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Supplementary Materials Contents

This supplementary material provides additional informa-
tion and insights into our research. More details on
our methodology can be found in Sec. 1, which elabo-
rates on the proposed framework (Sec. 1.1), the process
of multi-view extraction (Sec. 1.2), view selection tech-
niques (Sec. 1.3), and our approach for object classification
(Sec. 1.4).

Further information about our experiments is available
in Sec. 2, covering the implementation specifics (Sec. 2.1),
and the evaluation metrics (Sec. 2.2) used to measure our
framework’s performance.

Additionally, Sec. 3 offers an extensive analysis of
our results, including visualizations using Grad-CAM
(Sec. 3.1), and an analysis of the predicted classes
(Sec. 3.2). There is also a discussion on how the selec-
tion of pre-trained CNNs impacts the results (Sec. 3.3), the
influence of different classifiers (Sec. 3.4), and the effect
of changing shape representation technique on the perfor-
mance of our model (Sec. 3.5). Each subsection delves
deeper into the respective topics, providing a comprehen-
sive understanding of the methods and results presented in
our study.

1. More Methodology Details

1.1. The Proposed Framework

This work introduces a view-based 3D object classification
framework that demonstrates the most encouraging results,
achieving state-of-the-art performance for 3D classification
tasks. We propose a Selective Multi-View Deep Model, as
illustrated in Fig. 1. Our framework extracts multi-view im-
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ages from 3D data representations and selects discrimina-
tive views using importance scores. These scores are based
on visual features detected by a pre-trained CNN.

1.2. Multi-view Extraction

In our proposed work, we will experiment with the circular
configuration with 12 extracted views [4, 8, 11] as well as
the spherical configuration with 20 extracted views [4, 11].
These camera settings help the literature achieve state-of-
the-art performance in 3D object classification. Both views
mentioned above are shown in Fig. 2.

1.2.1 Circular Configuration

The first camera setup is the regular circle, as shown
in Fig. 2a. Where the virtual cameras are regularly located
on a horizontal circular path around the tested object and
raised with elevation φ equal to 30◦ from the ground level
and directed at the object’s center [2, 4, 5, 8, 11], this setup
is commonly helpful to capture views of aligned and real
objects initially acquired with one-dimensional turning ta-
bles. In other words, it is beneficial when the objects are
assumed to be with an upright orientation by a consistent
axis (e.g., z-axis) as the rotation axis that identified the up-
right orientation where the virtual cameras are distributed
over 30◦ at intervals of the azimuth angle Θ around the
axis [3, 4]. Here, we follow works such as [2–4, 8, 11], by
setting the azimuth angle Θ equal to 30◦ as default, which
means locating 12 virtual cameras that extract 12 rendered
views from an object. Fig. 2a shows samples of 12 extracted
views for this camera configuration.

1.2.2 Spherical Configuration

The second camera setup is irregularly spherical and is
without the consistent upright orientation assumption of
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Figure 1. Illustration of the proposed framework. It operates in five phases to predict the class of a 3D object: A) It generates m multi-view
images from the 3D object. B) Feature maps are extracted from each view. C) These feature maps are converted into feature vectors, and
D) importance scores are assigned based on their cosine similarity. The feature vector with the highest importance score, known as the
Most Similar View (MSV), is selected as the global descriptor. E) Finally, the global descriptor is utilized to classify the object using a
pre-trained classifier.

shapes [4], i.e., the objects are unaligned and not in the
same vertical direction. In the spherical configuration, vir-
tual cameras are irregularly located with equal spaces on
the vertices of a dodecahedron/sphere surrounding the ob-
ject [3, 4, 11]. The camera viewpoints can be equally
spread in 3D because a dodecahedron has the greatest ver-
tices among regular polyhedral [4]. We experiment with this
configuration similar to [4, 11] by locating 20 virtual cam-
eras on the dodecahedron’s vertices surrounding the object
to render 20 views. Fig. 2b shows samples of 20 extracted
views.

1.3. View Scoring and Selection

Fig. 3 visualizes and illustrates the sub steps of the pro-
posed scoring and selection mechanism: (a) pairwise scor-
ing, (b) view scoring, (c) view score normalization, and (d)
view selection. In first step, pairwise scoring, the proposed
model computes and assigns importance scores (similarity
scores using cosine similarity technique) for all view pairs
as in Fig. 3a. Then in view scoring step, the model sum all
the scores for each view when compared to other views to
obtained the final score for each view as in Fig. 3b. Where
in view score normalization, the views’ importance scores
are normalized as in Fig. 3c to sum to one for each object.
The normalization facilitates the comparison of views from
the same object and assigns each view a normalized score.
Finally, in view selection step, the most significant view,

Most Similar View (MSV) (with the highest score high-
lighted in darker green in Fig. 3c) and the least significant
view, Most Dissimilar View (MDV) (with the lowest score
highlighted in light yellow in Fig. 3c), are selected for ex-
perimenting.

Fig. 4 illustrates a selection of more samples from the
ModelNet40v1 dataset. Each object was processed, ren-
dered as 12 different views, and assigned importance scores.
Based on these scores, the proposed model determines the
Most Similar View (MSV) or Most Dissimilar View (MDV)
for optimal object classification. In the figure, MSV is rep-
resented by views enclosed in green boxes, while MDV is
depicted in brown boxes. Notably, in cases where objects
like “Bottle” or “Bowl” exhibit views that are highly sim-
ilar, their importance scores are nearly equal (see last two
rows from Fig. 4). As a result, multiple MSVs may be iden-
tified. However, the proposed model randomly selects only
one MSV from this set for classification purposes.

1.4. Object Classification

Two networks have been experimented with as classifiers.
The first network is the Fully Connected Layer (FCL),
which contains only one fully connected layer, as the name
indicates, with softmax activation. The second network is
Fully Connected Network (FCN) as recommended by See-
land and M ”ader [6], which contains a fully-connected
layer of 1024 neurons with ReLU activation and 0.5 dropout



(a) Circular configuration (12 views).

(b) Spherical configuration (20 views).

Figure 2. The two mostly experimented with camera configurations: (a) Circular and (b) Spherical (dodecahedral).

probability as a regularization technique to help prevent
overfitting and improve generalization, followed by another
fully-connected layer with softmax activation. Tab. 1 de-
tails the layers of the classifiers with their output shape and
activation function.

Classifier Layers Output Shape Activation

FCL Dense (None, 40) Softmax

FCN
Dense (None, 1024) ReLU

Dropout (None, 1024) -
Dense (None, 40) Softmax

Table 1. Details of the deep learning networks and their layers that
experimented as classifiers.

2. More Experimental Details
2.1. Implementation Details

The comparative experiments are conducted using Visual
Studio Code on a computer with Windows 11 Pro operating
system 64-bit. This computer has: 1) 12th Gen Intel(R)
CPU with Core(TM) i7-12700H 2.30 GHz, 2) NVIDIA

GeForce RTX 3060 GPU, and 3) 32 GB RAM. All experi-
ments’ environments are set to Tensorflow-gpu 2.10, Cuda
11.2, and Python 3.9.

2.2. Evaluation Metrics

To evaluate the classification performance of the proposed
multi-view object classification model, two evaluation met-
rics have been used as criteria for classification accuracy:

Overall Accuracy (OA): a.k.a. instance accuracy,
which is the testing samples that classified correctly to the
total number of testing objects samples [1, 3, 5]. OA can be
calculated using Eq. (1) [5].

OA =
∑C

i=1 TPi + TNi∑C
i=1 Pi + Ni

(1)

Average Accuracy (AA): a.k.a. class accuracy, which is
the mean or average accuracy of all the correctly classified
testing objects corresponding to the same class [1, 3, 5]. In
other words, it is the mean of the instance accuracy among
all classes. AA can be calculated using Eq. (2) [5].

AA =
1
C

C∑
i=1

TPi + TNi
Pi + Ni

(2)



(a) Pairwise scoring.

(b) View scoring.

(c) View score normalization.

Figure 3. Visualization and illustration of the scoring and selection
mechanism steps: (a) Pairwise scoring, (b) View scoring, and (c)
View Score Normalization.

Where C is the total number of experimented categories,
P and N are the numbers of positive and negative experi-
mented samples, respectively. TP and TN are the true pos-
itive and true negative samples, respectively, and i is the
corresponding category.

3. More Results and Discussion
The proposed models’ results when trained for 20 epochs
are shown in Tab. 2.

3.1. Grad-CAM Visualization

Fig. 5 shows more correctly predicted views by the pro-
posed model with their corresponding feature maps high-
lighted with Guided GradCam [7] showing the responsible
regions that led to the correct classification. These feature

maps show how the proposed model selects the views that
contain distinguishing features, such as shelves in book-
shelves and circular edges in bowls.

3.2. Predicted Classes Analysis

To gain further insights into the classification performance
of the proposed model, confusion matrices of model M13
(the best result from the ModelNet40v1 dataset) and model
M15 (the best result from the ModelNet40v2 dataset) were
constructed in Figs. 8a and 8b, which provide a de-
tailed breakdown of the model’s predictions across differ-
ent classes. For example, when the proposed model ex-
perimented on the ModelNet40v1 dataset with 12 views,
top confusions happen when (see Fig. 8a) i) ”flower pot”
predicted as ”plant” (7 objects), ii) ”dressers” predicted
as ”night stand” (4 objects), and iii) ”plant” predicted as
”flower pot” (4 objects). As shown in Fig. 6, even for hu-
man observers, distinguishing between these specific pairs
of classes can be challenging due to the ambiguity present.

3.3. The Effect of the Pre-trained CNNs

One crucial hyperparameter in our module is the choice of
pre-trained CNN used for feature extraction. We evaluated
the performance of the proposed model using the different
CNN architectures mentioned in Table 2 of the manuscript
with the ModelNet40v1/v2 datasets. The best results for
each CNN architecture on ModelNet40v1/v2 are plotted
in Fig. 7.

3.4. The Effect of the Classifiers

The FCL and FCN classifiers have been experimented with
as hyper-parameters in the proposed module. Fig. 9 displays
the training accuracy and loss curves for FCN and FCL from
the best-performing experiments. FCN was trained for 30
epochs using the ModelNet40v1 dataset, while FCL was
trained for 30 epochs using the ModelNet40v2 dataset.

During the training phase, it can be observed
from Fig. 9a that FCN gradually increases in accuracy and
decreases in loss after epoch 19. At epoch 29, FCN achieves
its highest accuracy of 88.85% and lowest loss of 0.36.
In contrast, Fig. 9b shows that FCL experiences a signifi-
cant increase in accuracy and a decrease in loss at epochs 2
and 21. At epoch 30, FCL reaches its highest accuracy of
87.88% and lowest loss of 0.41.

3.5. The Effect of Shape Representation

Shading techniques have been demonstrated to improve
performance in models such as MVDAN [10] and
MVCNN [9]. The rendered views were grayscale images
with dimensions of 224×224 pixels and black backgrounds,
as depicted in Fig. 10. The camera’s field of view was ad-
justed so that the image canvas tightly encapsulated the 3D
object.



Figure 4. The set of 12 circular views obtained from sample objects and their corresponding importance scores are displayed. Views with
the highest importance scores, representing the Most Similar Views (MSV), are highlighted with green boxes. Conversely, views with the
lowest importance scores, representing the Most Dissimilar Views (MDV), are enclosed in brown boxes.

Figure 5. Samples of feature maps belong to correctly classified labels highlighted with the Grad-CAM technique to show the responsible
regions that led to the classification.
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Figure 6. Multi-view samples from ModelNet40v1 dataset of the most wrongly classified objects by the proposed model.

(a) Overall Accuracy (OA). (b) Average Accuracy (AA).

Figure 7. 3D Classification accuracy of the proposed model on ModelNet40 datasets with varied CNNs as feature extractors. The pre-
trained ResNet-152 has the best performance.



(a) The confusion matrix of model M13 conducted on the ModelNet40v1 dataset.

(b) The confusion matrix of model M15 conducted on the ModelNet40v2 dataset.

Figure 8. The confusion matrices presented depict the highest-performing results achieved by the proposed model approach for two
different datasets: (a) ModelNet40v1 and (b) ModelNet40v2.



(a) FCN training accuracy and loss curves from model M13.

(b) FCL training accuracy and loss curves from model M15.

Figure 9. The proposed model’s training accuracy and loss curves of classifiers.

(a) Original multi-view images.

(b) Shaded multi-view images.

Figure 10. Different shape representations in the multi-view images: a) Original, and b) Shaded.
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