
DepthVoting: A Few-Shot Point Cloud Classification Model Incorporating a
Projection-Based Voting Mechanism

Yunhui Zhu, Jiajing Chen, Senem Velipasalar
Syracuse University, Electrical Engineering and Computer Science Dept.,

Syracuse, NY, USA
{yzhu130, jchen152, svelipas}@syr.edu *

Abstract

Despite the significant progress in few-shot 2D image
classification, few-shot 3D point cloud classification re-
mains relatively under-explored, particularly in addressing
the challenges posed by missing points in 3D point clouds.
Most existing methods for few-shot 3D point cloud classi-
fication are point-based, and thus, highly sensitive to miss-
ing points. Despite recent attempts, such as ViewNet, which
introduce projection-based backbones to increase robust-
ness against missing points, the reliance on max pooling,
to extract information from multiple images simultaneously,
makes them prone to information loss. To address these
limitations, we introduce DepthVoting, a novel projection-
based approach, for few-shot 3D point cloud classifica-
tion. Instead of extracting features from multiple projection
images simultaneously, DepthVoting captures features from
pairs of projection images (obtained from opposite view an-
gles) separately, enhancing the extraction of more compre-
hensive information. These features are sent to multiple
few-shot heads, which share parameters. To further re-
fine predictions, DepthVoting incorporates a voting mech-
anism, allowing contribution and incorporating informa-
tion from different pairs. We conduct extensive experiments
on three datasets, namely ModelNet40, ModelNet40-C, and
ScanObjectNN, along with cross-validation. Our proposed
method consistently outperforms the state-of-the-art base-
lines on all datasets in terms of average accuracy with even
higher margins on the challenging ScanObjectNN dataset.

1. Introduction
In recent years, deep learning-based 3D point cloud anal-
ysis has attracted increasing attention from academia and
industry, due to the use of 3D point clouds in wide range
of applications, such as autonomous driving, robotics, and
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simultaneous localization and mapping (SLAM), and more
availability of data thanks to increasing accessibility of sen-
sors, such as LiDAR. Although significant amount of work
has been performed on 2D few-shot learning, and fully su-
pervised point cloud classification, few-shot learning (FSL)
from point clouds still remains under-explored.

Different from 2D images, 3D point cloud data is un-
structured, making convolutional neural networks (CNN)
inapplicable. To address this issue, many point-based meth-
ods [9, 10, 20] were proposed for fully supervised point
cloud analysis. As for few-shot point cloud classification,
Ye et al. [22] adopt DGCNN [20], a point-based method, as
the backbone. However, Chen et al. [2] show that point-
based backbones are sensitive to missing points in point
clouds, and thus, are not the most suitable for FSL tasks.
They discuss that some projection depth images generated
from a point cloud are more robust missing points, and pro-
pose ViewNet [2], which employs features extracted from
six projections images for FSL. They report better perfor-
mance than point-based backbones.

Although ViewNet [2] reported state-of-the-art (SOTA)
performance on several datasets, we argue that it cannot
fully leverage the information contained in depth images.
ViewNet employs max-pooling among features of all six
projections, which may lead to information loss especially
when the number of projection images increases. To moti-
vate our claim, we perform an experiment in Sec. 3, show-
ing that, in some folds, a single pair of projection im-
ages processed through ResNet18 can outperform ViewNet,
which uses a total of six projections.

To address the aforementioned challenges and motivated
by our findings, we introduce a novel projection-based
method, referred to as the DepthVoting, for 3D point cloud
classification. DepthVoting employs a projection method
adopted from SimpleView [5] to generate six 2D depth im-
ages, corresponding to front, back, top, bottom, left, and
right views, from 3D point clouds. To enrich the amount of
information, data augmentation is performed by rotating all
projection images 180-degree clockwise, yielding 12 im-
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ages as input. DepthVoting adopts ResNet-18 [17] as the
backbone for feature extraction. In contrast to using con-
ventional average pooling or max pooling, which are prone
to information loss, DepthVoting employs set pooling to
preserve a more comprehensive set of features. Recogniz-
ing the similarities among the opposite views (top and bot-
tom, left and right, and front and back), proposed DepthVot-
ing model partitions feature maps into three sub-feature
maps corresponding to each pair. Notably, as discussed in
Sec. 3, only single pairs of projection images can provide
relatively good performance by themselves, even surpass-
ing ViewNet for some folds in few-shot point cloud classi-
fication. Combining this observation with the motivation to
avoid max pooling, we employ three few-shot heads (shar-
ing the same parameters) to process each sub-feature map
separately, enabling independent learning from each sub-
feature map. Subsequently, DepthVoting integrates a voting
mechanism, to obtain the final class prediction for a query.

Experiments conducted on the ModelNet40 [21],
ModelNet40-C [15] and ScanObjectNN [18] datasets, uti-
lizing cross-validation, highlight the success of our method
compared to five different SOTA baselines in the few-shot
3D point cloud classification task. The main contributions
of this work include the following:
• We provide motivation showing that a single pair of depth

images projected from 3D point cloud data can pro-
vide good performance by themselves, even surpassing
ViewNet for some folds.

• Motivated by our findings, we propose DepthVoting,
which extracts features from individual projection pairs,
and sends them to multiple parameter-sharing few-shot
heads to separately learn their features, instead of em-
ploying view pooling. DepthVoting also incorporates a
soft voting mechanism, providing improved accuracy for
few-shot point cloud classification.

• DepthVoting achieves SOTA performance by surpassing
five different baselines [2, 7, 13, 16, 22] on all of three
datasets. The improvements in accuracy, and higher im-
provement margins on the challenging ScanObjectNN
dataset serve as the strong evidence of our model’s effec-
tiveness when dealing with real-world point cloud scans.

• We present a series of ablation studies to further show the
effectiveness of DepthVoting, and the contribution and
importance of using multiple parameter-sharing few-shot
heads and a voting mechanism.

2. Related Work
2.1. Point Cloud Classification
A 3D point cloud is a set of unordered points, repre-
sented by their x, y and z coordinates. Some previous
works [9, 10] perform point cloud classification by extract-
ing features directly from 3D points. In contrast, other ex-
isting works [3, 14] first project a point cloud onto depth

images so that existing CNNs can be adopted to extract im-
age features. In general, point cloud classification meth-
ods can be broadly categorized as the projection-based and
point-based techniques.

Projection-based methods. Projection-based methods
focus on transforming unstructured 3D point cloud data into
structured formats for feature extraction. MVCNN [14]
presents a multi-view approach that uses 12 2D images ob-
tained from projecting a 3D point cloud. Subsequently,
a CNN is employed to extract features from these im-
ages. These features are then combined through view pool-
ing, which aggregates the information captured by differ-
ent views. Finally, an additional CNN is employed to
perform the ultimate classification task. Since different
views can have different contributions to the classifica-
tion task, GVCNN [3] assigns distinct scores to individ-
ual view descriptors and categorizes these descriptors into
separate groups based on their scores. Subsequently, the
method generates weights for each group, which are used
for weighted aggregation to obtain the final features.

Point-based methods. Different from the projection-
based approaches, point-based methods focus on learning
features directly from 3D points. PointNet [9] employs max
pooling to obtain permutation invariant features. However,
PointNet extracts local features only from individual points,
without incorporating global information. To address this
issue, various methods were proposed to extract both local
features, from individual points, and global features, based
on the relationships among points. PointNet++ [10] is a pi-
oneering method in this direction, which uses a hierarchical
neural network structure. It progressively partitions a point
cloud into local regions, learning features at multiple scales.
Another notable approach is DGCNN [20], which builds a
graph, where each point is connected to its k-nearest neigh-
bors. By using these local graphs, DGCNN captures both
local and global structures of the point cloud data.

2.2. Few-shot Learning

Since the process of collecting, labeling, and validating
large datasets can be prohibitively expensive, few-shot
learning (FSL) was proposed to address this problem. This
learning paradigm aims to train a model that can general-
ize to new classes, which are not seen during training, and
perform prediction given only a few labeled samples.

In FSL, the dataset is divided as D = (Dbase, Dnovel),
where Dbase includes all the examples used for training
and Dnovel contains the examples used in the testing stage.
The classes in Dbase do not overlap with the classes in
Dnovel. The framework involves a support set and a query
set. The support set is built by randomly selecting N classes
from the dataset and choosing K samples for each selected
class, resulting in a total of N ×K samples. The query set
is generated by randomly selecting Q samples from the re-
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maining data of the same N classes used for the support
set, resulting in another subset of N ×Q samples. The
goal of the model is to classify the query samples given
N ×K support samples. This task is referred to as the N -
way K-shot Q-query task. FSL often adopts meta-learning
to quickly adapt to new tasks. Few-shot meta-learning can
generally be categorized into three groups: model-based,
metric-based, and optimization-based methods.

Model-based Methods. Model-based methods are de-
signed to efficiently update parameters using only a lim-
ited number of samples. MANN [12] is a pioneering tech-
nique that employs memory augmentation to address the
challenges of FSL. This approach extends traditional neu-
ral networks by integrating memory and the corresponding
read and write mechanisms. Similarly, MetaNet [8] utilizes
an external memory to save model weights, enabling rapid
parameterization for generalization. MetaNet consists of a
meta learner and a base learner. The meta learner acquires
generalization information across a range of meta tasks and
utilizes a memory mechanism to preserve this knowledge.
On the other hand, the base learner is designed to quickly
adapt to new tasks and collaborates with the meta learner to
generate predictions for input data.

Metric-based Methods. These methods focus on how
to measure and compare similarity between data points.
They compute the distance between samples in the query
set and samples in the support set to perform the classifica-
tion. Siamese Neural Networks [6] employ a twin network
structure for classification. It uses the same network struc-
ture to extract features from two images. If the distance of
two samples in the feature space is very close, those samples
should belong to the same class, or vice versa. Different
from Siamese Neural Networks, Match Network [19] uses
different networks to extract features from query set and
support set. A weighted sum of predicted values between
the samples in support set and query set drives classifica-
tion. Later, Prototype Network [13] was proposed, which
computes class prototypes through means and subsequently
classifies queries based on the distance between prototypes
and query data.

Optimization-based Methods. These methods aim to
enhance few-shot classification by redefining the optimiza-
tion approach. Ravi et al. [11] present a two-level optimiza-
tion process. The inner loop adapts the model’s parameters
for each task using stochastic gradient descent. The outer
loop involves updating the initial model parameters to fa-
cilitate effective adaptation across tasks. Model-Agnostic
Meta-Learning (MAML) [4] introduces a meta-learning ap-
proach that remains adaptable to any model using gradient
descent. MAML exploits limited data to determine an op-
timal range of initial values, thereby directing gradient de-
scent towards more responsive initial parameters. This en-
ables rapid model fitting.

3. Motivation
Real-world point cloud data often times suffers from miss-
ing points. ViewNet [2] is a recently proposed method pro-
viding SOTA performance on few-shot point cloud classifi-
cation. It employs three pairs of projection images (a total
of six images), obtained from opposite view angles, to in-
crease robustness against missing points. ViewNet forms
different projection feature combinations, performs view
pooling on these combinations, and reports better perfor-
mance than the baselines.

Since ScanObjectNN dataset [18] is captured from real-
world scans, and involves missing points, we have con-
ducted an experiment on this dataset to assess the perfor-
mance of using only a single pair of projection images (from
opposite view angles) for few-shot classification. We first
employ a projection method similar to SimpleView [5] to
generate six 2D projection images (front, back, top, bottom,
left, right). Then, different from ViewNet, we extract fea-
tures, only from a single pair of images, by using ResNet-
18 [17]. The classification task is executed using the Cross
Instance Adaptation module (CIA) [22]. We divide the 15
classes in the ScanObjectNN dataset into three folds, with
each fold containing five classes, and perform three-fold
cross-validation. The results are presented in Table 1. As
can be seen, single pairs of projection images can provide
relatively good performance by themselves, even surpass-
ing ViewNet for some folds. For instance, for fold 2 of
the 5-way 5-shot experiment, the performance of ViewNet
(77.46%), which employs all six images for prediction, is
1.52% lower than that (78.98%) of using only Top and Bot-
tom projections with ResNet18. These results show that
ViewNet cannot fully exploit the features of these individ-
ual pairs of images, and lose some information due to view
pooling and max pooling of all six images. In this case, the
useful information contained in the Top and Bottom views
is not sufficiently leveraged by ViewNet. Motivated by these
results, we present a new way of extracting and combining
information from different projection image pairs, which
employs a voting strategy among different pairs (instead
of pooling), and enables the model to independently learn
from each projection pair.

fold 0 fold 1 fold 2 Mean

5-way
1-shot

Front + Back 48.98 61.56 62.86 57.80
Left + Right 53.45 61.57 60.72 58.58

Top + Bottom 53.54 63.41 64.71 60.55
ViewNet [2] 60.90 66.48 64.10 63.83

5-way
5-shot

Front + Back 69.23 72.98 74.68 72.30
Left + Right 67.70 71.77 72.91 70.79

Top + Bottom 69.18 75.27 78.98 74.48
ViewNet [2] 73.66 74.77 77.46 75.30

Table 1. Few-shot classification results using a single pairs of pro-
jection images on the ScanObjectNN dataset.
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Figure 1. Overall Architecture of DepthVoting. Initially, the point cloud is projected onto six 2D depth images, followed by data
augmentation through rotation. B represents the batch size. Then, our approach employs ResNet-18* (* signifies that our model employs
part of the ResNet-18 architecture) combined with set pooling to generate a feature map for the point cloud. This feature map is divided
into three sub-feature maps. To facilitate independent learning from different projection pairs, each sub-feature map is separately sent to the
same CIA few-shot head. Following this, a voting mechanism is employed to consolidate the individual predictions from each sub-feature
map, resulting in the final prediction for the query.

4. Proposed Method
Real-world 3D point cloud data, especially those captured
outdoors with LiDAR scans, suffer from noise, missing
points and occlusions. Hence, we propose DepthVoting, a
novel projection-based architecture for few-shot 3D point
cloud classification, which increases robustness against los-
ing information through strategic use of information coming
from different pairs of projection depth images. The archi-
tecture of DepthVoting is illustrated in Fig. 1.

We focus on N -way K-shot Q-query few-shot classifi-
cation task, wherein the support set S contains K labeled
samples for each of the N classes, while the query set L
consists of N ×Q samples, all drawn from these N classes.
The objective of our model is to classify the N×Q samples
into their corresponding classes.

4.1. Few-Shot Backbone

Consider a set of 3D points P = {p1, p2, . . . , pn}, where
each point is represented as pi = (xi, yi, zi). We first
project the point cloud data onto six 2D depth images (cor-
responding to front, back, top, bottom, left, and right views)
by using a projection technique similar to SimpleView [5].
This results in a tensor P ∈ R6×H×W , where 6 is the
number of 2D projection images, and H and W denote the
height and width of each depth image, respectively. In order
to enrich the amount of information, we employ data aug-
mentation by rotating all 2D projection images clockwise

by 180 degrees. This results in a set of 12 2D projection
images, forming a tensor P ∈ R12×H×W . An example set
of 12 depth images for a point cloud from the ModelNet40
dataset is presented in Fig. 2.

Top

Bottom

Front

Back

Right

Left

Figure 2. 2D projection images are generated by projecting a Mod-
elNet40 point cloud onto six orthogonal planes by a projection
method as in SimpleView [5]. To augment data, all six images
are rotated clockwise by 180 degrees. This process results in 12
distinct 2D projection images for the point cloud.

Our DepthVoting model employs ResNet-18 [17] as the
image processing backbone. This enables us to obtain fea-
ture representations from 12 projection images. In con-
trast to employing conventional average pooling or max-
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pooling operations at the end of ResNet-18, we adopt the
set pooling mechanism. This choice can preserve a more
comprehensive set of features while minimizing informa-
tion loss typically associated with max pooling operations.
The structure of set pooling [1, 2] is depicted in Fig. 3. Set
pooling aims to capture features from diverse pixel fields.
We divide the feature map F ∈ R(B×12)×64×32×32, ob-
tained from ResNet-18, into bi-many bins, where bi is cho-
sen from the set b = {1, 2, 4, 8, 16, 32}. Within each bin,
we compute both the mean and maximum values to amal-
gamate local and global features for the given pixel group.
Notably, the selection of the number of bins bi, from the
set {1, 2, 4, 8, 16, 32}, ensures that each bin encapsulates
unique pixel fields. This choice allows us to gather a com-
prehensive array of information spanning various fields.
Consequently, we summarize these features to yield the out-
put of each bin denoted as Ki ∈ R(B×12)×64×bi , where B
represents the batch size.

Ultimately, by concatenating the features from all bins,
we form the consolidated feature K ∈ R(B×12)×64×63.
This feature is further processed through a series of convo-
lutional layers to produce the final output F ∈ RB×12×64.

4.2. Few-shot Head
Our experiment, presented in Sec. 3, has shown that sin-
gle pairs of 2D projection images can provide relatively
good performance by themselves, even surpassing ViewNet
(which uses all three pairs) for some folds. These results
also reveal that ViewNet cannot fully exploit the features
from individual pairs of images, and loses some information
due to view pooling and max pooling of all three pairs. Mo-
tivated by this, we present a new way of extracting and com-
bining information from different projection image pairs.

To capture distinguishing features of the point cloud and
address subtle inter-class differences, we adopt the Cross
Instance Adaptation module (CIA) [22] as the few-shot
head, and apply it to the sub-feature maps obtained as de-

scribed below.
After extracting the feature map F , using ResNet18 to-

gether with set pooling, we partition this feature map into
three distinct sub-feature maps as follows: a front and back
feature map denoted by f1 ∈ RB×4×64, a top and bottom
feature map denoted by f2 ∈ RB×4×64, and a left and right
feature map denoted byf3 ∈ RB×4×64. Given the distinct
nature of the three sub-feature maps, f1, f2, and f3, we
send them separately to the same CIA head. This approach
enables the model to independently learn from each sub-
feature map.

The CIA module contains two pivotal components: the
Self-Channel Interaction Module and the Cross-Instance
Fusion Module. The Self-Channel Interaction Module be-
gins by generating a query-vector q ∈ R1×d and a key-
vector k ∈ R1×d from the embedding feature vector f using
two separate linear embedding functions. Then, a channel-
wise relation score map is obtained:

R = qT k,R ∈ Rd×d. (1)

Then, the updated features are obtained by:

f ′ = f + fR′, f ′ ∈ R1×d, (2)

where R′ is computed as:

R′
ij =

exp(Rij)∑d
k=1 exp(Rkj)

, R′ ∈ Rd×d. (3)

The Cross-Instance Fusion Module involves the concate-
nation of each prototype feature f i

p with its top K1 cosine-
similar query features and the concatenation of each query
feature f i

q with its top K2 cosine-similar prototype features.
More details can be found in the original CIA paper [22].

After separately sending the sub-feature maps, f1, f2,
and f3 to the CIA module, we generate three distinct prob-
abilities, namely p1, p2, and p3, which quantify the like-
lihood of the query data belonging to each class. To de-
termine the final class label for the query, we implement a
voting mechanism, which enhances the overall robustness
and reliability of the classification process.

4.3. Voting Mechanism
Voting stands out as a powerful combination strategy em-
ployed in ensemble learning to effectively address classifi-
cation challenges. This technique harnesses the collective
wisdom of multiple components to make a more robust and
accurate prediction.

In classification tasks, there are two primary forms of
voting: hard voting and soft voting. In hard voting, the ulti-
mate prediction is made by choosing the label with the high-
est occurrence among all the voting outcomes. Soft voting,
on the other hand, calculates the average of probabilities as-
signed to a specific class by multiple models and selects the
prediction with the highest average probability.
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In this work, we adopt the soft voting mechanism, which
is well-suited for our approach. As described above, we de-
rive three probabilities, denoted by p1, p2, and p3, from each
sub-feature map, for each query set’s assignment to specific
classes. Subsequently, we determine the final probability of
the query set’s assignment to particular class by averaging
these probabilities as p = p1+p2+p3

3 .

Finally, the classes with the highest average probability
are chosen as the final predicted class for a given query
set. Given that we run three sub-feature maps separately
through a few-shot head, we derive three individual losses
from these, denoted by L1, L2, and L3. To obtain the final
loss L for prediction, we average these individual losses.
Therefore, the final loss of the prediction is computed as:

L =
L1 + L2 + L3

3
. (4)

5. Experiments

We train our proposed method using the meta-learning
scheme. All experiments are performed using one RTX6000
GPU. We use cross-entropy as the loss function, and em-
ploy Adam optimizer with a learning rate of 8 × 10−4

and weight decay of 0.5. We observe that 100 epochs are
enough for all models to converge, including our proposed
DepthVoting and five baseline methods, namely MetaOpt-
Net [7], RelationNet [16], ProtoNet [13], CIA [22] and
ViewNet [2]. Among these baselines, MetaOptNet, Rela-
tionNet, and ProtoNet have been developed for 2D few-shot
learning, while CIA and ViewNet have been proposed for
3D few-shot learning. The results we report are the ac-
curacy values calculated on test episodes with 95% confi-
dence intervals. We train and test all models under the same
settings on three commonly used datasets, namely Mod-
elNet40, ModelNet40-C and ScanObjectNN. Experimental
results are presented in Tables 2, 3, and 4, respectively, for
these datasets.

5.1. Experiment Results on Modelnet40

ModelNet40 [21] is a well-established dataset, which is
widely employed in few-shot tasks. It contains 12,311 CAD
models from 40 categories. Each CAD model contains 1024
3D points. In Fig. 4, we present example point clouds of an
airplane and a chair from the ModelNet40 dataset, along
with three corresponding projected images.

For the few-shot classification task, we sort 40 classes
based on their class IDs in ascending order, and divide them
into 4 folds, each containing 10 classes, to perform 4-fold
cross-validation. Table 2 presents the accuracy with 95%
confidence intervals obtained from our proposed method
and five baselines. Our method consistently outperforms all
baselines, both for 1-shot and 5-shot classification. Since
Modelnet40 is generated from CAD models, it is the least

Front Right Top

Figure 4. Example point clouds of an airplane and a chair and three
of the corresponding projected images for ModelNet40 dataset.

challenging dataset among the three, explaining the rela-
tively high performance of most approaches, and thus, the
smaller margins of improvement provided by DepthVoting.

5.2. Experiment Results on Modelnet40-C

ModelNet40-C [15] is a more recent dataset, including the
same 40 classes as the ModelNet40 dataset. Unlike Mod-
elNet40, ModelNet40-C introduces 15 corruptions, includ-
ing LiDAR, occlusion, gaussian and others, each with 5
severity levels, to simulate real-world point cloud data. In
Fig. 5, we present example point clouds of an airplane and
a chair from the ModelNet40-C dataset, along with their
corresponding three projection images. Compared to the
point clouds belonging to the same class in the ModelNet40
dataset (shown in Fig. 4), point clouds in ModelNet40-C
have missing points, making this dataset more challenging.

We adopt the same dataset splitting methodology used in
ModelNet40. Table 3 presents the accuracy values obtained
with our model and five different baselines. Our method
consistently outperforms all baselines, both for 1-shot and
5-shot classification. As can be seen, all the methods expe-
rience a performance degradation on ModelNet40-C com-
pared to ModelNet40, since ModelNet40-C is more chal-
lenging as described above.

5.3. Experiment Results on ScanObjectNN
ScanObjectNN [18] is a widely used benchmark dataset for
3D point cloud classification. It contains over 15,000 la-
beled point clouds, from 15 object categories, captured from
real-world indoor environments. The point clouds are ac-
quired through RGB-D cameras and LiDAR scanners. In
Fig. 6, we present example point clouds of a desk and a
chair from the ScanObjectNN dataset, along with their cor-
responding three projection images. Compared to the point
clouds in ModelNet40 and Modelnet40-C datasets (shown
in Fig. 4 and Fig. 5), point clouds in ScanObjectNN dataset
present more challenges with a lot more missing points.
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5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 fold 3 Mean fold 0 fold 1 fold 2 fold 3 Mean

MetaOptNet [7] 82.87±0.72 75.77±0.83 65.31±0.92 66.97±0.93 72.73±0.85 92.37±0.38 86.44±0.62 82.10±0.58 83.15±0.55 86.02±0.53
RelationNet [16] 82.14±0.69 77.46±0.80 66.09±0.91 69.47±0.84 75.23±0.81 91.53±0.38 85.11±0.61 79.36±0.63 83.01±0.52 84.75±0.53

ProtoNet [13] 85.42±0.64 79.46±0.76 70.06±0.39 70.73±0.42 76.42±0.55 93.99±0.29 88.65±0.54 84.76±0.51 85.56±0.48 88.24±0.45
CIA [22] 89.97±0.63 83.46±0.83 74.08±0.95 76.13±0.86 80.91±0.82 94.61±0.30 89.15±0.55 85.00±0.51 86.71±0.50 88.87±0.47

ViewNet [2] 92.57±0.52 82.68±0.80 75.28±0.90 80.95±0.75 82.87±0.74 96.23±0.26 89.64±0.55 85.74±0.51 90.18±0.45 90.45±0.44
DepthVoting (Ours) 91.99±0.57 84.85±0.79 77.04±0.85 82.65±0.83 84.13±0.76 96.84±0.25 90.30±0.54 88.41±0.45 91.95±0.43 91.88±0.42

Table 2. Few-shot classification results on the ModelNet40 dataset. Bold indicates the best result.

5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 fold 3 Mean fold 0 fold 1 fold 2 fold 3 Mean

MetaOptNet [7] 78.28±0.79 75.34±0.84 58.07±0.86 66.29±0.91 69.50±0.85 91.09±0.40 84.19±0.57 75.10±0.73 81.34±0.53 82.93±0.56
RelationNet [16] 79.59±0.74 74.63±0.84 59.03±0.81 68.38±0.86 70.41±0.81 87.12±0.46 83.55±0.54 70.18±0.78 79.01±0.58 79.97±0.59

ProtoNet [13] 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84 72.18±0.80 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
CIA [22] 85.70±0.75 79.67±0.90 65.68±1.00 74.32±0.94 76.34±0.89 92.07±0.36 86.81±0.56 76.11±0.71 83.71±0.51 84.68±0.54

ViewNet [2] 89.47±0.58 81.05±0.78 69.56±0.89 76.29±0.85 79.09±0.78 94.95±0.31 88.75±0.49 81.53±0.60 86.78±0.46 88.00±0.47
DepthVoting (Ours) 89.94±0.65 79.29±0.81 71.67±0.93 75.54±0.91 79.11±0.83 96.32±0.27 88.79±0.52 83.72±0.60 87.38±0.47 89.05±0.47

Table 3. Few-shot classification results on the ModelNet40-C dataset. Bold indicates the best result.

5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 Mean fold 0 fold 1 fold 2 Mean

MetaOptNet [7] 41.92±0.72 61.12±0.66 53.87±0.78 52.30±0.72 63.86±0.56 67.73±0.45 70.19±0.49 67.26±0.50
RelationNet [16] 50.29±0.76 54.23±0.63 51.45±0.64 51.99±0.68 58.65±0.53 66.72±0.50 65.94±0.52 63.77±0.52

ProtoNet [13] 50.81±0.73 60.46±0.67 58.72±0.78 56.66±0.73 68.45±0.54 70.20±0.52 68.76±0.49 69.13±0.52
CIA [22] 50.58±0.82 62.17±0.68 62.59±0.74 58.45±0.75 62.94±0.51 71.31±0.45 70.21±0.48 68.15±0.48

ViewNet [2] 60.90±0.76 66.48±0.60 64.10±0.77 63.83±0.71 73.66±0.48 74.77±0.45 77.46±0.46 75.30±0.46
DepthVoting (Ours) 60.51±0.73 66.80±0.71 69.90±0.73 65.74±0.72 77.02±0.42 77.21±0.45 84.76±0.38 79.66±0.42

Table 4. Few-shot classification results on the ScanObjectNN dataset. Bold indicates the best result.

Front Right Top

Figure 5. Example point clouds of an airplane and a chair and three
of the corresponding projected images for ModelNet40-C dataset.

For the few-shot classification task, we sort the 15
classes based on their class IDs in ascending order and di-
vide them into 3 folds, each containing 5 classes, to perform
3-fold cross-validation. Tab. 4 presents the accuracy values
obtained with our model and five different baselines. Our
method consistently outperforms all baselines by significant
margins in all folds, both for 1-shot and 5-shot classifica-
tion. More specifically, in 5-way 5-shot classification, our
approach surpasses the second-best performer (ViewNet)
by a margin of 4.36%. In 5-way 1-shot classification, our
approach surpasses the second-best performer (ViewNet)
by a margin of 1.91%. It should be noted that improvement
margins are much higher on the ScanObjectNN dataset,

Front Right Top

Figure 6. Example point clouds of a desk and a chair and three of
the corresponding projected images for the ScanObjectNN dataset.

which contains real-world data, and is the most challeng-
ing one among the three datasets. Improvements in accu-
racy, and higher margins on the challenging ScanObjectNN
dataset serve as the strong evidence of our model’s effec-
tiveness when dealing with real-world point cloud scans.

6. Ablation Studies
In our ablation studies, we use the ScanObjectNN dataset,
known for its real-world point cloud scans, to assess the
effectiveness of our method and its components. The ex-
perimental parameters mirror those outlined in Sec. 5. Our
ablation studies focus on three aspects: (a) we first evalu-
ate the effectiveness of treating three pairs of projection im-
ages individually (by sending them separately to a few-shot
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head) and then incorporating a voting mechanism; (b) we
study the role of using set pooling (instead of traditional av-
erage pooling and max pooling) at the end of the ResNet-18
architecture; (c) we conduct a comparative analysis of the
accuracy of DepthVoting with and without data augmenta-
tion. In these ablation studies, we base our analysis on 700
meta-testing episodes, both in 5-way 1-shot and 5-way 5-
shot settings.

6.1. Analysis of Voting Mechanism

In our proposed DepthVoting, we treat three pairs of pro-
jection images individually, send them separately to a few-
shot head, and then adopt a voting mechanism. To analyze
the effectiveness of our original method, we construct an-
other approach, wherein features of 12 projection images
(outputted by ResNet-18) are concatenated together (with-
out being divided into sub-feature maps), and the concate-
nated feature is sent to the CIA few-shot head and then the
classifier not using any voting. For the purposes of this
ablation study, this later approach is referred to as ‘Con-
catenated features, No Voting’. These two approaches are
compared in Tab. 5. As can be seen, our DepthVoting, treat-
ing three pairs separately and incorporating a voting mech-
anism, provides significantly better results than ‘Concate-
nated features, No Voting’ in all folds as well as in terms of
mean accuracy. More specifically, for 5-way 1-shot classi-
fication, DepthVoting achieves an impressive accuracy im-
provement of 9.42% over the ‘Concatenated features, No
Voting’. For 5-way 5-shot classification, the improvement
margin is even higher at 12.18%.

fold 0 fold 1 fold 2 Mean
5-way
1-shot

‘Concat. features, No Voting’ 50.06 57.14 61.77 56.32
DepthVoting 60.51 66.80 69.90 65.74

5-way
5-shot

‘Concat. features, No Voting’ 61.91 68.97 71.55 67.48
DepthVoting 77.02 77.21 84.76 79.66

Table 5. The comparison of the accuracy of our model with and
without voting mechanism. Bold indicates the better result.

6.2. Effect of Set Pooling

We present a comparison of the performance of DepthVot-
ing, which uses set pooling, with a model that uses the tra-
ditional ResNet-18 (i.e. set pooling is replaced by max-
pooling). The results presented in Tab. 6 show that the use
of set pooling enhances the model’s performance, both in
1-shot and 5-shot classification tasks. In 5-way 1-shot clas-
sification, set pooling provides an accuracy improvement
of 3.85% compared to using max-pooling. Similarly, in
5-way 5-shot classification, the adoption of set pooling in
DepthVoting results in an accuracy increase of 6.47% com-
pared to not using set pooling.

6.3. Effect of Data Augmentation

We perform a comparison of the performances of DepthVot-
ing with and without data augmentation. As mentioned

fold 0 fold 1 fold 2 Mean
5-way
1-shot

Max pooling 55.30 66.30 64.06 61.89
DepthVoting (w/ set pooling) 60.51 66.80 69.90 65.74

5-way
5-shot

Max pooling 69.21 73.65 76.70 73.19
DepthVoting (w/ set pooling ) 77.02 77.21 84.76 79.66

Table 6. The comparison of the accuracy of the models using set
pooling and the model without using set pooling. Bold indicates
the better result.

above, rotation is used for data augmentation. The results
are summarized in Table 7. It can be observed that using ro-
tation for data augmentation significantly improves the per-
formance of the model, both in 1-shot and 5-shot classifi-
cation tasks. In 5-way 1-shot classification, data augmenta-
tion provides an improvement of 1.32% in average accuracy
compared to not using data augmentation. Similarly, in 5-
way 5-shot classification, using data augmentation results in
an increase of 2.25% in average accuracy compared to not
using data augmentation.

fold 0 fold 1 fold 2 Mean
5-way
1-shot

without data augmentation 58.21 65.26 69.78 64.42
with data augmentation 60.51 66.80 69.90 65.74

5-way
5-shot

without data augmentation 73.46 77.40 81.37 77.41
with data augmentation 77.02 77.21 84.76 79.66

Table 7. The comparison of the accuracy of the models with and
without data augmentation. Bold indicates the better result.

7. Conclusion

We have proposed DepthVoting, a novel projection-based
method, to perform few-shot 3D point cloud classification
while increasing robustness against missing points in point
clouds. DepthVoting projects the point cloud data onto
six planes from different views to obtain six 2D projec-
tion images, and then performs data augmentation through
180-degree clockwise rotation of each image. Instead of
extracting features from multiple projection images simul-
taneously, DepthVoting captures features from three pairs
of projection images (obtained from opposite view angles)
separately. These features are then sent to multiple few-
shot heads, which share parameters. To get final predic-
tions, DepthVoting employs a voting mechanism, aggre-
gating information from different views. Experiments per-
formed on the ModelNet40, ModelNet40-C, and ScanOb-
jectNN datasets have shown that DepthVoting consistently
outperforms five baseline models on 5-way 1-shot and 5-
way 5-shot 3D point cloud classification. The improve-
ments in accuracy, and higher improvement margins on the
challenging ScanObjectNN dataset serve as the strong evi-
dence of our model’s effectiveness when dealing with real-
world point cloud scans. Ablation studies have highlighted
the important role of treating each pair of images separately
and using the voting mechanism, as well as the effect of set
pooling and data augmentation.
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