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Appendix

1. Dataset, Resources, Assets

1.1. Dataset usage

The code and instructions to download, access,
and use MIMIC-3M can be found here. The pri-
mary use case of this dataset is to train a 3D-aware
ViT in a self-supervised manner.

1.2. Compute Resources

As mentioned in Section 4.1 (Pretraining) we
train CroCo [20] for 200 epochs, each epoch tak-
ing about 1 hour 40 minutes using 8 NVIDIA
RTX A6000 GPUs. The cost for one training run
is about 111 GPU days.

1.3. Assets

We provide the details of the dataset and code
licenses used in our study in Table1. We bear
all responsibility in case of violation of rights.
Our code is primarily based on MAE [9], Multi-
MAE [2] and CroCo [20] and our work is licensed
under CC BY-NC-SA 4.0.

2. Data curation details

2.1. Details on mining potential pairs

We utilized different data types within our
datasets, including videos, 3D scenes, and street

* The authors contribute equally to this work.

Table 1. List of the assets and licenses

Asset License

Pretraining datasets
HM3D [15] [link]
Gibson [21] [link]
3DStreetView [23] [link]
CO3D [16] [link]
Mannequin [11] [link]
ArkitScenes [3] [link]
Objectron [1] [link]
ScanNet [5] [link]
Matterport [4] [link]
DeMoN [19] [link]

Downstream datasets
ImageNet-1K [6] [link]
NYUv2 [14] [link]
ADE20K [25] [link]
Taskonomy [24] [link]
MSCOCO [12] [link]

Code/Pretrained models
MAE [10] [link]
CroCo [20] [link]
MultiMAE [2] [link]

views. Consequently, the process of mining po-
tential pairs for each data type varied. For street
views [23], we adopted a strategy where we
grouped images based on their target id (images
that have the same target id in their name, show
the same physical point in their center). Subse-
quently, among all possible combinations of im-
ages in a group, we selected the pair with minimal
overlap ranging from 50% to 70%.

When dealing with video data, a practical ap-
proach involved creating a list of frames at reg-
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ular time intervals, determined by the speed of
the video. Then, we generated pairs of consec-
utive frames from this list. In cases where sub-
stantial overlap between consecutive frames was
observed, we specifically chose the second con-
secutive frame and evaluated its overlap with the
preceding frame. We implemented this step to en-
sure that the selected frame pair exhibits an appro-
priate level of dissimilarity and minimized redun-
dancy.

To tackle the challenges associated with han-
dling 3D scenes, we employed the habitat simula-
tor [17] to sample locations within the navigable
area of the scene. We initialized an agent with a
random sensor height and rotated it eight times at
45◦ intervals, capturing a comprehensive view of
the surroundings to form the first list of eight im-
ages. Subsequently, we sampled a random rota-
tion degree from multiples of 60◦ (excluding 180◦

and 360◦), and rotated the agent accordingly be-
fore moving in the current direction for a random
step ranging from 0.5 to 1 meter. We repeated the
process of rotating eight times at 45◦ intervals,
capturing the second list of eight images. Like-
wise, we randomly rotated and moved the agent to
generate the third list of eight images. From these
lists, we selected an optimal pair (img1, img2)
from a pool of 8 × 16 potential pairs. img1 be-
longed to the first list, while img2 was chosen
from the combined pool of the second and third
lists, with a minimal overlap ranging from 50%
to 70%, if applicable.

The selection of a 45◦ rotation aimed to capture
a comprehensive view of the environment while
minimizing redundancy. Furthermore, the choice
of rotation degrees as multiples of 60◦ prevented
capturing images in directions already covered by
those obtained with the 45◦ rotation, effectively
avoiding the capture of zoomed-in versions of
previously acquired images.

2.2. Details on measuring the overlap

Given a pair of images or views from a scene
(we call it a potential pair), we checked whether
these two are sufficiently overlapped during the
six steps. If they had enough overlap, we saved

this pair along with other metadata for the next
phase, which was the model pretraining. The six
steps are listed below:
Keypoint localization using SIFT [13]. We used
SIFT (Scale-Invariant Feature Transform) as a
feature detector to localize the two views’ key
points separately. SIFT has been shown to per-
form well compared to other traditional meth-
ods. Figure 1a provides an example pair with key
points.

Brute force matching. Having obtained both
key point features and their descriptors from the
previous step, we performed a brute-force match-
ing process to match the key points in the first
view (source points) with the key points in the
second view (destination points). We present
matches between two views in Figure 1b.

Finding homography transformation [8].
We leveraged the homography [8] matrix to trans-
late the transformation among the views with pro-
vided source and destination points matches from
the previous step. However, we know the found
transformation is not thoroughly accurate and free
of errors. Therefore, to overcome this issue, we
used RANSAC [7] to conclude with better esti-
mations of the transformation. As a result, only
some of the matches was categorized as inliers.
Inlier matches are shown in Figure 2a

Creating non-overlapping patches. After
finding the homography matrix, we divided each
view into non-overlapping patches (16× 16 here)
and matched patches from view 1 to view 2, see
Figure 2b.

Obtaining the patch correpondences To find
a corresponding patch in the second view for a
particular patch in the first view, we performed the
following steps: 1. Randomly sampled a suitable
number of points within the specific patch in the
first view (e.g., 100 points). In Figure 3a, random
green points are sampled within the green patch
of the first view. 2. Applied the homography ma-
trix H to the sampled points to determine their
corresponding positions in the second view. 3.
Determined the patch number in which each cor-
responding point falls, such as patch(x = 17, y =
0) = 1. 4. Identified the patch that contains the



(a) (b)

Figure 1. (a) A pair of images with SIFT key points. (b) Matching key points of images with a brute force matcher.

(a) (b)

Figure 2. (a) Inlier matches after finding the homography matrix. (b) Dividing each image to non-overlapping patches.

maximum number of corresponding points as the
match for the specific patch in the first image. In
Figure 3b, the blue points represent the positions
of the corresponding points in the second view
that fall within nearby patches. It can be observed
that the majority of the blue points cluster within
a specific patch, which is marked as the matched
patch for the green patch. This match is illustrated
in Figure 4a.

Measuring the visual overlap We repeated the
procedure from the previous step for all patches
in the first view to determine their matches in
the second view. We computed the count of
patches in the first view that have a matching
patch within the boundaries of the second view,
provided that the matching patch has not been
previously matched with another patch from the
first view. Then, we divided this count by the total
number of patches, serving as a metric to measure
the overlap.

To ensure a comprehensive evaluation, we
performed the mentioned algorithm both for
finding overlap(view1, view2) and its inverse,
overlap(view2, view1). We chose the minimum
value between these two overlap metrics as the fi-
nal overlap measure.

Subsequently, we retained pairs with an over-
lap ranging from 50% to 75% along with corre-
sponding patches information. Figure 4b show-
cases all patches from the first view that have their
matches falling within the second view. Addition-
ally, Figure 5 provides an illustrative example of
a retained pair of images from each dataset, along
with their corresponding patches.

3. Downstream tasks

3.1. Finetuning details

For fine-tuning depth estimation, semantic seg-
mentation, and surface normal estimation we
adopt the task-specific decoders from Multi-
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Figure 3. (a) Sampling random points from a patch in the first view. (b) Blue points are the corresponding points of the green points in the
second view.

(a) (b)

Figure 4. (a) The green patch from the view 1 is matched with the blue patch in view 2. (b) Two views with their matching patches
(matching patches have the same color).

MAE [2]. For pose estimation, we use the ViT-
Pose [22] decoders. In Table 2 , we provide the
details of the hyperparameters used for finetun-
ing CroCo [20] pretrained on MIMIC-3M on
NYUv2 [14], ADE20K [25], Taskonomy [24],
MSCOCO [12].

3.2. Error estimates

To estimate the variability associated with our
fine-tuned models we compute the error estimates
for each of our fine-tuned models. Specifically,
we create 100 test sets from each of the down-
stream (val/test) datasets by sampling with re-
placement and then report the minimum, maxi-
mum, mean, and standard deviation of the metric
in Table 3. Overall we observe that the mean val-
ues are close to the numbers reported in the main
paper and the standard deviation is small.

3.3. Visualizations of the fine-tuned models

In this section, we provide the visualizations of
the depth maps, semantic segmentation masks,
surface normal predictions, and pose regression
outputs after finetuning CroCo pretrained using
MIMIC-3M. For finetuning NYUv2 for depth,
ADE20K for semantic segmentation, and Taskon-
omy for surface normals, we followed Multi-
MAE [2] and used the settings from 3.1. For
finetuning on MS COCO we used ViTPose [22].

Depth Estimation. Figure 6 shows the input
RGB file, predicted depth maps, and ground truth
depth maps from the validation set after finetun-
ing on NYUv2.

Semantic Segmentation. Figure 7 shows the
RGB images, predicted semantic segmentations,
and the ground truth labels from the ADE20K val-



Figure 5. Visualizations of the patchwise correspondences (matching patches have the same color).

idation set after finetuning.
Surface Normals. Figure 8 shows predicted

surface normals from the Taskonomy test set after
finetuning.

Edges. Figure 9 shows predicted edges from
the Taskonomy test set after finetuning.

Curvature. Figure 10 shows predicted curves
from the Taskonomy test set after finetuning.

Pose estimation. Figure 11 shows the pre-

dicted keypoints from MS COCO validation set
after finetuning.

4. Details on the reconstructions experiment

In this study, we collected 500 test image pairs
from the Gibson dataset to ensure a fair evaluation
process. We made a careful selection to exclude
scenes present in the MIMIC-3M dataset, and
confirmed that the MULTIVIEW-HABITAT dataset



Table 2. Hyperparameters used for fine-tuning NYUv2 (depth estimation), ADE20K (semantic segmentation), Taskonomy (surface nor-
mals), and MSCOCO(pose estimation)

Hyperparameter NYUv2(depth) ADE20K(sem.seg.) Taskonomy (surf.norm.) MSCOCO(pos.est.)

Optimizer AdamW AdamW AdamW AdamW
Learning rate 0.0001 0.0005 0.0003 0.0005
Layer-wise lr decay 0.75 0.75 0.75 0.75
Weight decay 0.0003 0.05 0.05 0.1
Adam β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 64 16 8 512
Learning rate schedule. Cosine decay Cosine decay Cosine decay Linear Decay
Training epochs 2000 64 100 210
Warmup learning rate - 0.000001 0.000001 0.001
Warmup epochs 100 1 5 500

Input resolution 256 × 256 512 × 512 384 × 384 224 × 224
Augmentation ColorJitter, RandomCrop HorizontalFlip, ColorJitter - TopDownAffine
Drop path 0.0 0.1 0.1 0.30

Table 3. Error estimates for fine-tuning NYUv2 depth, ADE20K semantic segmentation, Taskonomy surface normal prediction

Task(metric) Dataset (Val/Test) Min Max Standard Deviation Mean Reported value

Depth Estimation (δ1) NYUv2 [18] 90.17 92.91 0.56 91.70 91.79
Semantic Segmentation (mIOU) ADE20K [25] 39.75 43.36 0.75 41.71 42.18
Surface Normal Estimation (L1) Taxonomy [24] 48.28 54.09 1.24 50.78 53.02

did not include Gibson scenes. Following this, we
employed a random masking approach on the tar-
get image, utilizing the same masking matrix for
inputs of both the model trained on MIMIC-3M
and the one trained on MV-Habitat. The purpose
of this consistent masking procedure was to en-
able a comparative assessment of the reconstruc-
tion performance on equivalent image patches.
Then, each model separately reconstructed the
masked target view using the reference view. For
the overall reconstruction loss, we got the average
over 500 test pairs, which reconstruction loss for
each pair was an average of l2 loss over masked
pixels. See reconstruction examples of both mod-
els in Figure 12.



Figure 6. Visualizations of the depth maps



Figure 7. Visualizations of the segmentation maps



Figure 8. Visualizations of the surface normal predictions



Figure 9. Visualizations of the predicted edges



Figure 10. Visualizations of the predicted curvature maps



Figure 11. Visualizations of the pose estimation



Figure 12. Visualizations of the reconstructions
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