from 2 sub-branches are added and sent to a smoothing
layer, which is a convolutional layer with a kernel size of 3.
Smoothing is applied to alleviate the aliasing effect caused
by the addition of two feature maps. The effectiveness of
the smoothing layer is analyzed in Sec. 5.5. Then, we use

Front View Right View Top View

Back View Left View Bottom View

Figure 3. Multi-view images are generated by projecting a point
cloud onto six orthogonal planes similar to SimpleView [6].
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Figure 4. The structure of proposed View Pooling. F and Z are
the input and output feature maps, respectively. MaxP represents
the max-pooling operation. ’

⊗
’ denotes concatenation.

our proposed multi-scale 2D pooling to learn features from
different receptive fields, details of which are explained in
Sec. 3.3.

Our proposed 2D multi-view learning branch is differ-
ent from the approach in [2] in multiple ways: (i) we ap-
ply view pooling and max-pooling across the sub-branches
in a different order, i.e. the second interaction between the
sub-branches is applied before max-pooling to avoid infor-
mation loss and provide the group-level branch with more
complete feature map; (ii) we do not employ global max-
pooling across all views in view pooling, because the ade-
quacy of features derived from the five groups and result is
slightly better without global max-pooling; (iii) we only use
the feature map from the group-level branch for final pre-
diction, as the local features have been integrated into the
group-level branch. (iv) we incorporate a smoothing layer
to alleviate the aliasing effect; (v) we propose a multi-scale
2D pooling, described in Sec. 3.3, to learn features from
different receptive fields.

The 3D point cloud learning branch, the lower branch
in Fig. 2, takes a raw 3D point cloud as input, and first sorts
the point cloud along the gravity axis to improve Pyramid
Pooling [27], and to make sure that strips used in pyramid
pooling correspond to parts of an object. More details will
be provided below. Then, we employ DGCNN to extract
point features, since Ye et al. [28], who proposed CIA as a
FS classification head, have shown that DGCNN provides
better results than other point cloud processing models [11–
13, 16, 17] on 3D FS classification task. After DGCNN, we
adopt Pyramid Pooling [27] to gather both global and local
features by splitting the output feature map into strips along
the height dimension. Pyramid pooling has six scales such
that the feature map is divided into i ∈ {1, 2, 4, 8, 16, 32}-
many strips. Then, global max pooling and global average
pooling are applied among the points in each strip, so that
prominent part features are kept, and features are concate-
nated along the strip dimension. Yet, point clouds are un-
ordered, and these strips do not necessarily represent the
corresponding spatial part of an object. To address this, we
first sort a point cloud, as mentioned above, so that, e.g. if
the object is upright, the first and last strips correspond to
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the top and bottom parts of an object, respectively, and if
the object is upside down, the top part of point cloud is cor-
responding to the last strip of the feature map. An upright
example correspondence is presented in Fig. 5. Finally, the
features obtained from the 3D point cloud and 2D depth im-
ages are concatenated and sent to the few-shot head. In this
work, we employ sqMA [27] as the few-shot head.

3.3. Multi-scale 2D Pooling

The structure of our proposed multi-scale 2D pooling is pre-
sented in Fig. 6. The input is the output of the smoothing
layer in 2D multi-view processing branch. Then, to learn
distinguishing and comprehensive local features, n× n 2D
max-pooling and 2D average pooling operations are per-
formed on spatial dimension to extract features from dif-
ferent scales, where n ∈ {4, 8, 16}. Then, outputs of 2D
max-pooling and 2D average pooling are added to obtain
F ′ as follows:

F ′ = n× n Max-pooling(F ) + n× n Avg-pooling(F ). (1)

Then, outputs from the three pooling operations are re-
shaped so that they can be concatenated to fuse local and
global features and get the output F ′ ∈ RC×B , where C
is the feature dimension, B is number of bins, and B =
(H×W )/(4×4)+(H×W )/(8×8)+(H×W )(16×16).
The final step is to employ a fully connected layer to get
the output O. We also compared the results of exclusively
performing n× n Max-pooling and exclusively performing
n× n Avg-pooling. The analysis is described in Sec. 5.2.

4. Experimental Results
4.1. Training and Testing Details
As mentioned above, we first sort a raw 3D point cloud
along the y-axis (gravity direction), and then send the sorted
point cloud to DGCNN. For the 2D multi-view learning
branch, six input projection images of size 128 × 128 are
obtained by projecting the point cloud onto six orthog-
onal angles. The convolutional channels for the image-
level sub-branch and group-level sub-branch are set as
(32,32,64,64,128,128) and (64,64,128,128), respectively.

Feature MapPoint Cloud

Figure 5. The correspondence between the parts of a sorted point
cloud and the strips of a feature map. Only i = 4 strips are shown
for simplicity.

 
 

 
 

 
 

reshape reshape reshape
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Figure 6. The structure of proposed multi-scale 2D pooling. The
feature map F is the output of the smoothing layer. C, H and
W denote the number of feature channels, and height and width
of the feature map, respectively. ’

⊗
’ denotes concatenation. F

passes through 2D max pooling and average pooling with three
different kernel sizes. Then, these feature maps are reshaped and
concatenated to get the final feature map F ′.

All experiments were performed on one GPU with ex-
actly the same training and testing environment. The op-
timizer is Adam with an initial learning rate of 0.0008,
and gamma is set as 0.5. The learning rate decays ev-
ery 5 epochs. Following [27], we first meta-train the
model for 100 epochs. Each epoch has 400 meta-training
episodes. Each episode contains N classes with K labeled
samples as support set and Q samples as query set, i.e. it is
N -way, K-shot, Q-query setting. During training, we also
apply random scaling and translation on points to augment
data. After meta-training, we test our model with 700 meta-
testing episodes and the same N -way, K-shot, Q-query
setting. The final performance is determined by averaging
the classification results of these meta-testing episodes with
95% confidence intervals. In this work, Batch All (BA+)
triplet loss [9] is employed to train the network with margin
set as 0.2. For multi-scale 2D pyramid pooling, we apply
2D max pooling and 2D average pooling 3 times, with pool-
ing sizes 4, 8, and 16. In addition to within dataset exper-
iments, we perform cross-domain experiments by training
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on synthetic data, and testing on real-world data.

4.2. Within Dataset Few-shot Learning Results
We first perform within dataset experiments on three dif-
ferent datasets, and compare our PointOfView with six dif-
ferent baselines. We summarize the results in Tables 1, 2
and 3, wherein compared methods are listed as ‘Backbone
+ Few-shot head’. The first four lines in these tables are
methods using only 3D point clouds as input with DGCNN
as the backbone, and MetaOptNet [10], RelationNet [22],
ProtoNet [19] and CIA [28] as the few-shot heads, respec-
tively. DGCNN is used as the backbone, since it was shown
in [28] that DGCNN has the best performance on 3D FS
classification task. The fifth line (ViewNet+CIA) is another
single-modality method using only 2D projection images.
CMFF+sqMA [27] is a fusion method using both modali-
ties. To have a commensurate comparison with ViewNet (a
sinle-modality method), we also test using our depth image
processing branch only with CIA as the few-shot head, and
refer to this as ‘Our view branch + CIA’.

4.2.1 Within Dataset Results on ModelNet40
ModelNet40 [26] is a synthetic and commonly used dataset,
which contains 12,311 CAD-generated meshes from 40
classes. For each 3D model, 1024 points are uniformly sam-
pled from the mesh, and each point has its (x, y, z) co-
ordinates. An example object and six projection images
obtained from the point cloud are presented in Fig. 3. To
be consistent with the experimental settings of the SOTA
baselines [2, 27], we conduct 4-fold cross validation exper-
iments. We sort 40 classes based on their object IDs, and di-
vide them into 4 groups, with 10 classes in each group. We
compare our model with six baselines, and summarize the
results in Tab. 1. As can be seen, our method outperforms
all the baselines, including single- and multi-modality ap-
proaches, in terms of average accuracy for both 1-shot and
5-shot settings. Even when we only use the depth image
processing branch of POV with the CIA head, we still out-
perform all single-modality approaches (first five rows).

4.2.2 Within Dataset Results on ModelNet40-C
ModelNet40-C [21] is a more recent dataset that has the
same number of classes as ModelNet40. Different from
ModelNet40, it introduces 15 corruptions, such as LiDAR,
occlusion, etc., to simulate real-world point cloud data. Ex-
ample point clouds and three corresponding projected im-
ages are shown in Fig. 7(b). We split this dataset the same
way as ModelNet40. The experiment results in Tab. 2 show
that our method outperforms all baselines for all folds, and
for both 1-shot and 5-shot settings. Our depth image pro-
cessing branch followed by the CIA head also outperforms
ViewNet+CIA head for both 1-shot and 5-shot settings. The
improvement margins over single modality models range
between 1.64% and 11.23% for 1-shot setting, and between

Toilet Chair

Airplane Chair

(a)

(b)

Figure 7. (a) Example point clouds and three projected images
from ScanobjectNN [23] and (b) ModelNet40-C [21] datasets.

1.08% and 6.45% for 5-shot setting. POV also surpasses
CMFF+sqMA by 2.25% for 1-shot setting, and by 1.47%
for 5-shot setting. It should be noted that the improvement
margins on this dataset are higher than the ones for Model-
Net40, which is encouraging and shows that our model can
better handle issues, such as missing points, and is a better
choice for challenging scenarios.

4.2.3 Within Dataset Results on ScanObjectNN
ScanObjectNN dataset [23] contains 15k objects, with 1024
points, from 15 classes. Different from the above two
datasets, ScanObjectNN is collected by scanning real-world
objects. Due to occlusions and noise, point clouds are not
as perfect as the ones in ModelNet40 and ModelNet40-C,
causing this benchmark to be more challenging. Example
point cloud objects and the corresponding three projected
images are shown in Fig. 7(a). We perform 3-fold cross vali-
dation on this dataset by using 5 classes per fold. The results
are summarized in Tab. 3. Our method outperforms all base-
lines in all folds, in terms of average accuracy, for both 1-
shot and 5-shot settings. It improves the other multi-modal
method CMFF+sqMA by 3.24% for 1-shot setting, and by
2.4% for 5-shot setting. The improvement margins over
single modality models range between 4.7% and 16.23%
for 1-shot setting and between 5.24% and 13.28% for 5-
shot setting. Only with our depth image processing branch
and the CIA head, our method still outperforms all single-
modality methods. The improvement margins are highest on
this dataset. This, once again, shows that our model is more
robust and effective in the challenging, close-to-real-world
and real-world situations.

4.3. Cross-domain Few-shot Learning Results
We perform cross-domain experiments to demonstrate
the generalization ability of our model. For source-
domain datasets, we use ModelNet40, ModelNet40-C
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5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 fold3 Avg fold0 fold1 fold2 fold3 Avg

DGCNN+MetaOptNet [10] 82.87±0.72 75.77±0.83 65.31±0.92 66.97±0.93 72.73±0.85 92.37±0.38 86.44±0.62 82.10±0.58 83.15±0.55 86.02±0.53
DGCNN+RelationNet [22] 82.14±0.69 77.46±0.80 66.09±0.91 69.47±0.84 75.23±0.81 91.53±0.38 85.11±0.61 79.36±0.63 83.01±0.52 84.75±0.53

DGCNN+ProtoNet [19] 85.42±0.64 79.46±0.76 70.06±0.39 70.73±0.42 76.42±0.55 93.99±0.29 88.65±0.54 84.76±0.51 85.56±0.48 88.24±0.45
DGCNN+CIA [28] 89.97±0.63 83.89±0.75 75.31±0.82 79.27±0.77 82.21±0.72 94.61±0.30 89.15±0.50 85.00±0.51 86.71±0.50 88.87±0.47
ViewNet+CIA [2] 92.57±0.52 82.68±0.80 75.28±0.90 80.95±0.75 82.87±0.74 96.23±0.26 89.64±0.55 85.74±0.51 90.18±0.45 90.45±0.44
CMFF+sqMA [27] 92.94±0.47 85.52±0.73 77.76±0.82 81.80±0.71 84.50±0.68 96.82±0.22 91.76±0.53 87.88±0.48 91.03±0.40 91.85±0.41

Our view branch + CIA 92.18±0.48 85.14±0.70 74.71±0.82 82.17±0.75 83.55±0.0.68 96.81±0.22 91.07±0.49 86.20±0.52 90.96±0.39 91.26±0.41
POV + sqMA (Ours) 93.44±0.42 86.02±0.71 76.85±0.81 82.85±0.69 84.79±0.66 97.30±0.19 92.02±0.50 87.74±0.50 91.61±0.40 92.17±0.40

Table 1. Few-shot 3D point cloud classification results on the ModelNet40 dataset. Bold indicates the best results.

5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 fold3 Avg fold0 fold1 fold2 fold3 Avg

DGCNN+MetaOptNet [10] 78.28±0.79 75.34±0.84 58.07±0.86 66.29±0.91 69.50±0.85 91.09±0.40 84.19±0.57 75.10±0.73 81.34±0.53 82.93±0.56
DGCNN+RelationNet [22] 79.59±0.74 74.63±0.84 59.03±0.81 68.38±0.86 70.41±0.81 87.12±0.46 83.55±0.54 70.18±0.78 79.01±0.58 79.97±0.59

DGCNN+ProtoNet [19] 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84 72.18±0.80 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
DGCNN+CIA [28] 85.70±0.75 76.97±0.90 65.68±1.00 74.32±0.94 76.34±0.89 92.07±0.36 86.81±0.56 76.11±0.71 83.71±0.51 84.68±0.54
ViewNet+CIA [2] 89.47±0.58 81.05±0.78 69.56±0.86 76.29±0.85 79.09±0.78 94.95±0.31 88.75±0.49 81.53±0.60 86.78±0.46 88.00±0.47
CMFF+sqMA [27] 88.50±0.59 80.95±0.74 69.81±0.86 74.64±0.82 78.48±0.75 95.11±0.29 89.32±0.46 81.63±0.63 85.58±0.48 87.91±0.47

Our view branch+CIA 89.21±0.59 81.80±0.71 70.61±0.91 78.91±0.78 80.13±0.75 96.13±0.25 89.41±0.48 81.68±0.66 88.55±0.42 88.94±0.45
POV+sqMA (Ours) 89.77±0.51 82.61±0.74 72.00±0.88 78.52±0.77 80.73±0.73 96.14±0.25 90.11±0.45 82.91±0.64 88.37±0.42 89.38±0.44

Table 2. Few-shot 3D point cloud classification results on the ModelNet40-C dataset. Bold indicates the best results.

5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 Avg fold0 fold1 fold2 Avg

DGCNN+MetaOptNet [10] 41.92±0.72 61.12±0.66 53.87±0.78 52.30±0.72 63.86±0.56 67.73±0.45 70.19±0.49 67.26±0.50
DGCNN+RelationNet [22] 50.29±0.76 54.23±0.63 51.45±0.64 51.99±0.68 58.65±0.53 66.72±0.50 65.94±0.52 63.77±0.52

DGCNN+ProtoNet [19] 50.81±0.73 60.46±0.67 58.72±0.78 56.66±0.73 68.45±0.54 70.20±0.52 68.76±0.49 69.13±0.52
DGCNN+CIA [28] 50.58±0.82 62.17±0.68 62.59±0.74 58.45±0.75 62.94±0.51 71.31±0.45 70.21±0.48 68.15±0.48
ViewNet+CIA [2] 60.90±0.76 66.48±0.60 64.10±0.77 63.83±0.71 73.66±0.48 74.77±0.45 77.46±0.46 75.30±0.46
CMFF+sqMA [27] 61.09±0.72 66.29±0.65 68.39±0.68 65.29±0.68 74.90±0.48 76.51±0.40 83.02±0.41 78.14±0.43

Our view branch+CIA 61.20±0.68 66.95±0.62 66.49±0.71 64.88±0.67 73.42±0.49 76.05±0.40 78.07±0.46 75.85±0.45
POV+sqMA (Ours) 64.03±0.67 70.04±0.59 71.53±0.69 68.53±0.65 80.21±0.42 76.75±0.40 84.67±0.39 80.54±0.40

Table 3. Few-shot 3D point cloud classification results on the ScanObjectNN dataset. Bold indicates the best results.

ShapeNet-XFS → ScanObjectNN ModelNet40-XFS → ScanObjectNN ModelNet40-C-XFS → ScanObjectNN
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

DGCNN+ProtoNet 44.39±0.8 62.12±0.72 53.04±0.91 65.53±0.75 53.7±0.89 65.81±0.76
DGCNN+CIA 49.29±0.9 64.37±0.77 55.59±1.01 65.61±0.74 57.07±0.94 66.29±0.76
ViewNet+CIA 53.38±0.88 69.46±0.74 60.35±0.93 75.38±0.74 61.28±0.98 74.48±0.71
CMFF+sqMA 52.98±0.78 69.75±0.69 61.45±0.87 75.23±0.65 61.76±0.86 74.38±0.65

POV+sqMA (Ours) 53.71±0.77 72.38±0.65 65.37±0.84 78.58±0.62 63.46±0.86 77.88±0.62

Table 4. The cross-domain few-shot classification results. Bold indicates the best results.

and ShapeNetCore [1], since they contain 3D syn-
thetic CAD models. We use the real-world dataset
ScanObjectNN, with all 15 classes, as the target-domain
dataset. To avoid having overlapping classes between
source and target datasets, we construct ModelNet40-
XFS, ModelNet40-C-XFS and ShapeNetCore-XFS from
ModelNet40, ModelNet40-C and ShapeNetCore, respec-
tively. Both ModelNet40-XFS and ModelNet40-C-XFS
contain 26 base classes and ShapeNetCore-XFS in-
cludes 44 base classes. We perform three cross-domain
FSL experiments, ModelNet40-XFS→ScanObjectNN,
ModelNet40-C-XFS→ScanObjectNN and ShapeNetCore-
XFS→ScanObjectNN. The training procedure is the same
as within dataset experiments. Here, we have chosen the
better performing baselines from the previous experiments
to compare with. The results in Tab. 4 show that our model
outperforms all baselines for all experiments, highlighting
its better generalizability across domains. It is interesting
to see that in 1-shot setting, our method achieves higher

accuracy on ModelNet40-XFS→ScanObjectNN than
ModelNet40-C-XFS→ScanObjectNN, which is in contrast
to baselines. Moreover, the improvement margin, compared
to baselines, is higher for 1-shot setting than 5-shot setting.
These show that our method can extract more meaningful
and transferable features with limited data.

5. Ablation Studies
To verify the effectiveness of different components of our
proposed method, ablation studies are carried out on the
ScanObjectNN dataset, since it is the most challenging one
among the three datasets.

5.1. The impact of sorting point clouds
As explained above, we sort a point cloud along the grav-
ity axis before sending it to DGCNN. Tab. 5 shows the ac-
curacy of our model with and without sorting raw point
clouds. As can be seen, with sorting, the accuracy of the
model improves by 1.97% and 1.93% in 1-shot and 5-shot
settings, respectively.
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fold0 fold1 fold2 Avg
5-way
1-shot

w/o sorting 60.89% 67.58% 71.21% 66.56%

w/ sorting
64.03%

(↑3.14%)
70.04%

(↑2.46%)
71.53%

(↑0.32%)
68.53%

(↑1.97%)
5-way
5-shot

w/o sorting 75.49% 75.42% 84.93% 78.61%

w/ sorting
80.21%

(↑4.72%)
76.75%

(↑1.33%)
84.67%

(↓0.26%)
80.54%

(↑1.93%)

Table 5. The accuracy of models with and without sorting the raw
point cloud in the beginning.

5.2. The impact of multi-scale 2D pooling
To verify the effectiveness of our proposed multi-scale 2D
pooling, we replace it with the Pyramid Pooling [27] and
then compare the performances. Table 6 shows that (red vs.
green rows for 1-shot and 5-shot settings) our multi-scale
2D pooling provides 0.84% and 0.33% improvement in 1-
shot and 5-shot settings, respectively.

Our approach uses a combination of 2D max pooling and
2D average pooling. Tab. 6 also shows a comparison when
each of these pooling operations is used by themselves (blue
rows). Our approach, using the combination, outperforms
applying either operation alone in most folds. We believe
the reason is that combining 2D max pooling and 2D aver-
age pooling can help to extract important features and ob-
tain more generalized representation of the local regions.

pyramid
pooling

2D max
pooling

2D avg
pooling fold0 fold1 fold2 Avg

✓ 63.61±0.72 69.14±0.59 70.32±0.71 67.69±0.67
✓ 64.69±0.68 68.84±0.59 71.34±0.72 68.29±0.66

✓ 65.07±0.63 69.32±0.58 70.41±0.73 68.26±0.65
5-way
1-shot

✓ ✓ 64.03±0.67 70.04±0.59 71.53±0.69 68.53±0.65
✓ 80.01±0.45 76.72±0.43 83.89±0.40 80.21±0.43

✓ 80.05±0.44 77.36±0.4 82.48±0.43 79.96±0.42
✓ 79.98±0.46 77.38±0.42 81.45±0.41 79.6±0.43

5-way
5-shot

✓ ✓ 80.21±0.42 76.75±0.40 84.67±0.39 80.54±0.40

Table 6. The impact of different components of multi-scale 2D
Pooling and the comparison with pyramid pooling [27].

5.3. Analysis of the number of views

Results of using different number of views (6,8,10 or 14)
to train our model are illustrated in Fig. 8. In the case of 6
views, we use the 6 orthogonal views. For 8 views, we se-
lect the projections from the vertices of the cube centered
on the object. For 10 views, we select the first 8 views
around the object every 45 degrees. Remaining two views
are top and bottom. For 14 views, we combine the 6 or-
thognal views and 8 views. The results illustrate that 6 or-
thogonal views provide comparable if not better accuracy.
Although for 5-shot setting, the performance with 14 views
is slightly better (1% higher) than using 6 views, processing
14 views demands more computing power. Using 6 views
conserves computational resources while effectively captur-
ing features of an object.

5.4. Analysis of computational complexity
We compare the computational complexity of our method
with the second best performing model, CMFF, which is
also a two-modality model. The comparison, presented in
Tab. 7, shows that the total size of our model is less than

Figure 8. The comparison of using different number of views.

CMFF and our model provides better accuracy and lower
standard deviation at the same time.

Model
Forward/backward

pass size (MB)
Params

Size (MB)
Estimated Total

Size (MB)
CMFF 7746.23 6.44 7753.04

POV (Ours) 5730.39 6.97 5737.72

Table 7. Network complexity of CMFF and our proposed POV.

5.5. The impact of the smoothing layer
We proposed to use a smoothing layer, which is a convo-
lutional layer with a kernel size of 3, in the 2D multi-view
processing branch to alleviate the aliasing effect caused by
the semantic gap between two sub-branches and the sum-
mation of two sub-branches. To verify its effectiveness, we
compare the performance of the model with and without the
smoothing layer. The results, summarized in Tab. 8, show
that smoothing layer provides 0.27% and 0.74% improve-
ment in 1-shot and 5-shot settings, respectively.

fold0 fold1 fold2 Ave

5-way 1-shot w/o smooth Lyr 63.72% 69.44% 71.62% 68.26%
w/ smooth Lyr 64.03%(↑0.31%) 70.04%(↑0.6%) 71.53%(↓0.09%) 68.53%(↑0.27%)

5-way 5-shot w/o smooth Lyr 79.97% 76.91% 82.53% 79.80%
w/ smooth Lyr 80.21%(↑0.24%) 76.75%(↓0.16%) 84.67%(↑2.14%) 80.54%(↑0.74%)

Table 8. The model accuracy with and without smoothing layer.

6. Conclusion
We have proposed a novel, multi-modal network, with
more generalizability across domains, by combining fea-
tures from raw 3D point cloud data and multiple 2D depth
images for few-shot 3D point cloud classification. To gen-
erate more descriptive and distinguishing features from
six projected images, we have proposed a 2D Multi-view
Learning Branch to extract information both at image- and
group-level. The group-level features allow capturing more
global information about the shape. We have also proposed
a multi-scale 2D pooling approach, which allows extract-
ing features from different scales. We have performed com-
prehensive set of experiments within datasets and cross-
domains for 5-way 1-shot and 5-way 5-shot 3D point cloud
classification. Results have shown that our method outper-
forms six baselines on all three benchmark datasets, and im-
provement margin is higher on more challenging datasets,
namely ScanobjectNN and ModelNet40-C. This shows the
great potential of our method for dealing with challeng-
ing cases, such as missing points and occlusion. In cross-
domain experiments, our model shows better generalization
ability compared to four baselines.
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