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MonoSelfRecon: Purely Self-Supervised Explicit Generalizable 3D
Reconstruction of Indoor Scenes from Monocular RGB Views

Supplementary Material

6. Relationship with MonoNeRF [8]797

We discuss the relationship between our strongest baseline798
MonoNeRF[8] and our proposed method MonoSelfRecon799
as follows: 1) We share the same idea of SFM-based 3DR800
with monocular RGB sequence as input, and we both jointly801
train SFM and a generalizable NeRF, where the NeRF is802
used to boost SFM performance. 2) Although using SFM803
as the core of framework design, we regress to different 3D804
representations, where MonoNeRF regress to view-based805
2D depth map while we regress to 3D voxel-based SDF806
values. 3) While MonoNeRF also jointly estimates cam-807
era poses, their 2D view-based depth representation restricts808
the ability to incrementally complete a whole scene in 3D809
mesh representation. Fusing TSDF from direct depth esti-810
mation is time-consuming, and will cause layered or sparse811
mesh due to depth inconsistency between each frame. By812
comparison, our direct voxel-SDF regression enables us to813
incrementally add the previous mesh to complete the whole814
scene consistently in mesh representation.815

The mesh representation is a stricter 3D representation816
over 2D depth map. Theoretically, the depth map can be817
perfectly rendered from 3D mesh but cannot in reverse,818
which is further validated by our experiments. Table 2 and819
3 show that although all using ground truth for supervised820
training, the one that directly regresses SDF (NeuralRecon)821
has a clear advantage on 2D depth metrics over other su-822
pervised methods that regresses depth. The reason that al-823
though both our method and MonoNeRF are based on SFM824
while ours outperforms theirs can be also partly attributed825
to this different 3D representation. Our visual results also826
reflect this point in Table 3, where although there is no827
much difference of 2D depth, the difference of 3D mesh828
is clear. In other words, the depth representation is more829
visually straightforward than 3D mesh. Consequently, our830
3D mesh regressing is a stricter 3D geometric representa-831
tion than MonoNeRF’s 2D depth. We will release our code832
soon after the paper acceptance.833

7. Evaluation Metrics834

We follow the same evaluation metrics as [27, 36]. Details835
of the metrics are summarized in Table 5.836
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Table 5. Evaluation Metrics.

8. Model Details 837

8.1. Attentional View Fusion 838

We use a standard Vision Transformer (ViT) Encoder, 839
where we keep the original high-level architecture of the 840
ViT encoder to be: A norm layer, a multi-head attention 841
layer, a norm layer, and a MLP (2 heads are used). Origi- 842
nally the ViT takes image patch/features as input, while we 843
adopted the input to be the nearest 2D features from the 844
projected 3D voxels, which is of size [Nview, Npoints, C], 845
where Nview is the number of views in a scene fragment, 846
Npoints is the number of voxels in a fragment, C is the fea- 847
ture channel. The input also takes the voxel mask as input to 848
filter out the pixels which are invisible to the voxels, and the 849
transformer only takes the visible pixel features. We stack 850
two ViT encoders to update the features, where the output is 851
still of size [Nview, Npoints, C]. Then we use a multi-view 852
weighted feature pooling to fuse the updated features at the 853
view channel to 3D features of size [Npoints, C], where the 854
weight is the number of visible views in a fragment for each 855
voxel. Such design enables more flexibility to adjust the 856
contribution of each view to the 3D voxels. 857

8.2. GRU 858

We directly use the GRU module from [36], which is elab- 859
orately designed for sparse 3D convolution. The 3D voxel 860
features are obtained by attentional view fusions and fed to 861
the GRU module, where the current 3D fragment features 862
are conditioned on the previous fragment. Using the cur- 863
rent 3D global voxel features Gl

t and the previous hidden 864
state H l

t−1 at layer l, the current hidden state H l
t can be ob- 865

tained, and the SDF value at each level is regressed from the 866
hidden state H l

t . More specifically, 867
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Figure 4. Inter/Intra-fragment losses illustration.

Figure 5. Multi-Plane Image (MPI) NeRF illustration.

zt = σ(SparseConv([H l
t−1, G

l
t],Wz))

rt = σ(SparseConv([H l
t−1, G

l
t],Wr))

H̃ l
t = tanh(SparseConv([rt ⊙H l

t−1, G
l
t],Wh))

H l
t = (1− zt)⊙H l

t−1 + zt ⊙ H̃ l
t

(12)868

where zt is the update gate, rt is the reset gate, σ is the sig-869
moid function and W∗ is the weight for sparse convolution.870

We first train without GRU within each fragment to871
warmup the framework with our proposed self-supervised872
losses, where we call it intra-fragment losses. Because873
the GRU module is leveraged to enhance the consistency874
between fragments, the self-supervised learning strategy875
should be treated differently to intra-fragment losses. There876
is no need to change the training policy in purely super-877
vised training because SDF ground truth is used, and there878
is no ground truth in our self-supervision except for the879
consistency clues between fragments. So we extend the880
inter-fragment losses to intra-fragment losses. While881
the model only takes input per fragment, backpropagating882
whole fragments brings memory challenges, so we only im-883
plement the inter-fragment losses on the frames around the884
boundary of fragments. Specifically, we use the last 4 and885
first 4 frames of the previous and current fragments to im-886
plement the inter-fragment loss.887

8.3. NeRF888

Since the SDF decoder is generalizable, the NeRF also must889
be generalizable to boost SDF decoder. For our work, we890

adopted MPI-NeRF[16, 57], which has been directly used 891
by MonoNeRF[8] and proved to be generalizable. As Fig- 892
ure 5 shows, in Multi-Plane-Image (MPI) system, an image 893
is represented by a set of parallel planes (orange planes) 894
denoted as RGB-σ, specifically (ci, σi)

N
i=1, where the ith 895

plane has di disparity (reverse of depth) to the camera. The 896
shading points (red points) are selected as the intersection 897
of the parallel planes and the rays shooting from pixels in 898
the image, where ci and σi are the RGB color and density 899
of each shading points at ith plane. In a standard MPI sys- 900
tem, the source view RGB image Îs and depth map D̂ can 901
be composed using the “over” operation [31] as 902

Îs =
D∑
i=1

(ciσi

D∏
j=i+1

(1− σj))

D̂s =
D∑
i=1

(d−1
i σi

D∏
j=i+1

(1− σj))

(13) 903

To use MPI system in NeRF style, the composition op- 904
eration above can be replaced by volumetric rendering [25] 905
for both RGB and depth as 906

Îs =
N∑
i=1

Ti(1− exp(−σiδi))ci

Ẑs =
N∑
i=1

Ti(1− exp(−σiδi))zi

(14) 907

where zi is the rendered depth (reverse of disparity) zi = 908
1/di, and δi = ||pi+1 − pi||2 is the distance between the 909
two neighbor shading points on a ray. Then we can extend 910
volumetric rendering to target views. First, the correspond- 911
ing pixels [ut, vt] in the target view can be found by 912us

vs
1

 ∼ Ks(R− tnT di)(Kt)
−1

ut

vt
1

 (15) 913

Here, [us, vs] is the corresponding pixel locations in the 914
source view, Ks and Kt are camera intrinsics of source and 915
target views, R and t are rotation and translation from the 916
target to source view, and n is the norm vector of the ith 917
plane. As the planes are parallel, the RGB c′i and density 918
σ′
i of shading points (blue points) on target rays (blue ray) 919

are equal to those from source rays at the same disparity, as 920
shown in Eq. 16, 921

c′i(ut, vt) = ci(us, vs)

σ′
i(ut, vt) = σi(us, vs)

(16) 922

Once we have RGB and density for target views, we can 923
perform volumetric rendering on target views as: 924
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Ît =
N∑
i=1

Ti(1− exp(−σ′
iδi))c

′
i

Ẑt =
N∑
i=1

Ti(1− exp(−σ′
iδi))z

′
i

(17)925

We use standard NeRF RGB loss, where Îs and Ît are926
self-supervised with their corresponding input images with927
a L1 loss. Since we directly use the reverse of disparity for928
depth, the depth value is scale-ambiguous. As mentioned929
in the paper, since there is no depth ground truth for pure930
self-supervision, we use SDF-depth as pseudo-depth to first931
recover the real scale of Ẑs and Ẑt, then we impose a consis-932
tency loss between Ẑ and SDF-depth to boost SDF decoder.933

9. Visual Results934

We show more visual results of 2D rendered depth and 3D935
mesh in Figure 6. We also attach a PowerPoint file with936
visual results, where reviewers can rotate and zoom the937
3D mesh to see the details,938

10. Limitation939

Although our work combines the advantages of “self-940
supervised” “generalizable” and “3D explicit mesh” alto-941
gether, there are still limitations. So far our MonoSelfRe-942
con can be only used for indoor environments, because we943
pre-define the 3D scene fragment with a fixed voxel num-944
ber. Unlike indoor 2D images where depth vary within few945
meters, the depth can vary significantly just within a sin-946
gle 2D image in outdoor. It is applicable to keep the voxel947
number while increasing the voxel size, but it will lead to948
very poor resolution within voxels, which misses most of949
the details. Moreover, since we regress SDF corresponding950
to the discrete N × N × N voxels of scene fragment, we951
cannot directly estimate SDF of a continuous 3D space, un-952
less by interpolation. By contrast, SDF-NeRF based meth-953
ods estimate SDF values in continuous 3D space but it is954
not generalizable to another scene. Our future works will955
explore to make SDF-NeRF generalizable, so that the 3DR956
can be “self-supervised”, “generalizable”, “explicit”, “in-957
door/outdoor”, and “continous in 3D space”.958
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Figure 6. Visual Results on ScanNet.
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