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Abstract

While substantial progresses have been made in auto-

mated 2D portrait stylization, admirable 3D portrait styl-

ization from a single user photo remains to be an unresolved

challenge. One primary obstacle here is the lack of high

quality stylized 3D training data. In this paper, we propose

a novel framework AgileGAN3D that can produce 3D ar-

tistically appealing and personalized portraits with detailed

geometry. New stylization can be obtained with just a few

(around 20) unpaired 2D exemplars. We achieve this by first

leveraging existing 2D stylization capabilities, style prior

creation, to produce a large amount of augmented 2D style

exemplars. These augmented exemplars are generated with

accurate camera pose labels, as well as paired real face

images, which prove to be critical for the downstream 3D

stylization task. Capitalizing on the recent advancement of

3D-aware GAN models, we perform guided transfer learn-

ing on a pretrained 3D GAN generator to produce multi-

view-consistent stylized renderings. In order to achieve 3D

GAN inversion that can preserve subject’s identity well, we

incorporate multi-view consistency loss in the training of

our encoder. Our pipeline demonstrates strong capability in

turning user photos into a diverse range of 3D artistic por-

traits. Both qualitative results and quantitative evaluations

have been conducted to show the superior performance of

our method. Code and pretrained models will be released

for reproduction purpose.

1. Introduction

Portrait painting as an art form goes back to prehistoric

times, and has been primarily serving the rich and pow-

erful. Fast forward with the technology advancement,

people nowadays can enjoy a high fidelity digital portrait

within seconds, and even capturing one’s detailed facial 3D

geometry[6, 55]. Driven by the creative nature of human

beings, people are no longer satisfied with simply a faithful

*This work authors are Guoxian Song, Hongyi Xu, Jing Liu, Tiancheng

Zhi, Yichun Shi, Jianfeng Zhang, Zihang Jiang, Jiashi Feng, Shen Sang and

Linjie Luo.

Figure 1. Our AgileGAN3D enables 3D stylized portraits creation

from a single input image. A new 3D style can be obtained with

only a few unpaired 2D style exemplars (∼ 20). Compared to the

baseline method (directly fine-tune the 3D GAN model [8]), our

approach produces high-quality, multi-view-consistent renderings

of the portrait, with detailed in-style geometry.

depiction of their appearance. Portraiture has evolved into

more expressive interpretations with a plethora of styles,

such as abstract art, cubism and cartoon. However, most

previous works are limited to stylized portraits in 2D image

space[9, 38, 47, 56]. Automatically creating 3D stylized

portrait with detailed geometry using just a single selfie as

input is still an open problem. To the best of our knowl-

edge, we are the first work that can automatically create 3D

stylized portrait with detailed geometry, using just a single

selfie as input. The result 3D portrait can be adapted into a

wide range of artistic styles, as long as a few 2D style exem-

plars are provided (see Fig.1). Such new format enables a

lot of applications like 3D printed postcards, dynamic pro-

file pictures (by changing viewing angles, or lighting direc-

tions), as well as personalized 3D contents in augmented

and virtual reality worlds.

The core challenge that prevents us from creating visu-

ally appealing, personalized 3D portraits is rooted in the

shortage of high quality 3D data. A traditional approach to

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.

765



create customized 3D portraits for users is by assembling a

3D avatar system with tons of graphics assets (e.g. Zepeto1,

ReadyPlayer2, and [44]). However, it’s almost impossible

to capture all the diversities in real world appearances given

only a few hundred assets and a base morphable 3D face

model. Therefore such approach usually generates less per-

sonalized results.

The latest generative models such as StyleGAN2 [25],

latent diffusion models [43] are very powerful architectures

in producing highly diversified imageries, largely credited

to the huge data sources that these models have been trained

on. Fine-tuning a generative model to produce highly per-

sonalized portraits thus becomes possible, though still pri-

marily in 2D image space[9, 38, 47, 56]. Lifting arbitrary

stylized portraits from 2D into 3D space remains to be an

unsolved problem, partly due to the lack of 3D prior knowl-

edge for target artistic pictures. Promising early results have

emerged for general 3D objects [20, 40], but none of them

can produce desirable quality for 3D portraits yet.

Recent rapid progress in geometry-aware GANs [7, 8,

11, 36, 37, 46, 59] inspired our work. Particularly EG3D

[8] demonstrated strikingly realistic 3D face synthesis ca-

pability by using only unstructured 2D photos. Its tri-plane

structure serves as an efficient representation for 3D con-

tent generation, combined with a neural volumetric ren-

derer, making multi-view-consistent, photo-realistic image

synthesis possible. However, even with such a powerful 3D

generator, there are still a few obstacles ahead before we can

have a usable 3D stylized portrait generator. First, even in

2D image format, it is nontrivial to collect a large number of

diverse portraits in a consistent style, let alone obtaining ro-

bust camera pose estimations from artistic portraits, which

is a critical step in training 3D GANs. Secondly, in order to

personalize user photos into 3D stylized portraits, a reliable

3D GAN inversion method is required. The inversion mod-

ule has to work in a way that balances the reconstruction

fidelity and the stylization quality.

To tackle the aforementioned challenges, we propose Ag-

ileGAN3D, a novel augmented transfer learning framework

for generating high quality stylized 3D portraits, using only

a few 2D style exemplars (∼20). With extensive experi-

ments, we observe the successful transfer learning for 3D

GANs relies on adequate style visual supervisions with well

estimated camera labels. To address the shortage of styl-

ized training data issue, we started with style prior creation,

that leverages the existing 2D portrait stylization capabili-

ties. Specifically, we trained a 2D portrait stylization mod-

ule following AgileGAN[47], to first obtain a large number

of stylized portraits using real face photos as inputs. Some

extra benefits of this way of generating 2D style exemplars

are that we naturally obtain: 1) pair data between stylized

1https://zepeto.me/
2https://readyplayer.me/

faces and real faces; 2) fairly accurate head pose estima-

tions of generated stylized portraits (by reusing the poses

estimated from the corresponding real faces). Both of these

benefits are incorporated into our guided transfer learning

step with a reconstruction loss, that helps improve the 3D

stylization for out-of-domain samples. Equipped with a

transfer-learned style generator, we further introduce an 3D

GAN encoder that embeds a real image into an enlarged la-

tent space for better identity-preserved 3D stylization. A

cycle consistency loss is proposed in the 3D GAN encoder

training to further improve the multi-view reconstruction

fidelity. To best of our knowledge, we are the first paper

to propose generative NeRF based 3D stylized portrait cre-

ation using only a limited number of 2D style exemplars.

To summarize the contributions of our work:

• A novel pipeline for creating 3D stylized portraits with

detailed geometry, given only a single user photo as input.

New stylization can be achieved with only a few unpaired

2D style exemplars (around 20).
• A simple yet efficient way to fine-tune 3D GAN, first with

style prior creation to improve data diversity, combined

with guided transfer learning to increase the stylization

domain coverage;
• A 3D GAN encoder that inverts real face images into cor-

responding latent space, trained with cycle consistent loss

to improve identity preservation, while achieving high

stylization quality.

2. Related Work

Face Stylization Stylizing facial images in an artis-

tic manner has been explored in the context of non-

photorealistic rendering. Early approaches relied on low

level histogram matching using linear filters [18]. Neural

style transfer [14], by matching feature statistics in convo-

lutional layers, led to early exciting results via deep learn-

ing. However, they usually fail on styles involving sig-

nificant geometric deformation of facial features, such as

cartoonization. For more general cross-domain stylization,

Toonify [38] proposed a GAN interpolation framework for

controllable cross-domain image synthesis for cartooniza-

tion. A following method AgileGAN [47] proposed VAE

inversion to enhance distribution consistency in the latent

space, leading to fewer artifacts and better results for real

input images. Besides, Huang et al. [19] achieves multi-

domain stylization via a layer swapping technique. Recent

exemplar-based approaches [9, 27, 56] enable one-shot por-

trait stylization given a single style exemplar. There are also

several 2D stylization works for video generations [4, 57].

In contrast, our proposed AgileGAN3D produces highly de-

tailed 3D stylized portraits using the same amount of input

as used in 2D stylization methods.

766



Geometry-Aware GANs Generative adversarial net-

works [15, 21, 24] have been used to synthesize images

ideally matching the training dataset distribution via adver-

sarial learning. Built on the success of 2D GANs, recent

works have extended to multiview consistent image syn-

thesis with unsupervised learning from unstructured single-

view images. The key idea is to combine differential ren-

dering with 3D representations, such as meshes [13, 29, 48],

point clouds [28], voxels [34, 35, 53], and recently implicit

neural representation [7, 8, 11, 36, 37, 46, 59]. Especially

the Neural Radiance Fields (NeRF)[16, 37] representations,

which have proven to generate high-fidelity results in novel

view synthesis, are introduced to 3D-aware generative mod-

els. They typically use StyleGAN2 [25] as the backbone to

generate intermediate features for MLP to query and per-

form neural volumetric rendering for image synthesis. Re-

cently, EG3D[8] uses an efficient triplane-based neural ra-

diance field, combined with CNN-based upsampling and a

pose-aware dual discriminator to improve synthesis quality

and multi-view consistency. Our work further extends the

success of existing 3D GAN models to generate stylized re-

sults with only a few unpaired 2D stylized exemplars.

GAN Inversion Given an input image, GAN inver-

sion addresses the complementary problem of finding

the most accurate latent code to reconstruct that image.

Existing approaches roughly fall into three categories:

optimization-based, learning-based and hybrid GAN inver-

sion. Optimization-based approaches [1, 22, 49] directly

optimize the latent code to minimize the pixel-wise recon-

struction loss for a single input instance. Learning-based

approaches [61] train a deterministic model by minimiz-

ing the difference between the input and synthesized im-

ages. Some works combine these ideas, e.g. learning an

encoder that produces a good initialization for subsequent

optimization [5]. In addition to image reconstruction, some

methods also use inversion when undertaking image manip-

ulation. For example, Zhu et al. [60] introduced a hybrid

method to encode images into a semantic manipulable do-

main for image editing. Richardson et al. [41] presented the

generic Pixel2Style2Pixel (pSp) encoder to embed image

into StyleGAN W+ space, based on a dedicated identity

loss. To balance reconstruction and editing ability for in-

version, E4E encoder [50] later uses a progressive training

strategy to stimulate W space for W+ space. ReStyle [2]

trains a residual based encoder with iterative refinement.

Besides training encoder, Pivotal Tuning Inversion[42] also

fine-tunes the generator parameters each time for recover-

ing image details that cannot be encoded in the latent space

to improve reconstruction. Wang et al. [52] proposed an

approach to achieve high fidelity inversion without infer-

ence time optimization. Recent works [3, 12] employ hyper

networks [17] to improve StyleGAN inversion. However,

directly adopting 2D GAN encoders for 3D GAN models

won’t work well, as it is not taking account of the multi-

view generation aspect of a 3D GAN model. In our work,

we introduce a multi-view cycle consistent loss to improve

our 3D GAN encoder’s capability to preserve subject iden-

tities while balancing the stylization quality.

Diffusion-based Multi-view A recent noteworthy study,

Zero-1-to-3[32, 33], employs a stable diffusion model to

leverage geometric priors extracted from a comprehensive

synthetic dataset, leading to the production of high-quality

predictions. Furthermore, Consistent123[30], adopts a

case-aware strategy that utilizes Zero-1-to-3’s 3D priors

for constructing an initial structural representation, subse-

quently enhancing texture fidelity. However, it’s important

to highlight that these methodologies predominantly focus

on general objects. This focus results in a compromise in

quality when these techniques are applied to the synthesis

of portraits.

3. Method

As shown in Fig. 2, we first use style prior creation to aug-

ment the limited 2D style exemplars, in order to supply

downstream 3D GAN transfer learning with sufficient train-

ing data with well-estimated camera labels (Section 3.1).

Then we train an encoder to map input images into 3D

GAN latent space (W+), which well preserves facial iden-

tities with a multi-view cycle consistent loss (Section 3.2).

To further improve the stylization quality, we add guided

transfer learning that removes out-of-domain stylization ar-

tifacts(Section 3.3).

3D-Aware Image Generation. For multi-view consistent

image generation, we build our pipeline on top of a state-of-

the-art geometry-aware 3D GAN model named EG3D [8].

To synthesize an image, the 3D generator Gφ takes two vari-

ables: a latent code z, from a standard Gaussian distribu-

tion, that determines the geometry and appearance of a sub-

ject; a conditional camera pose label p̂ added to the latent

code. z and p̂ are passed through a multi-layer perceptron

(MLP) mapping network to obtain a w code, which is dupli-

cated multiple times to modulate the synthesis convolution

layers that produce tri-plane features. These features are

sampled into a neural radiance field at the desired camera

angle p and accumulated to generate a raw feature image

via volumetric rendering. Finally, the raw feature images

are up-sampled by a super resolution module to synthesize

the final RGB images. A camera-conditioned dual discrim-

inator D is used to examine the image fidelity in adversarial

training, while ensuring multi-view consistency.
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Figure 2. Pipeline overview. Our 3D stylization pipeline consists of three stages, style prior creation, 3D GAN inversion and guided style

transfer learning, with different data training flows indicated in different colors. Specifically given a few 2D style exemplars, we create a

2D style prior (left, yellow) that augments stylistic training samples with well-estimated camera labels from real images. We then perform

transfer learning of 3D-aware image generator to target styles using augmented labeled style samples (orange), under the paired guidance

of 2D stylization. Additionally we train an encoder for 3D GAN image inversion (green) into a corresponding latent code in W
+ space,

from which we can turn into an identity-preserved 3D style portraits.

Figure 3. The evolution of transfer learning results using different

number of training samples by our 2D style prior. Better visual

quality is achieved with more training style exemplars.

3.1. Style Prior Creation

Unlike the 2D GAN-based stylization tasks, the few-shot

transfer learning on 3D GAN model is less well studied.

A straightforward attempt to 3D portrait stylization will be

through fine-tuning a pretrained 3D generator Gφ directly

with the few shot samples, e.g., 20 stylized exemplars.

However, plain transfer learning generates poorly in both

perceptual quality and user similarity. We suspect the prob-

lem is rooted in two aspects: insufficient style exemplars

due to the more complicated nature of a 3D GAN architec-

ture and using inaccurate camera pose estimation from style

exemplars.

To mitigate the above problems, instead of directly using

given stylized exemplars to fine-tune the 3D generator, we

create a style prior based on 2D GAN to guide the trans-

fer learning, which are less complicated and does not need

camera pose. Here we leverage the capability of the state-

of-the-art 2D stylization methods for style prior creation.

Inspired by recent 2D stylization works [38, 47], we per-

form transfer learning on top of the original StyleGAN2

generator S trained on FFHQ dataset [21], with the few

shot style exemplars. We denote the fine-tuned styled gen-

erator as St. This gives us the capability to turn widely-

accessible real portrait images into augmented 2D style

samples. Moreover, this augmentation approach naturally

offers pairs of stylized and real images, from the latter of

which we can obtain accurate camera pose labels with off-

the-shelf pose estimator such as [55].

Transfer Learning Loss By sampling from prior latent

space, we can get infinite high-quality diverse stylized im-

ages for transfer learning on 3D GANs. We use an adver-

sarial loss to fine-tune the pre-trained 3D-aware generator G
with respect to its parameter φ as well as its dual discrimina-

tor D, that matches the distribution of the translated images

to the style prior distribution:

 \label {eq:loss_decoder_adv} \begin {split} \mathcal {L}_{prior} = & \mathbb {E}_{z_s \sim N(0,I) }[min(0, -1+D(\mathcal {S}_t(z_s), p))] + \\ & \mathbb {E}_{z \sim N(0,I)} [min(0, -1-D(\mathcal {G}_{\phi }(z, p), p))] \end {split}   

 
(1)

where the latent code zs and z are from StyleGAN2 and

EG3D latent space respectively. We also apply regulariza-

tion terms for stable fine-tuning. For discriminators, we use

R1 path regularization.

Our style prior leads to significant quality improvements,

as shown in Fig. 3. We believe this is a requirement im-

posed by the NeRF module inside the 3D GAN pipeline.

Typically, visual observations from a wide camera distribu-

tion are necessary for NeRF to reason the underlying 3D

scene geometry and its corresponding appearance. Thus

fine-tuning the cross-domain 3D generation of neural radi-

ance features requires much more style samples than prior

2D GAN-based approaches.

Another point is the camera pose. For certain artistic

styles, direct camera pose estimations from the input style

exemplars might not be very accurate, which also affects

3D stylization. Different from 2D StyleGANs that directly

up-sample feature maps into images via several convolution

layers, 3D GAN synthesizes images by first accumulating
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Figure 4. Illustration of multiview cycle consistency loss. Sam-

pling from the Gaussian-distributed latent space, we synthesize

facial images at different random poses, from which we minimize

the difference of our encoded latent codes with the input.

neural radiance features via volume rendering to a feature

map and then rely on super resolution to obtain the final

image. Both the volume rendering and dual discriminator

require reliable estimation of camera parameters, which are

not easy to accurately obtained from non-realistic style ex-

amples.

3.2. Encoder Inversion with W+

Assisted with the style prior creation step, we are able to

achieve desirable 3D GAN stylization quality. One remain-

ing challenge to complete the pipeline is the capability to

invert a real face image into the latent space for 3D styliza-

tion.

Embedding Space and encoding The pre-trained EG3D

model [8] is equipped with two latent spaces: the origi-

nal latent space Z under a Gaussian distribution, and a less

entangled W space via a mapping network from z with a

conditional camera pose label p̂. In spite of the camera

swapping strategy, we observe the tri-plane generation is

not fully decoupled from the pose, inducing varying geom-

etry and appearance along with the change of p̂. Therefore

we use W space for our image embedding, and augment

it to W+ space that significantly increases the model ex-

pressiveness. In contrast to modulating the convolutional

kernels with a same code w, W+ produces a different w

latent code for each layer, allowing for individual attribute

control. In our case, a code w+ in W+ space has a dimen-

sion of 17× 512, which can be represented as 17 wi codes,

where the w0,...,w13 codes are for tri-plane generation, and

w14, ..., w16 are used in super resolution module.

For fast inference, we train an encoder for image inver-

sion, with the expectation of preserving user features to the

largest extent. We design our encoder based on the archi-

tecture used in StyleGAN2 encoder, E4E [50], but fully ex-

ploit the unique proprieties of 3D GAN in generating view-

consistent contents. In particular, we utilize the hierarchy

of a pyramid network to capture different levels of detail

from different layers. The input image resized at 256×256

resolution is passed through a headless pyramid network Eθ

to produce three levels of feature maps at different sizes.

Each level’s feature map then goes through a separate sub-

encoder block to produce the W+ style code.

Encoder Training Loss Even though our chosen W+

space offers a large degree of freedom and expressiveness

in representing real human faces, straightforward encoding

without regularization can easily lead to out-of-domain is-

sues, where the synthesized images present undesired ar-

tifacts like blurriness and noise. To prevent the encoder

from over-drifting from the representation domain of Gφ,

we introduce a multi-view cycle consistent loss, as shown in

Fig 4. The core idea is that the encoder should reproduce

the latent code from a synthesized image conditioned on w

but rendered from arbitrary views. Specifically, a collec-

tion of latent codes randomly sampled under the standard

Gaussian distribution, together with a fixed frontal camera

pose, are fed into the mapping network and obtain w sam-

ples. Note that these in-domain w samples are complied

with the original distribution of EG3D and likely to synthe-

size high-quality images without artifacts, and are a special

form in W+ space as well. Essentially training the encoder

with these in-domain samples prevents the output w+ codes

from drifting far-away from the W space. We synthesize the

images with N random camera poses p1, p2, .. from train-

ing dataset camera distribution and supervise the training of

Eθ with ground-truth w+ labels.

  \label {eq:loss_cycle} \begin {split} \mathcal {L}_{cyc} =\sum _{i=1}^{N}\mathcal {L}_{2}(w^+,\mathcal {E}_\theta (\mathcal {G_{\phi }}(w,p_i))). \end {split} 






   (2)

In addition to the multi-view cycle consistent loss, our en-

coder is at the same time trained with reconstruction losses

and regularization loss in a weighted combination manner,

while freezing the EG3D generator weights.

Let x be the input image, passed through an encoder and

decoder to yield x̂ = Gφ(Eθ(x))

  \label {eq:loss_rec} \begin {split} \mathcal {L}_{rec} = \mathcal {L}_{2}(x, \hat {x}) + \mathcal {L}_{lpips}(x, \hat {x}) + \mathcal {L}_{arc}(x, \hat {x}) \end {split}           (3)

The L2,Llpips,Larc respectively measure the pixel-level,

perceptual-level similarities [58] and facial recognition-

level similarity differences. Larc is based on the cosine

similarity between intermediate features extracted from a

pre-trained ArcFace recognition network [10], evaluating

the identity similarity. A regularization term is further in-

troduced to reduce the divergence of w+ code to mimic the

origin W space for the best of image quality,

 \label {eq:loss_reg} \mathcal {L}_{reg} = || \textrm {div}(\mathcal {E}_\theta (x)) ||_2.    (4)

3.3. Guided Transfer Learning

To further improve the 3D stylization quality, especially

for cases where the inverted codes might be still not well
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Figure 5. Our guided transfer learning loss helps improve genera-

tive quality and resolve fine-level visual artifacts.

aligned with the original distribution, the stylized images

might contain artifacts, such as blurriness. By combin-

ing fine-tuning and inversion, we propose a guided trans-

fer learning to enlarge the transfer learning space from its

Z space to W+ space with stronger generative stylization

capability.

Thanks to the real to stylized face paired data that are

produced in style prior creation step, we are able to guide

the transfer learning of our 3D generator with a reconstruc-

tion loss. Given a real image x with estimated camera p and

its 2D stylized pair xs, let x̂s = Gφ(Eθ(x), p) we have:

 \label {eq:loss_decoder_rec} \begin {split} \mathcal {L}_{guide} = \mathcal {L}_{2}(x_s, \hat {x_s}) + \mathcal {L}_{lpips}(x_s, \hat {x_s}) \end {split}        (5)

This guidance loss can help stabilize the generation training,

and also improve the generative quality and user similarity,

as illustrated in Fig. 5. We fine-tune the 3D generator and

discriminator with the encoder and style prior frozen.

4. Experimental Analysis

4.1. Implementation Details

Our encoder is trained on the CelebA-HQ dataset [26] con-

taining 30,000 high quality face images, where we use the

first 28000 for training and the rest 2000 for testing. For

consideration of computational efficiency, the input images

are down-sampled to 256×256. The pre-trained EG3D uses

the weights from the FFHQ 512-128 model [23]. We em-

pirically set λreg = 0.001 and λcyc = 1 with 2 random

camera poses. We minimize the objective function for 20

epochs using the Rectified Adam solver [31], with a batch

size of 2 and a learning rate of 5× 10−4.

For transfer learning, we collect the initial 20 2D style

exemplars from multi-image asset websites[39, 51] for each

style, with which we train the style prior. For 3D GAN

transfer learning, we use CelebA-HQ as real images in the

guided transfer learning loss. Initialized with a pretrained

EG3D model, the weights of the generator and discrimina-

tors are fine-tuned at a learning rate of 0.002 with a batch

Table 1. Stylization LPIPS ↓ for different stylization methods

Ours AgileGAN-EG3D Toonify-EG3D

Cartoon 0.195 0.440 0.481

Oil Painting 0.212 0.433 0.525

Comic 0.218 0.379 0.486

Sam Yang 0.20 0.445 0.506

Sculpture 0.234 0.469 0.549

size of 4. We limit the number of iterations around 8K im-

ages.

4.2. Comparisons

4.2.1 3D-Aware Stylization

In Fig. 6, we present more 3D portrait stylization results

from our method. A diverse range of styles demonstrate that

our method can robustly handle input images that represent

a variety of genders, face shapes and hair styles under dif-

ferent illumination conditions, creating visually appealing,

multi-view consistent stylization.

Since there is no prior few-shot 3D stylization methods

that we can compare directly, we fine-tune a 3D generator

as used in our method, following 2D stylization methods

AgileGAN[47] and Toonify[38]. We name these two hy-

brid methods as AgileGAN-EG3D and Toonify-EG3D, and

compare to them both quantitatively and qualitatively. For

Toonify-EG3D, we perform direct transfer learning of the

generator with the provided style exemplars, and the in-

version is achieved with an optimization. For AgileGAN-

EG3D, in addition to transfer learning the generator, we fol-

low their setting to train a hierarchical variational encoder

for image inversion.

Qualitative Evaluation In Fig. 7, we present visual com-

parisons against the two baseline methods. In constrast with

AgileGAN-EG3D and Toonify-EG3D results exhibiting no-

ticeable artifacts, our approach demonstrates 3D stylization

with superior perceptual quality and identity preservation.

Quantitative Evaluation In Table 1, we also quantita-

tively measure the visual quality by evaluating a perceptual

distance loss between the results of 3D style generator and

2D style prior, which we refer as Stylization LPIPS. The

evaluation is performed on CelebA-HQ test images. Given

the high quality 2D stylization (without 3D consistent ma-

nipulation capability though), we can consider a lower per-

ceptual distance indicating higher visual quality, where our

method outperforms the baselines substantially. We also

compute a perceptual evaluation with user study, and please

refer to our supplemental materials.
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Figure 6. 3D artistic portraits generated from a variety of input images. From left to right, we show the input image, and generated stylistic

multi-view images and geometry with our pipeline. Please refer to supplementary materials for higher-resolution qualitative results.

Figure 7. Our method visually outperforms direct transfer learning of EG3D generator following 2D few-shot stylization AgileGAN[47]

and Toonify[38]. Our AgileGAN3D depicts identity-preserved 3D style portraits with fine-level details.

4.2.2 Multiview Manipulation Consistency

By leveraging a 3D-aware image generator, our method

achieves multiview consistent stylization. 2D stylization

approaches like AgileGAN[47] support limited view ma-

nipulation via modifying the latent code[45] but exhibits

noticeable visual inconsistency. In Fig. 8, we visually com-

pare the view consistency using Epipolar Line Images (EPI)

similar to [54], where our method shows smooth and natural

pattern transition when rotating the rendering camera. Ad-

ditionally benefiting from camera-disentangled image syn-

thesis capability, our AgileGAN3D is more robust in large-

pose stylization as depicted in Fig. 9.

4.3. Ablation Studies

Inversion Learning In Fig. 10, we evaluate the efficacy

of our cycle consistency loss introduced in our encoder for

image inversion. With our loss, the encoder presents higher

perceptual quality and identity similarity, numerically evi-

denced with better reconstruction losses in Tab. 2.

Transfer Learning We evaluate the effect of training

sample quantity over the stylization quality both numeri-

cally in Tab. 3 and qualitatively in Fig. 3. The experiment
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Figure 8. We compare our method (b) against 2D AgileGAN[47]

(a) in multiview consistency. We manipulate stylization result

from the left to right and horizontally stack a vertical segment of

pixels from each generated image (middle). Our method shows a

more natural visual transition, indicating better view consistency.

Figure 9. With the prior knowledge of camera extrinsics, our

method demonstrates more robust large-pose stylization, com-

pared to 2D AgileGAN[47].

Figure 10. Multiview cycle consistent loss improves image inver-

sion with higher perceptual quality and similarity.

Table 2. Quantitative ablation of cycle consistency loss, evaluated

from 2K testing images.

Algorithm MSE ↓ SSIM ↑ LPIPS ↓

Ours w/o Cycle Loss 0.0203 0.525 0.317

Ours 0.0200 0.543 0.194

is performed over sam yang style. We compare against

2D AgileGAN stylization over test CelebA-HD images,

where we observe closer perceptual quality as the number of

training exemplars increase, demonstrating the efficacy of

our augmented transfer learning. Additionally, our guided

transfer learning further improves the perceptual score, as

also visually evidenced in Fig. 5. We note that using cam-

era labels estimated from style images leads to degenerated

Table 3. Stylization Perceptual scores ↓ with different training

samples

# Training samples LPIPS↓

20 0.41

100 0.252

1000 0.236

8000 0.227

8000(with guided loss, without accurate pose) 0.211

8000(with guided loss) 0.200

Figure 11. Failure examples. (a) inconsistent gaze directions, (b)

unmodeled hat.

perceptual quality. That being said, our paired camera la-

bels from real images help 3D GAN transfer learning.

5. Conclusion

We presented AgileGAN3D, the first few-shot pipeline gen-

erating high quality 3D stylistic portraits with detailed in-

style geometry from a single user image, which sheds light

on many potential applications. Our method only uses a

limited number (around 20) of unpaired 2D style exemplars

for a new target style. This is achieved via a novel frame-

work incorporating style prior creation into guided transfer

learning, which addresses the inadequate supervision issue

of 3D GAN transfer learning with accurate camera labels.

We also introduce a 3D GAN inversion module with multi-

view consistency loss to improve identity preservation while

achieving appealing stylization quality. Experimental re-

sults show that the algorithm produces high-quality multi-

view consistent stylized 3D portraits.

Limitations We presented a variety of compelling 3D

portrait stylization results, but there is still space for fur-

ther improvement in our framework. Fig. 11 shows two ex-

ample failure cases. (a) In some situations, we found that

the generated eye gaze direction is biased towards frontal

gaze, which may not be consistent with the input. (b) Oc-

casionally, our approach fail to preserve accessories such as

hat and glasses after stylization, as such cases are under-

represented in the input datasets. These problems could po-

tentially be mitigated by including more diverse input ex-

emplars.
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