
Appendix- Supplementary Materials
Cross-modal Self-training: Aligning Images and Pointclouds to learn Classification without

Labels

The following section contains supplemental informa-
tion and encompasses more implementation details, a com-
parison of datasets, and further analysis of discriminative
features learned by the proposed cross-modal self-training.
The contents are organized in the order listed below.
• Cross-modal joint pseudo-labels (Appendix 1)
• Additional implementation details (Appendix 2)
• Datasets (Appendix 3)
• Training trends (Appendix 4)
• Analysis of feature embeddings (Appendix 5)

1. Cross-modal joint pseudo-labels
We generate a training sample by pairing a point cloud ob-
ject with an image showing the object from a random view-
point. A set of weak augmentations are applied to the batch
B of image and point cloud pairs which is then passed
through the teacher model to obtain two sets of soft pre-
diction logits from each modality; qb,img, qb,pcl Then, the
teacher prediction for each sample that corresponds to the
highest confidence between the two modalities is selected
to generate a common set of pseudo-labels for both image
and point cloud modalities as follows:

r̂b = {1 (max(qb,img) ≥ max(qb,pcl)) q̂b,img

∪ 1 (max(qb,img) < max(qb,pcl)) q̂b,pcl },

where q̂b,img = argmaxc(qb,img) and q̂b,pcl =
argmaxc(qb,pcl). The confidence scores for the combined
pseudo-labels are denoted by

rb = max
b

{max
c

(qb,img),max
c

(qb,pcl)}

where rb ∈ RB .

2. Implementation details
We use ViTB16 as the image encoder, and a standard
transformer [11] with multi-headed self-attention layers and
FFN blocks as the point cloud encoder. The [MSK] tokens,
projection layers, and decoder layers are randomly initial-
ized, and the classifier is initialized with the text embedding
as explained in ??. Then they are fine-tuned together with
the encoders in the EMA teacher-student setting. We use
AdamW [6] optimizer with a weight decay of 0.05. We ap-
ply a cosine learning rate scheduler and similar to [1, 5], we
apply layer-wise learning rate decay of 0.65. The batch size
is 512, and the learning rate is scaled linearly with the batch

size as (lr= base lr*batchsize/256). We used 4 V100 GPUs
for training.

Image encoder: We initialize image encoder with [7]
weights. We use a ViT-B/16 model pretrained by [7] for
the image branch, containing 12 transformer blocks with
768 dimensions. The model receives input images of size
224 × 224. After resizing, random cropping is applied as
a weak augmentation on the input to the teacher model to
generate pseudo-labels. A set of stronger augmentations;
RandomResizedCrop+Flip+RandAug [4] is applied to the
input to the student model. We implement a patch-aligned
random masking strategy where multiple image patches are
randomly masked with a fixed ratio of 30%.

Point cloud encoder: We used Shapenet [2] dataset and
its rendered 2D views from [13] to pre-train the point cloud
encoder and the projection layers fP , fS , and f I while the
image and text encoders are kept frozen. Training is done
for 250 epochs with a learning rate of 10−3 with AdamW
optimizer with a batch size of 64. We divide each point
cloud into 64-point patches each containing 32 points. Point
centers for clustering local point patches are selected using
farthest point sampling (FPS). Then the locations of corre-
sponding point centers are subtracted from the local patches
such that they contain only the local geometric information
irrespective of its original position. We use a Mini-Pointnet
to extract point embeddings of each sub-cloud, followed by
a sharpened-pre trained encoder from [14] to convert each
sub-cloud into point embeddings. The center locations of
each sub-cloud are passed through an MLP to encode a po-
sitional embedding and are appended to the point embed-
dings, before passing to the transformer. The depth of the
transformer is set to 12, the feature dimension to 384, and
the number of heads to 6. During point encoder pre-training
as well as self-training, the encoder is kept frozen. Af-
ter normalizing, weak augmentations such as rotation per-
turbation and random scaling in the range of 90% 110%
are applied on the input point-cloud to the teacher model
to generate pseudo-labels. Stonger augmentations; random
cropping, input dropout, rotate, translate, and scaling in the
range of 50% 200% are applied to the input to the student
model. Random masking is applied to 30% to 40% of the
point embeddings.

3. Datasets

Shapenet [2] consists of textured CAD models of 55 ob-
ject categories. We uniformly sample points from each ob-
ject mesh to create the pointclouds, after which they are nor-

Figure 1. Qualitative comparison of datasets.

malized to fit a unit sphere. Following the work of [13],
we render RGB images for each object from different view-
points. We use this dataset to pretrain the pointcloud branch
to provide a better initialization for self-training.

ModelNet40 [12] is a synthetic dataset of 3D CAD mod-
els containing 40 categories. The pointclouds are sampled
from the object mesh and normalized. We use the work of
[9] to get realistic 2D renderings of the CAD models. We
pair these renderings with the pointclouds to create Mod-
elnet40 and ModelNet10 (A subset of 10 common classes
from [12]). We follow the realistic 2D views generated us-
ing [15] to generate the dataset ModelNet40-d (depth).

Redwood [3] is a dataset of real-life high-quality 3D
scans and their mesh reconstructions. However, these ob-
ject meshes also contain points from the floor plane and sur-
rounding objects. Unlike CAD models in [2, 12], Redwood
scans are not axis-aligned. For these models to be consis-
tent with such datasets, we run a RANSAC plane detection
to identify the floor plane and then rotate the orientation of
the object to match the 3D coordinate axes. We then re-
moved the points from surrounding objects/noises by man-
ually cropping every scan. We randomly sample 20 frames
from the RGB videos of each object scan and use them in
our image branch.

Co3D [8] is a large scale dataset of multiview images cap-
turing common 3D objects. These 2D views have been
used to reconstruct 3D point clouds representing each ob-
ject. Following the work of the original authors, we filter
out only the accurate 3D point clouds for our experiments.
Being SLAM-based reconstructions, these point cloud ob-
jects are also not axis-aligned. We implement a rough cor-
rection to the orientations by calculating the principal com-
ponent directions based on the point densities of the point
cloud and rotating the object to align it with the gravity axis
in the 3D coordinates. However, this is a very challeng-
ing point cloud dataset due to differences in orientation, ob-
scured parts of objects, and surrounding noises. We sample
20 images for each object from the RGB multiview images
for the image branch.

Scanobjectnn [10] is a dataset of real scans of 15 object
classes. 10 2D views per each object are generated us-
ing [15]. We report results on 3 different versions of the
dataset; Sc-obj - clean point cloud objects, Sc-obj withbg
- Scans of objects with backgrounds, and Sc-obj hardest -
Scans with backgrounds and additional random scaling and
rotation augmentations.

Train Test
Images Point clouds Images Point clouds Categories

Shapenet 503316 41943 126204 10517 55
ModelNet 38196 3183 9600 800 40
Redwood 17270 314 4620 84 9
co3d 110536 5519 28192 1406 42
Scanobjectnn 23090 2309 5810 581 15

Table 1. Dataset details

Qualitative comparison: qualitative comparison of the
point clouds and accompanying 2D views for the aforemen-
tioned datasets are shown in Figure 1

3.1. Modelnet40 dataset splits:

There are some common classes between our pre-train
dataset, ShapeNet55, and ModelNet40. Evaluations on
these common classes might introduce an unfair compar-
ison of zeroshot performance. ULIP [13] authors intro-
duced three different validation sets for evaluating models
and baselines on ModelNet40.

All Set: Includes all the categories in ModelNet40 as
shown in Table 2.

Medium Set: Categories whose exact category names
exist in pre-training dataset; Shapenet55 have been re-
moved. The resulting categories in this set are shown in
Table 3.

Hard Set:Both extract category names and their syn-
onyms in the pre-training dataset have been removed. The
final Hard Set is shown in Table 4.

Airplane Bathtub Bed Bench Bookshelf

Bottle Bowl Car Chair Cone

Cup Curtain Desk Door Dresser

Flower Pot Glass Box Guitar Keyboard Lamp

Laptop Mantel Monitor Night Stand Person

Piano Plant Radio Range Hood Sink

Sofa Stairs Stool Table Tent

Toilet TV Stand Vase Wardrobe Xbox

Table 2. Modelnet40-All set

Cone Cup Curtain Door Dresser

Glass Box Mantel Monitor Night Stand Person

Plant Radio Range Hood Sink Stairs

Stool Tent Toilet TV Stand Vase

Wardrobe Xbox

Table 3. Modelnet40-Medium set

Cone Curtain Door Dresser Glass Box

Mantel Night Stand Person Plant Radio

Range Hood Sink Stairs Tent Toilet

TV Stand Xbox

Table 4. Modelnet40-Hard set

4. Measuring entropy and biasedness of pre-
dictions

To calculate the entropy and biasedness of the predictions
of our model, we use KL-Divergence to model the relative
entropy from U to P where U and P are probability distri-
butions.

DKL(P ||U) =
∑
x∈X

P (x) log

(
P (x)

U(x)

)
First we define a uniform probability distribution u, where
C is the number of categories.

u =

{
1

C

}C

c=1

p is the logits produced by the model for a single input in
the test set. Then, the entropy of the particular prediction
can be calculated as:

Pred. Entropy =
∑
c∈C

pc log

(
pc
uc

)
=

∑
c∈C

pc log(Cpc)

and averaged over the test set to record the entropy of pre-
dictions as training progresses.

To calculate the biasness of the model towards predicting
certain classes, we define a vector j:

j =
1

S
{a1, a2, a3..., aC}

where S is the size of the test set, and ac is the number of
samples predicted as category c by the model. Then, the
prediction bias of the model in one test cycle is calculated
as:

Pred. Bias =
∑
c∈C

jc log

(
jc
uc

)
=

∑
c∈C

jc log(Cjc)

5. Analysis of feature embeddings
Quality of feature embeddings: We visualize the TSNE
embeddings of the 3D and 2D features extracted from
respective modalities before and after cross-modal self-
training for ModelNet10 in Figure 2 and Scanobjectnn
3. In both cases, features from both image and point

cloud modalities show improved class separability after
self-training.

Furthermore, in Figure 4 and Figure 5 we visualize the
TSNE embeddings against the original class labels, as well
as the predictions returned by our model. It is evident that
the feature-level discrimination as well as class-level classi-
fication results are significantly improved over zeroshot by
using our proposed method.

(a) (b)

(c) (d)

Before self-training After Cross-modal
self-training

Im
ag

e
P

oi
nt

 C
lo

ud

Figure 2. TSNE-feature embeddings for Modelnet10 before and
after Cross-modal self-training.

(a) (b)

(c) (d)

Im
ag

e
P

oi
nt

 C
lo

ud

Before self-training After Cross-modal
self-training

Figure 3. TSNE-feature embeddings for Scanobjectnn before and
after Cross-modal self-training..

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:

Bert pre-training of image transformers, 2022. 1

(a) (b)

(e) (f)

(c) (d)

(g) (h)

Im
ag

e
P

oi
nt

 C
lo

ud
Labels Predictions Labels Predictions

Before self-training After Cross-modal self-training

Figure 4. TSNE-feature embeddings for Modelnet10 before and after Cross-modal self-training with the original class labels and the
predictions returned by our classifier.

(a) (b)

(e) (f)

(c) (d)

(g) (h)

Before self-training After Cross-modal self-training

Im
ag

e
P

oi
nt

 C
lo

ud

Labels Predictions Labels Predictions

Figure 5. TSNE-feature embeddings for Scanobjectnn before and after Cross-modal self-training with the original class labels and the
predictions returned by our classifier.

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An information-rich 3D model repos-
itory. arXiv:1512.03012, 2015. 1, 3

[3] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen
Koltun. A large dataset of object scans, 2016. 3

[4] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmentation
with a reduced search space, 2019. 1

[5] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners, 2021. 1

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 1

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning,
pages 8748–8763, 2021. 1

[8] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction, 2021. 3

[9] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition, 2015. 3

[10] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1588–1597,
2019. 3

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 1

[12] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 3

[13] Le Xue, Mingfei Gao, Chen Xing, Roberto Martı́n-Martı́n,
Jiajun Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles,
and Silvio Savarese. Ulip: Learning a unified representation
of language, images, and point clouds for 3d understanding,
2023. 1, 3

[14] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling, 2022. 1

[15] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng,
Shanghang Zhang, and Peng Gao. Pointclip v2: Adapting
clip for powerful 3d open-world learning, 2022. 3

	. Cross-modal joint pseudo-labels
	. Implementation details
	. Datasets
	. Modelnet40 dataset splits:

	. Measuring entropy and biasedness of predictions
	. Analysis of feature embeddings

