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Figure 1: Comparisons of disparity inference results on sparse-annotated data. The inference results of PSMNet (first two
rows) and GANet (last two rows) are shown in the middle column. In areas with sparse ground-truth, they experience a
substantial prevalence of outliers. Our semi-supervised learning framework could significantly alleviate this phenomenon.

Abstract

Data matters in deep-learning-based binocular stereo
matching. Obtaining a perfect dataset for stereo match-
ing is hard and thus imperfect data is common in existing
benchmark datasets, such as KITTI, ETH3D and Middle-
bury. The imperfectness typically has two forms: sparse-
labeled data or even unlabeled data. Current stereo match-
ing networks ignore the supervision from these imperfect
data itself, even the semi-supervised networks often suffer
from confirmation bias in the predictions. Besides, current
methods lack a unified solution to utilize the supervision
signal from those imperfect data. To mitigate this research
gap, we propose Semi-Stereo, the first unified stereo match-
ing framework empowered by the teacher-student paradigm
where the teacher and the student networks are trained in
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a mutual-beneficial manner. To explore the rich knowledge
in imperfect data, we propose a consistency regularization
module with weak-strong augmentation strategies. Further,
in order for the teacher to provide more reliable pseudo
labels, we design a confidence module, powered by left-
right consistency (LRC) check and disparity distribution
entropy (DDE). Extensive experiments demonstrate Semi-
Stereo produces accurate and consistent predictions in un-
trained semantic regions and improves the performance of
baseline networks in multiple tasks, including domain adap-
tation and domain generalization.

1. Introduction
Stereo matching is a fundamental computer vision re-

search topic, which aims to find the horizontal correspon-
dences, i.e. disparity, between two rectified images [12, 20].
It has many practical applications such as robotics, UAVs,
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autonomous driving, and augmented reality. Unlike tra-
ditional stereo matching methods, current deep-learning-
based stereo matching networks rely heavily on the quality
of the training datasets. However, acquiring high-quality
ground-truth disparity maps is known to be a costly en-
deavor, hampered by depth scan devices. Therefore, real-
world datasets are usually imperfect. The imperfectness
typically has two forms: sparse-labeled data and unlabeled
data. Specifically, real-world datasets are generally labeled
with incomplete ground-truth. For example, as illustrated
in Fig. 3, annotations mostly exist in specific foregrounds
such as cars, roads, and trunks, while lost in most back-
grounds such as sky, trees, and buildings. The sparse an-
notation leads to many outliers in untrained semantic re-
gions. It can be observed that the inference has a noticeable
error in the sky area. This situation may lead to undesir-
able consequences, such as recognizing the sky as a wall
and then making a wrong decision in autonomous driving.
However, the two visually different predictions have similar
error maps under the existing benchmark evaluation system.

Existing convolution-based supervised methods heavily
rely on the acquisition of labeled semantic information.
Nevertheless, in scenarios where the semantic content of
certain regions remains underexplored in sparsely labeled
datasets, the network is prone to generating erroneous pre-
dictions within these areas [22]. These methods lack tai-
lored designs to solve the problem posed by sparse label-
ing. For a completely unlabeled dataset, there are two corre-
sponding tasks in the field of stereo matching: domain adap-
tation and domain generalization. However, most methods
are network-specific or task-specific. So far, there is no uni-
form framework to solve the problems of sparse labeling,
domain adaptation task, and domain generalization task to-
gether. The semi-supervised network has the potential to
unify these issues, while a naive implementation of self-
supervision is prone to suffer confirmation bias [27] through
iterative finetuning.

To mitigate this research gap, we tackle this problem
from a new teacher-student perspective. We propose Semi-
Stereo, the first unified semi-supervised stereo matching
framework empowered by the teacher-student paradigm.
Specifically, the teacher and the student models are trained
in a mutual-beneficial manner via exponential moving av-
erage (EMA), which corrects the confirmation bias in train-
ing and better guides the model optimization. Specifically,
for the sparse-labeled data, we treat the pixels with ground-
truth as labeled samples and those without ground truth as
unlabeled samples. Note that we have not introduced ad-
ditional data, but leveraged the information in unlabeled
pixels, which is often ignored in supervised learning. For
the unlabeled data, we follow current domain-adapted rules
[26] to adapt models from large virtual scenarios [18] to
real-world scenarios [5, 19, 23, 24], while treating the vir-

tual data as labeled samples and the real-world data as unla-
beled samples. For domain generalization tasks, the virtual
data are treated as both labeled and unlabeled samples.

To explore the rich knowledge in imperfect data, we
extend the study of consistency regularization from semi-
supervised learning to stereo matching. We propose
a consistency-based pseudo labeling regularization with
weak-strong augmentation strategies. Specifically, 1) in-
spired by HSMNet [32], we propose a strong augmenta-
tion method with multiple thin vertical rectangular blocks
in the left or right images to mimic occlusions, which is
tailored for stereo matching, 2) to enhance the reliability
of pseudo labels from the teacher model in Semi-Stereo,
we design an effective confidence module powered by the
left-right consistency (LRC) check [38] and disparity dis-
tribution entropy (DDE). This overall model design forces
pixels with similar semantic contents to be consistent in dis-
parity value, which strengthens the supervision signal from
imperfect data. This motivation starkly contrasts that of
current stereo matching networks. The Semi-Stereo frame-
work(see Fig. 2) is universal and can be equipped with any
stereo matching networks without changing their structures.
This mechanism allows us to improve a model whether
the dataset is dense-labeled or sparse-labeled, even unla-
beled. Besides, we propose region-level (Infinity Metric)
and image-level (Warp Consistency Metric) metrics to com-
plete the consistency evaluation of stereo matching net-
works, which has been ignored in previous works. To sum-
marize, our main contributions are:

• We analyze the imperfectness of the real-world
datasets in stereo matching and identify the univer-
sality of existing benchmarks from the perspective of
imperfect data, including disparity estimation, domain
adaptation, and domain generalization tasks.

• We propose Semi-Stereo, the first universal stereo
matching framework empowered by the teacher-
student paradigm. It manifests that utilizing the super-
vision from imperfect data regions coupled with the
labeled regions could further improve the performance
of existing stereo networks, which has been underex-
plored in previous works. It is an important step for-
ward to extend the study of semi-supervised learning
to stereo matching. We also present two new met-
rics which can further evaluate the consistency of un-
labeled data.

• Extensive experiments under different types of imper-
fect data with various stereo matching networks have
demonstrated the superiority and generality of our sim-
ple yet effective Semi-Stereo, including disparity esti-
mation, domain adaptation, and domain generalization
tasks.
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Figure 2: Illustration of our universal framework. Our framework could cope with three tasks: sparse-labeled dataset disparity
inference task, domain adaptation task, and domain generalization task. The teacher-student (TS) framework is pre-trained
on SceneFlow.

Figure 3: (a) It can be observed that large area of regions do
not have ground-truth. (b) The top row displays the input.
The middle row shows the disparity map, and the bottom
row illustrates the evaluated error map. Note that large areas
of false inference escapes the evaluation.

2. Related Work

Current Works on Sparse-labeled Data. Traditional
stereo matching algorithms like [11, 8] directly produce
sparse disparity maps. To fill in the rest missing regions,
Ralli et al. [21] diffuse disparity values by using directional
masks under the voting scheme while Beucher et al. [4] use
hierarchical segmentation to propagate the sparse disparity
to a dense and more accurate result. Deep learning based
methods produce better predictions through the learning of
semantic information. One example is the widely adopted
multi-scale pyramid network [2, 31, 6, 25, 33], which can
propagate the information from low resolution predictions
to obtain high-resolution dense disparity maps. PSMNet [2]
generates multi-scale feature maps and then concatenates
them to enhance the context information. AANet [31] uses
cross-scale cost aggregation to fuse the multi-scale cost vol-
ume. Further, the implementations of the cost aggregation
help to gather information from adjacent pixels, including
the 3D convolution [9, 2, 7, 32], GRU-based recurrent net-

works [15, 13, 29] and optimal transport [14], where the
incomplete labeling issues can be greatly mitigated. How-
ever, due to sparse annotations, unlabeled semantic regions
do not have ground-truth, and thus the semantic information
of this region will not be learned, resulting in outlier during
inference.

Domain Adaptation and Domain Generalization. Do-
main adaptation aims to use the target domain information
to achieve better results with the pre-trained model, while
domain generalization aims to achieve generalization with-
out using any target domain information. For the domain
adaptation task, Tonioni et al. [28] design an unsupervised
and continuous online adaptation network with a pyramid
strategy. Patrick et al. [10] propose a self-supervised pro-
cedure to adapt aerial images without ground truth. Stere-
oGAN [16] designs a joint framework to achieve stereo
adaptation with the bidirectional multi-scale feature repro-
jection and correlation consistency. Recently, Adastereo
[26] proposes a novel domain adaptation pipeline to narrow
the gaps between the source and target images, with color
transfer, cost normalization, and self-supervised reconstruc-
tion. For the domain generalization task, Chuah et al. [3]
consider that the fundamental problem that prevents domain
generalization is shortcut learning. They make features in-
sensitive to the low-level variants of the data through the in-
formation bottleneck theory. Zhang et al. [37] argue that
maintaining feature consistency between matching pixels
is important for promoting generalization ability and thus
proposes a contrastive learning strategy across viewpoints.
Regardless of domain adaptation or domain generalization
tasks, existing network frameworks are network-specific or
task-specific, and there is no unified framework to solve this
problem.
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Semi-supervised Binocular Stereo Matching. Semi-
supervised stereo approaches are proposed to handle the
problem of sparsely labeled data. Wang et al. [30] pro-
pose to utilize a pyramid voting module (PVM) to provide
reliable pseudo labels for their OptStereo supervised learn-
ing. Patrick et al. [10] address the sparse-labeled prob-
lem through an iterative training strategy. In each training,
the confident pseudo-labels are selected and sent into the
next round of training. Zhou et al. [38] also iteratively up-
date the network parameters under the guidance of left-right
consistency check. These three works encounter two major
drawbacks: 1) [30] causes the performance ceiling of Opt-
Stereo to not exceed PVM and thus the quality of pseudo-
labels cannot be improved. In our work, the teacher net-
work that gives pseudo-labels is constantly improving, 2)
a naive pseudo-labeling [10, 38] causes confirmation bias
during training. In our paper, the unbiased teacher-student
paradigm could avoid this problem.

3. Method
3.1. Problem Definition

We focus on imperfect data in real-world scenarios.
Specifically, imperfect data consists of: 1) sparse-annotated
data Ds, and 2) completely unlabeled data Du. Assum-
ing that the mask regions having ground-truth annotations
are mgt, we aim to utilize the unlabeled regions in Ds or
Du, i.e., Ds [1−mgt] or Du, to ensure the consistency and
accuracy of the network inference. Thus, the network is
trained in a semi-supervised manner. Domain adaptation
and domain generalization are two popular tasks in the field
of stereo matching in recent years. They both aim to fix the
performance degradation caused by domain gaps and to im-
prove the applicability of stereo networks trained on a large
synthetic dataset.

3.2. Framework Overview

In order to explore the consistency knowledge through
the dataset itself, we introduce teacher-student paradigm
to binocular stereo matching as Fig. 4. The overall pro-
cess contains two stages. In the first stage, we obtain the
model pre-trained from a large scale virtual dataset, e.g.
SceneFlow. For simplicity, we omit this stage in the fig-
ure. In the second stage, we train teacher and student in
the target domain. Based on this framework, we propose
an imbalance augmentation and confidence module to let
the teacher-student paradigm plays a better role in explor-
ing consistency. First, they are both equipped with the pre-
trained model and are fed with stereo pairs under varying
degrees of augmentation. Second, the confidence module
powered by LRC and DDE filters out the unreliable pseudo
labels. Loss is conducted between the teacher and the stu-
dent inferences and the EMA strategy [27] is adopted to

update the weights of the teacher. The teacher and the stu-
dent step forward mutually thus the quality of pseudo labels
is improving continuously.

Motivation for introducing teacher-student paradigm
comes from the consistency regularization between various
inputs. Benefiting from the consistency regularization on
the inference, the features on untrained semantic regions
maintain stable. In this way, we utilize the unlabeled train-
ing data better and thus improve performance.

Thus, our method could be modeled as a data term and a
regularization term. The former is from ground truth, while
the latter is from teacher-student framework.

3.3. Imbalance Weak&Strong Augmentation

Data augmentation is the crucial part to help the teacher-
student paradigm to explore consistency regularization.
When the difference in contrast and chroma of the paired
images is large, we require the network to still output con-
sistent results, thus ensuring the realization of consistency
regularization.

To enhance the reliability and robustness of the labels
generated by the teacher network, we employ weak aug-
mentations on the stereo pair inputs. Specifically, we si-
multaneously apply subtle adjustments ([0.8, 1.2]) to the
brightness and contrast of both the left and right images.

In order to make the network have a better consistent
regularization effect, we adopt a strong augmentation for
the input of the student network. Specifically, we 1) ran-
domly adjust the brightness and contrast on the two images
to a larger degree ([0.5, 1.5]), noting that the adjusted scale
is different for the left view and the right view. 2) ran-
domly generates multiple thin vertical rectangular blocks in
the right images to mimic occlusions, as illustrated in Fig.
5.

3.4. Confidence Module

The confidence module is also one of the parts of ensur-
ing consistent inference. It is used to select the inference
results of the teacher network to provide reliable pseudo-
labels for the student network. The confidence module con-
sists of the traditional left-right consistency (LRC) check
and disparity distribution entropy (DDE) evaluation mod-
ule designed in this paper.

Left-Right Consistency. We find in practice that the
crosscheck of left and right predictions helps to remove
most of the unreliable pseudo labels in the occluded areas.
For a pixel in the left image with left-to-right disparity dl,
we shift its location horizontally by dl to get the correspond-
ing value drl. The consistency module masks out inconsis-
tent pixels if the difference between dl and drl is larger than
a threshold δlrc :

masklrc = [(dl − drl) < δlrc] (1)
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Figure 4: Overview of the proposed Semi-Stereo based on the teacher-student paradigm. The stereo pair after weak&strong
augmentation is fed to the teacher and the student, respectively. For the sparse annotated data, another weak augmentation
is performed and fed into the student. The confidence module selects the reliable pseudo labels provided by the teacher
inference. Loss is conducted between pseudo labels and the inference of the student. The weight update of the teacher will
also take the weight of the student into account through the EMA strategy, thus the teacher and the student are progressing
together. Therefore, the quality of pseudo labels improves continuously as the training process.

Figure 5: Illustration of augmentation.

Disparity Distribution Entropy. Another commonly
observed phenomenon in stereo is the multi-modal distri-
bution of the cost volume across the disparity range. A sin-
gle prominent peak in the cost function suggests that the
network is more confident in its prediction, whereas a cost
volume exhibiting a multi-peak distribution typically indi-
cates unreliability in the corresponding regions. We propose
evaluating the uncertainty of the pseudo-labels by comput-
ing the disparity distribution entropy of the cost volume:

H(p) = −
Dmax∑
d=0

p(d) log p(d) (2)

With the cost volume built on the full disparity range Dmax,
we apply softmax to get p(d) for every disparity candidates.
We apply the threshold δdde to mask out uncertain pixels

according to the disparity distribution entropy:

maskdde = [H(p) < δdde] (3)

We set δlrc = 1 and δdde = 0.2 in our experiments. The
final pseudo-label mask mt could be obtained by combining
results from two confidence modules:

mt = maskdde & masklrc (4)

3.5. Loss and Update Strategy

For the inference results of the strong augmentation input
of the student network, we use pseudo labels for supervision
to realize consistent regularization:

Lreg =
1

Nu

Nu∑
i=0

∥d̂strongstu,i − dpse,i∥1 (5)

where, Nu is the number of unlabeled pixels, ˆdstrongstu is the
inference result of strong augmentation input of the student.
dpse is the pseudo label generated by the teacher network
defined as:

dpse = d̂weak
tch ∗mt (6)
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where, d̂weak
tch is the inference result of weak augmentation

input of the teacher network. We also construct the loss
between the output of the weak augmented data through the
student network and real-world ground truth as follows.

Ls =
1

Ns

Ns∑
i=0

∥d̂weak
stu,i − dgt,i∥1 (7)

where, Ns is the number of labeled pixels, ˆdweak
stu is the in-

ference result of weak augmentation input of the student
network. If the dataset is completely unlabeled, this part
could be removed from the framework.

After the gradient backpropagation of the student net-
work, we update the weights of the teacher to avoid the
confirmation bias. The implementation of the EMA strat-
egy is to take the weights of the student into account and
update the weights of the teacher as follows:

θ
′

t = αθ
′

t−1 + (1− α)θt (8)

where, θ is the student weights, θ
′

is the teacher weights,
and α controls how much the student network update is con-
sidered. Through the EMA, we avoid the problem that the
weights of the teacher network are never updated, which
can easily bias the inference results of the network. We set
α = 0.9996 in our experiments. The quality of pseudo la-
bels could improve continuously as the network training,
and the teacher and the student are progressing mutually
(see Sec. 5.4).

4. Consistency Evaluation Metrics
In Fig. 3, we observe that two wildly different predic-

tions have similar error maps. The reason is that the regions
of inconsistent inference do not have ground-truth. For a
fair comparison of the consistency performance of different
networks, two metrics are designed to measure the consis-
tency of the inferences, that is, the infinity metric and the
warp consistency metric.

Infinity Metric. The intuition behind the infinity met-
ric is that regions with infinite distance are not rare in real
world, especially the sky. The sky part is trained insuf-
ficiently due to the lack of semantic information, which
causes large outliers. We propose to calculate the mean and
variance in this area: the closer the mean and variance are to
zero, the better the consistency and accuracy of the network.

Warp Consistency Metric. The warp consistency met-
ric, on the other hand, measures the consistency between the
predictions between the left and right images. For a pixel in
the left image with RGB color Il, we 1) shift from its lo-
cation by the prediction dl of left-to-right disparity to get
the corresponding location on the right image; 2) read the
prediction dr from the right-to-left disparity and shift back;
3) read again from the left image to get RGB value Ilrl.

The warp consistency metric is measured by the difference
between Il and Ilrl:

Cwarp =

{
0 dl ≪ drl
|Il − Ilrl| Others

(9)

Note that pixels, where dl is much less than dr, are consid-
ered possibly occluded regions thus we do not include them
in the metric. The warp consistency metric should be con-
sidered as a necessary but insufficient condition for reliable
disparity predictions.

5. Experiments
5.1. Datasets

We use SceneFlow [18] (Flyingthings3D, Monkaa and
Driving), KITTI 2012 [5], KITTI 2015 [19], Middle-
bury [23], ETH3D [24] and InStereo2K [1] for evalua-
tion. SceneFlow is a large synthetic stereo dataset, contain-
ing 35454 training image pairs and 4730 test image pairs.
KITTI are collections of real-world driving scenes, con-
taining 194(KITTI 2012)/200(KITTI 2015) training image
pairs and 195(KITTI 2012)/200(KITTI 2015) testing image
pairs. Middlebury is a high-resolution dataset of indoor
scenes, with 23 image pairs for training and/or validation
and 15 testing image pairs with full, half, and quarter reso-
lutions. ETH3D contains 27 grayscale image pairs from in-
door and outdoor scenes with sparse-labeled ground truth.
InStereo2K is a large dataset in indoor scenes, including
2000 pairs for training and 50 pairs for testing.

5.2. Implementation Details

For the sparsely labeled task experiments, we train
our semi-stereo network with the backbone pre-trained on
SceneFlow. For the cross-domain experiments, we first train
the backbone network on SceneFlow, applying the color
transformation module [17] on domain adaptation experi-
ments. Then, we train our Semi-Stereo on the target domain
images without using any ground truth. The target domain
images are from SceneFlow for the domain generalization
task or from the real world images for the domain adapta-
tion task. The specific setting of each model is illustrated in
the supplementary document.

Table 1: Ablation studies for data augmentation and EMA.

Method D1 All %

PSMNet 1.81
TS-PSMNet(w/o DataAug) 1.75
TS-PSMNet (w/o EMA ) 1.73
TS-PSMNet 1.71

5.3. Ablation Study

Ablation of Data Augmentation and EMA. We divide
KITTI 2015 into training set (80%) and validation set (20%)
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Figure 6: Adaptation examples on four datasets. The top row showcases results on KITTI 2012, followed by the second row
presenting results on KITTI 2015. The left side of the third row depicts results on Middlebury, while the right side exhibits
those on ETH3D. The middle images of each sub-figure is the predictions from the model just trained on SceneFlow. The
right images of each sub-figure is the inference results under our domain adaptation method.

Table 2: Ablation study of the confidence module.

LRC DDE Threshold Error Rate(%)

KITTI 2012 KITTI 2015

4.5 6.3
✓ 4.1 5.7

✓ 3.8 5.4
✓ ✓ 3.5 4.1

Table 3: Semi-supervised learning experiments on In-
Stereo2K.

Method Training Testing

labeled splits unlabeled splits D1 1px 2px 3px

PSMNet 1 - 3.23 13.44 6.16 4.19
TS-PSMNet(ours) 1 2-7 1.26 10.77 4.14 2.54
PSMNet 1-2 - 2.74 11.87 5.51 3.72
TS-PSMNet(ours) 1-2 3-7 1.11 10.23 3.85 2.37

and compare our framework with or without data augmen-
tation and EMA. Tab. 1 shows the metrics on the valida-
tion set. DataAug means Data Augmentation. If we remove
both modules, our network will degenerate as the baseline
network. The results show that DataAug and EMA are ef-
fective respectively. The best performance is achieved by
using them together.

Ablation of Confidence Module. We test the effect of
the confidence module and explore the impact of LRC and
DDE respectively through the domain adaptation testing on
KITTI. As presented in Tab. 2, the results show that LRC
and DDE are effective respectively. And the best perfor-
mance is achieved by using LRC and DDE together. Fur-
ther, we ablate the hyperparameters of LRC and DDE in the
supplementary document.

Ablation of Hyperparameters. We move the ablations
of hyperparameters of the data augmentation, the unsuper-
vised loss weights, and the effect of color transformation
module to the supplementary document.

Figure 7: Comparison of the teacher and the student on
KITTI 2015 validation. It shows that the teacher and the
student make progress together.

5.4. Additional Validations

Teacher-student Architecture. We visualize the perfor-
mance(D1) on KITTI 2015 validation set during each train-
ing epoch (Fig. 7). It can be observed that the teacher and
the student progress together in the process of mutual learn-
ing, and the teacher is good enough to guide the student.

Effect on InStereo2K [1]. The training set is divided
into 7 parts (split 1 to 7) and we design two settings: (1)
Split 1 is chosen as the labeled data and Split 2-7 are se-
lected as the unlabeled data, (2) to further increase the per-
centage of the labeled data, we choose Split 1 and Split 2
as the labeled data and Split 3-7 as the unlabeled data. As
shown in Tab. 3, we compare our Semi-Stereo with the su-
pervised learning baseline (PSMNet) and it can be observed
that our Semi-Stereo has the ability to mine useful supervi-
sory signals from the unlabeled data, thus further improving
the performance over the supervised baseline.

5.5. Comparisons with Supervised Networks

We integrate our Semi-Stereo approach into PSMNet
[2], GANet [35], AANet [31], and subsequently compare
its performance with the respective original models. For
brevity, we refer to the enhanced models as TS-PSMNet,
TS-AANet and TS-GANet.
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Table 4: Benchmark results on KITTI test sets.

Method KITTI 2015 KITTI 2012

D1-All D1-Noc 3px-All 3px-Noc

PSMNet 2.32 2.14 1.49 1.89
TS-PSMNet 2.06 1.86 1.30 1.71

GANet 1.81 1.63 1.19 1.60
TS-GANet 1.74 1.56 1.12 1.60

AANet 2.55 2.32 1.91 2.42
TS-AANet 2.52 2.28 1.87 2.37

Table 5: Comparisons of the Infinity-Mean, Infinity-
Variance and Warp Consistency on KITTI test sets.

Method KITTI 2012 KITTI 2015

Inf-Mean Inf-Var Warp Inf-Mean Inf-Var Warp

PSMNet 15.40 352.46 41.98 10.65 50.44 43.68
TS-PSMNet 8.26 43.46 34.77 7.32 25.53 31.50

GANet 10.15 75.09 40.66 15.40 358.83 37.99
TS-GANet 9.83 43.07 36.57 8.43 40.01 36.35

AANet 10.32 46.23 35.71 11.45 106.43 33.87
TS-AANet 9.99 43.36 33.33 10.11 48.07 31.09

Table 6: Domain generalization (up) and domain adaptation
(down) on four validation sets. Threshold error rate (%) is
utilized for measurement.

Method KITTI Middlebury ETH3D
2012 2015

HD3[34] 23.6 26.5 37.9 54.2
gwcnet[7] 20.2 22.7 34.2 30.1
GANet[35] 10.1 11.7 20.3 14.1
DSMNet[36] 6.2 6.5 13.8 6.2
PSMNet[2] 15.1 16.3 25.1 23.8
FC-PSMNet[37] 7.0 7.5 18.3 12.8
ITSA-PSMNet[3] 5.2 5.8 12.7 9.8
TS-PSMNet(ours) 5.0 5.4 12.0 5.6

StereoGAN[16] - 12.1 - -
Ada-ResNetCorr[26] 5.1 5.0 12.7 5.8
Ada-PSMNet[26] 3.6 3.5 8.4 4.1
TS-PSMNet(ours) 3.5 4.1 8.1 4.0

Results on KITTI Benchmark. We submit our in-
ference results of our models to KITTI 2012 and KITTI
2015 stereo benchmark for evaluation. As shown in Tab. 4,
our methods demonstrate superior performance compared
to those trained under the supervised paradigm. Fig. 1
shows the superiority of our method, especially the robust-
ness of the textureless regions. Intuitively, we observe a no-
table enhancement in most backgrounds, attributable to the
consistency achieved by our approach. Since most back-
ground pixels are excluded from the evaluation, the en-
hanced benchmark metric signifies that our proposed frame-
work not only enhances predictions on unlabeled pixels but
also boosts performance on labeled ones.

Figure 8: Qualitative comparisons between PSMNet (mid-
dle) and TS-PSMNet (right) in the domain adaptation task.

Results on Consistency Metrics. Tab. 5 shows the con-
sistency metrics on the test sets of KITTI 2012 and KITTI
2015. Our Semi-Stereo surpasses the original ones both in
Inf-Mean and Inf-Var. It could be proved that our frame-
work does polish the disparity predictions in the infinite-
distance areas. As shown in Tab. 5, the warp consistency
mean errors are lower than the original ones.

5.6. Cross-Domain Comparisons

Domain Generalization. For fair comparisons, we
choose the same backbone as [26]. Tab. 6 shows the do-
main generalization results, where we only use SceneFlow
for TS framework training, instead of utilizing the target
domain. Our TS-framework effectively complements the
backbone networks, demonstrating its significant role in en-
hancing the performance.

Domain Adaptation. Tab. 6 shows the quantitative
comparisons while Fig. 6 showcases qualitative examples of
domain adaptation. Employing real-world datasets for the
target domain, our framework attains optimal performance
on KITTI 2012, Middlebury and ETH3D.

Qualitative Evaluation of Domain Adaptation. Apart
from validating our approach on public datasets, we also
evaluate its domain adaptation capabilities using infrared
images, which are commonly encountered in structured
light scenarios. We compare the PSMNet which is pre-
trained on SceneFlow and the adapted TS-PSMNet on the
infrared images without ground truth. After the domain
adaptation, we get more accurate predictions with finer de-
tails (see Fig. 8).

6. Conclusion
Recognizing the challenge posed by imperfect data in

stereo matching, we introduce Semi-Stereo and propose
the first universal framework empowered by the teacher-
student paradigm. This framework could effectively har-
nesses supervision from both imperfect and labeled data re-
gions, enabling enhanced performance. Besides, we also
present Infinity Metric and Warp Consistency Metric to
complete the consistency evaluation of stereo matching net-
works, which is often ignored in previous works. Extensive
experiments under different types of imperfect data with
various stereo matching networks have demonstrated the
superiority and generality of our simple yet effective Semi-
Stereo.
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