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1. Implementation Details

General Settings. We set δlrc = 1.0 and δdde = 0.2 for
the confidence module. The teacher weights are updated
every iteration, and the coefficient of Exponential Moving
Average (EMA) for the teacher is 0.9996. For the weak
augmentation, we set the brightness and contrast to [0.8,
1.2] on both the left and right images. For the strong aug-
mentation, we first randomly set the brightness and contrast
to [0.5, 1.5] respectively on each of the image pair. Then we
randomly generate 30 thin vertical rectangular blocks on the
right image to mimic occlusions, whose width is within [1,
5] and length is within [5, 10].

Sparse-labeled Data Experiments on KITTI [2, 5].
In stage 1, we pre-train the model on the large-scale vir-
tual dataset, SceneFlow, following previous works. Then,
we conduct the mutual learning of the teacher and the stu-
dent models. For instance, the original PSMNet [1] under-
goes training for 300 epochs, initially with a learning rate
of 0.001 for the first 200 epochs, which is then reduced to
0.0001 for the remaining 100 epochs. Thus, as for our TS-
PSMNet, we warm up TS-PSMNet for 30 epochs with the
learning rate of 0.001, based on the pre-trained weights on
SceneFlow. Then we train our Semi-Stereo model for 300
epochs, with a learning rate of 0.001 for the first 200 epochs
and 0.0001 for the last 100 epochs. The submitted results
of KITTI 2012 and KITTI 2015 stereo benchmark are qual-
itatively shown in Fig. 10, Fig. 11 and Fig. 12.

Domain Adaptation Experiments. PSMNet is utilized
as the baseline network for our study. We follow the same
parameter settings described as above. In stage 1, PSM-
Net is trained on SceneFlow [4] using the Adam optimizer
(β1 = 0.9, β2 = 0.999). The color transfer operation [3]
is performed on the images for data pre-processing. Im-
ages are randomly cropped to 256×512. The max disparity
Dmax is set to 192. We train our Semi-Stereo with a con-
stant learning rate of 0.001 for 20 epochs. In stage 2, we
train our Semi-Stereo on the target domain images without
using any ground truth. The target domain images are from

the real world. On KITTI 2012 [2], KITTI 2015 [5], Mid-
dlebury [6] and ETH3D [7], we train our models for 100,
100, 100, 50 epochs, respectively. For Middlebury, we just
use the half-resolution validation set. Errors are the percent
of pixels whose end-point errors are greater than the speci-
fied threshold. We use the standard evaluation thresholds in
our experiments: 3px for KITTI, 2px for Middlebury, and
1px for ETH3D. Fig. 8 shows the qualitative results.

Domain Generalization Experiments. We use PSM-
Net as a baseline network. In stage 1, we follow the same
experiment settings as in the domain adaptation experi-
ments but without the color transfer method included. In
stage 2, we train our Semi-Stereo on the SceneFlow images
without using any ground truth and train our models for 10K
iterations. We test our model on KITTI 2012 [2], KITTI
2015 [5], Middlebury [6] and ETH3D [7], with the same
metrics as in the domain adaptation experiments. Fig. 9
shows the qualitative results.

2. Extended Description of Our Metrics

2.1. Infinity Metric

Pseudo Label Reliability in the Region of the Sky. The
lack of supervision in unlabeled regions such as the sky is
due to the measurement limit of the LiDAR. Based on this
fact, prior works generally do not perform well in the region
of the sky. However, our Semi-Stereo can fit well in these
regions under the guidance of the sky pseudo label. Fig. 1 in
our main paper shows the improvement in the sky regions.
We plot the disparity value of the pseudo label of the sky
during training, as shown in Fig. 4. We can see that pseudo
labels from TS-PSMNet shows superior performance over
PSMNet. Although pseudo labels for those regions are not
perfectly accurate, our Semi-Stereo manifests that utilizing
the supervision from those regions coupled with the labeled
regions could further improve the performance of existing
stereo networks. This has been under-explored in previous
works.



Figure 1: An example of Infinity evaluation on KITTI 2015. (a) represents the result of semantic segmentation, and the sky
mask (from top to bottom). (b) denotes the inference result of PSMNet and the disparity of the sky (from top to bottom). (c)
represents the inference result of TS-PSMNet and the disparity of the sky (from top to bottom).
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Figure 2: Comparisons of disparity values between PSM-
Net and TS-PSMNet in the region of the sky. We choose to
visualize the result for row 120.

Visualization. Our Infinity Metric effectively judges the
disparity of pixels with infinite distance, such as the sky.
Fig. 1 shows the segmentation of the sky and the inference
results from GANet and TS-GANet. Fig. 2 shows the dis-
parity distribution of ours is better and more stable than the
baseline.

2.2. Warp Consistency Metric

Comparisons with D1(%). In order to evaluate the ac-
curacy of our Warp Consistency Metric, we compare the
common D1(%) with our consistency metric. We divide
KITTI 2015 into a training set (80%) and a validation set
(20%). During the training, we save the model for each

epoch and test the D1(%) and consistency metric. From
Fig. 5 it can be observed that they share similar trends,
which justifies that our metric is representative when no
ground-truth labels are available. Therefore, in the absence
of ground truth, it is effective to use the warp consistency
metric to quantify the analysis of the inference results.

Visualization. Fig. 3 is an example of using the double
shift with left and right disparity. Zoom in for comparisons.
It can be observed that the double-shift result of the base-
line has been distorted in detail, while ours maintains strong
consistency with the original image.

3. Extended Description of Experiments
3.1. Ablation of the Confidence Module

We have explored the impact of LRC and DDE in our
main paper. Here, we show the experimental results of
setting different thresholds for LRC and DDE. We per-
form our domain-adaptation experiments on KITTI 2012.
As Tab. 1 showing, we set the δlrc = 1.0, 2.0, 3.0 and
δdde = 0.1, 0.2, 0.5, and find our model is insensitive to
the threshold. Fig. 6 shows the threshold error rate(%) of
the validation set during training.

3.2. Ablation of the Imbalance Weak&Strong Aug-
mentation

We verify the effectiveness of our proposed Imbalance
Weak&Strong Augmentation with the following experi-
ments: (1) remove the brightness and contrast augmentation
(chromatic augmentation); (2) remove the vertical multi-
blocks (random occlusion); (3) replace our random occlu-
sions with an asymmetric mask in [8]. We also perform
our domain-adaptation experiments on KITTI 2012. As is



Figure 3: Comparisons of the consistency of the predictions. From top to bottom there are the original left image, the result
of PSMNet after the double-shift, and the result of TS-PSMNet after the double-shift.

Figure 4: Comparisons of the quality of the pseduo labels
from PSMNet and TS-PSMNet. TS-PSMNet shows supe-
rior performance over PSMNet across the training.

shown in Tab . 2, the chromatic augmentation is a crucial
step, and our vertical multi-block is more effective than the

Figure 5: Comparisons between our Warp Consistency Met-
ric and the D1(%) metric.

random occlusion method in [8].



Table 1: Ablation study of the confidence module. The
model we use is TS-PSMNet. The best performance is ob-
tained by using both confidence modules.

LRC DDE KITTI 2012(3px)

% % 4.5

% 0.1 3.88
% 0.2 3.78
% 0.5 3.98

1.0 % 4.05
2.0 % 4.10
3.0 % 4.16

1.0 0.2 3.53
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Figure 6: The threshold error rates(%) on validation set.

Table 2: Ablation study of the Imbalance Weak&Strong
Augmentation. We use TS-PSMNet in this experiment.

Chromatic Random occlusion KITTI 2012(3px)
Asymmetric mask [8] Vertical multi-blocks

% % ! 4.13
! % % 3.71
! ! % 3.64
! % ! 3.53

Table 3: Impact of loss weight on KITTI 2015. EPE is
tested on the validation set.

gt loss weight unsup loss weight EPE

1.0 1.0 0.76
1.0 0.3 0.76
1.0 3.0 0.87

Table 4: Ablation study of the color transformation module.

Method Color-Transfor KITTI 2012(3px)

PSMNet % 15.10
TS-PSMNet % 4.30
TS-PSMNet ! 3.53

3.3. Ablation of the Weight of Lreg and Ls

We study the impact of the weight coefficient of Lreg

and Ls on End-Point-Error (EPE). We divide KITTI 2015

Figure 7: Comparison of using small unsupervised weight
and large unsupervised weight. The raw RGB image is pre-
sented at the Top. The middle and bottom are the results of
loss weights of 0.3 and 1 respectively. This example comes
from KITTI 2015 validation set.

into a training set of 160 pairs and a validation set of 40
pairs. we keep the weight of Ls as 1.0 and vary the weight
of Lreg as 0.3, 1.0 and 3.0. When the weight of Lreg is
0.3 or 1.0, they achieve equal performance quantitatively
(see Tab. 3). However, qualitatively, setting the weight of
Lreg to 0.3 performs inferior to setting the weight of Lreg

to 1.0 in textureless regions like the sky (see Fig. 7). This
manifests that enforcing stronger consistency regularization
in our Semi-Stereo could lead to better performance in tex-
tureless regions. In this sense, 1.0 is chosen as the final
setting.

3.4. Domain Adaptation without Color Transfor-
mation

Here we show the effect of removing the color transfor-
mation module [3] in Stage 1. We test on KITTI 2012.
As is shown in Tab . 4, it is proved that our Semi-Stereo
still plays an essential role in the domain adaptation with-
out color transformation.
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Figure 8: Domain adaptation on four datasets. (a) is on KITTI 2012. (b) is on KITTI 2015. (c) is on Middlebury. (d) is on
ETH3D. The middle image of each sub-figure is the prediction from the model just trained on SceneFlow. The right image
of each sub-figure is the result of our Semi-Stereo.
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Figure 9: Domain generalization on four datasets. (a) is on KITTI 2012. (b) is on KITTI 2015. (c) is on Middlebury. (d)
is on ETH3D. The middle image of each sub-figure is the prediction from the model just trained on SceneFlow. The right
image of each sub-figure is the result of our Semi-Stereo.



Input PSMNet PSMNet +TS(ours)

Figure 10: Disparity of sparse-annotated data. The first column is the input and the middle column is the prediction of
PSMNet. We can observe large false foregrounds in textureless regions and edge flattening effect at object boundaries. The
last column is the result improved by our Semi-Stereo.

Input GANet GANet +TS(ours)

Figure 11: Disparity of sparse-annotated data. The first column is the input and the middle column is the prediction of
GANet. We can observe large false foregrounds in textureless regions and edge flattening effect at object boundaries. The
last column is the result improved by our Semi-Stereo.



Input AANet AANet +TS(ours)

Figure 12: Disparity of sparse-annotated data. The first column is the input and the middle column is the prediction of
AANet. We can observe large false foregrounds in textureless regions and edge flattening effect at object boundaries. The
last column is the result improved by our Semi-Stereo.


