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Abstract

Automatic emotion recognition has gained significant
attention over the past two decades due to the cen-
tral role that emotions play in human communication.
While multi-modal systems demonstrate high performances
on laboratory-controlled data, their validity on non-lab-
controlled, namely ‘in-the-wild’ data, remains a chal-
lenge. This work investigates audio-visual deep learning
approaches for emotion recognition in-the-wild, with a par-
ticular focus on the effectiveness of architectures based on
fine-tuned Convolutional Neural Networks (CNN) and Pub-
lic Dimensional Emotion Model (PDEM) for video and au-
dio modality, respectively. We explore and compare various
temporal modeling techniques (e.g., transformer architec-
tures) and fusion strategies by leveraging the embeddings
from developed multi-stage trained modality-specific Deep
Neural Networks (DNN). The results are reported on the Af-
fWild2 dataset following the Affective Behavior Analysis in-
the-Wild 2024 (ABAW’24) challenge protocol. Our inves-
tigation highlights the complexities of robust multi-modal
emotion recognition in an unconstrained environment, pro-
viding insights into the usage of various deep learning ar-
chitectures for tackling this challenging task.

1. Introduction
This paper presents our contribution to the 2024 edition [36]
of the Affective Behavior Analysis in-the-Wild (ABAW)
challenge series [27–29, 31, 32, 34, 69]. To replicate the
results of our work, the reader is kindly referred to the
GitHub repository1.

The challenges in the field of affective computing have
boosted the development of state-of-the-art methods, while

*These authors contributed equally to this work.
1https://github.com/DresvyanskiyDenis/ABAW_2024

also ensuring the reproducibility and comparability of the
developed methods under a common experimental proto-
col. In ABAW 20242, the sub-challenges include 8-class
categorical emotion recognition (Expression Challenge-
EXPR), featuring Ekman’s six basic emotions, plus neutral
and others classes as well as emotion primitives (arousal
and valence) regression challenge (VA), on which we re-
port the result of this work. The challenge data and base-
line system are introduced in [36] and former editions
of ABAW [25, 26, 30, 33, 35]. This year, the organiz-
ers introduced a novel Compound Expression Recognition
(CER) challenge. Our team also participated in CER chal-
lenge [55]. We next present a summary of the leading works
that participated in the VA challenge.

2. Related Work
In the 6th ABAW Competition, numerous DNN-based
Emotion Recognition (ER) approaches have been proposed,
with a primary focus on visual and audio modalities.

The baseline system [36] used cropped and aligned face
images resized to 112×112 resolution with normalized pixel
values. While for the VA challenge a ResNet architec-
ture with 50 layers was employed, in the EXPR challenge,
a VGG16 architecture was used. Additionally, MixAug-
ment [52] was applied for the EXPR task.

In the work [71], the authors introduced an ER method-
ology that effectively integrates emotional cues from multi-
modal data sources. Distinct feature encoders were em-
ployed to extract salient representations from each modality.
Specifically, a Masked Auto-Encoder [16] pre-trained on a
large amount of data is used for the visual modality, while
the VGGish [6] model is exploited for the audio pipe. Sub-
sequently, an ensemble of Transformer Encoders, trained
on different subsets of the AffWild2 dataset, is employed to

2https://affective- behavior- analysis- in- the-
wild.github.io/6th/
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fuse the outputs of feature encoders, reaching the top per-
formance for all challenges of the ABAW’24 competition.

In the work [51], Praveen and Alam focused on the
VA estimation task, integrating features from visual, au-
dio, and text modalities. In the visual domain, a ResNet-50
pretrained on MS-CELEB-M and FER+ datasets [15] was
combined with Temporal Convolutional Networks (TCNs)
to effectively capture spatial and temporal cues. Similarly,
VGG architecture was used to extract audio features from
spectrograms, with TCNs employed to catch temporal de-
pendencies in vocal signals. In the text modality, BERT
embeddings followed by TCNs were utilized. Multi-modal
fusion was achieved by a recursive cross-modal attention
mechanism, refining feature representations iteratively.

Kim et al. [24] employed a consistent feature and fusion
strategy across VA and EXPR tasks. The facial features
were extracted using a fine-tuned SimMIM model [66] pre-
trained on facial expression data. Audio features were di-
rectly extracted using pre-trained Wav2Vec model. Subse-
quently, a cascaded cross-attention mechanism was applied
to fuse features from these two modalities.

In [13], Dresvyanskiy et al. proposed a multi-modal ER
approach that combined the outputs of audio and visual sys-
tems at the decision level. Although the visual system ex-
hibited the best performance on both the EXPR and VA
development sets in comparison with other uni-modal sys-
tems, fusing the Transformer-based modality-specific mod-
els with a functionals-based ELM method led to further
gains in recognition performance on these subsets.

Yu et al. [68] proposed a multimodal system using TCN
to capture temporal and spatial correlations between fea-
tures, followed by a fusion of modality-specific feature rep-
resentations via a Transformer Encoder. Similar to [71],
this work employs VGGish [6] to extract audio features,
however, augments them with 39D Mel-Frequency Cepstral
Coefficients. As a visual feature encoder, the work uses
IResNet-50 [3]. Additionally, after IResNet-50, the authors
used an LA-SE module (composed of a LANet [67] and a
SENet [18]) to better capture local image information, im-
prove channel selection, and suppression.

Savchenko [57] introduced several lightweight deep
learning models based on MobileViT [48], Mobile-
FaceNet [7], and DDAMFN [70] architectures for the multi-
task ER using static facial frames. Developed models ex-
tract frame-level features, predicting facial expression, va-
lence, and arousal in a multi-task setting, reaching near
state-of-the-art results on conventional ER datasets with a
notable enhancement on 6th ABAW development sets.

Zhou et al. [73] presented a novel approach to en-
hance continuous ER by using pre-trained Masked Auto-
Encoder [16] on facial datasets, followed by fine-tuning
on the AffWild2 dataset. The study integrated TCNs and
Transformer Encoder into the framework, showcasing a sig-

nificant improvement in recognition performance.
In [65], the authors proposed a novel Joint Multi-modal

Transformer framework for audio-visual ER. To capture
spatio-temporal information in the video, the authors used
an R(2+1)D network [20] pre-trained on the Kinetics-400
dataset [40]. For audio, a ResNet18 model with Gated Re-
current Unit (GRU) was used. These models were used
as backbones for visual and acoustic feature extraction in
conjunction with the joint audio-visual feature representa-
tion extracted by a fully connected layer. Finally, the fu-
sion model employed three aforementioned encoders to fuse
their outputs using multi-self-attention layers.

Min et al. [49] used Visual Transformer (ViT) [11] pre-
trained on the facial dataset to extract facial features. Sub-
sequently, a transformer-like model was applied to the ob-
tained features. Additionally, the authors introduced a
learning technique through random frame masking, enhanc-
ing the performance of ER models in-the-wild setting.

3. Methodology

The pipeline of the implemented emotion recognition sys-
tem is schematically presented in Fig. 1. In this section, we
elaborate on each element of our ER pipeline.

3.1. Acoustic Emotion Recognition System

We proposed three slightly different models. The back-
bone of all models is based on the Public Dimensional
Emotion Model (PDEM) that is the first publicly available
transformer-based dimensional Speech Emotion Recogni-
tion (SER) model [64] and designed for predicting arousal,
valence, and dominance characteristics. The PDEM builds
upon the pre-trained wav2vec2-large-robust model, which
is one of the variants of Wav2Vec 2.0 [1].

On top of each model, we stack two GRU layers with
256 neurons (AudioModelV1) or two transformer layers
with self-attention mechanisms, each with 32 or 16 heads
(AudioModelV2 and AudioModelV3). After the last trans-
former layer, we aggregate the information along the tem-
poral axis using 1D Convolutional Neural Networks (CNN)
and apply two subsequent Fully Connected Layer (FCL) for
feature compression and prediction generation. We fine-
tune all the layers from the top to the last two (AudioMod-
elV1 and AudioModelV2) or four (AudioModelV3) encod-
ing layers of the backbone model.

3.2. Visual Emotion Recognition System

Visual modality is the most important one in Affective
Computing as the human face and body express an immense
amount of affective information. Therefore, we tried to use
as much available visual information as possible.

To obtain the visual ER system, we have done several
steps. First of all, we selected several efficient frame-level
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Figure 1. Pipeline of the developed ER system: (a) the Audio-Transformer-based dynamic ER system, (b) the Visual-Transformer-based
dynamic ER system, and (c) – the Kernel ELM-based ER system. W – the temporal window size (in the number of frames), N – the
number of neurons in the decision-making head (2 for regression task).

static models (EfficientNet-B1 [59], -B4, ViT-B-16 [11],
and HRNet [58]), modified them and pre-trained on the data
introduced in Sec. 4.1. Next, to further enhance the efficacy
and robustness of the static models, they were fine-tuned on
the AffWild2 dataset. Finally, the fine-tuned static models
have been frozen and used as feature extractors that provide
valuable affective features for consecutive temporal aggre-
gation within the visual dynamic ER model. In the next
subsections, we provide a detailed description of both static
and dynamic visual ER systems.

3.2.1 Static Models

To construct an accurate ER model, especially for the visual
data, a robust and efficient feature extractor is needed. We
call such models static since they are trained on frame-level
data and provide emotion predictions per-frame, ignoring
the temporal context. In the context of ER, such state-of-
the-art models are based either on CNN or recently intro-
duced ViT neural network architectures. We experimented
with both approaches, as various models can demonstrate
different performances given in-the-wild nature of the data.
Specifically, we employed the EfficientNet [59] (B1 and B4
versions, comprising 7.8M and 19.3M parameters, respec-
tively) and Visual Transformer-B-16 [11] architectures that
are pre-trained on ImageNet [9, 54]. Additionally, to pro-
cess the body language and gestures, we adapted the HR-
Net [58] model that is pre-trained on COCO [44] dataset.

However, before the pre-training of those models on var-
ious ER datasets (including fine-tuning on AffWild2), we

Figure 2. The NN architecture of modified frame-level ER models.

have slightly modified them as depicted in Fig. 2. Thus,
we removed the last layer responsible for the classification
and stacked on top of it several new layers responsible for
the prediction. In case of HRNet, apart from the regression
head, several ResNet-like layers have been added to process
the heatmaps produced by the HRNet backbone. As a final
activation function, we utilized the Tanh.

We should note that, since we fixed the number of em-
beddings by modifying respective static models, the feature
extractors always output 256 features per frame.

3.2.2 Dynamic Models

It is well-known that emotions are temporal phenomena that
last for a certain period of time. To exploit this aspect, we
developed dynamic ER models that take into account a tem-
poral context during the decision-making. An overview of
these model architectures is given in Fig. 1 (b and c).
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In the ER literature, there are many different ap-
proaches for temporal information aggregation, including
functionals-aggregation (calculation of statistics over a pe-
riod of time), recurrent neural networks [12] (RNNs), and
recently introduced Transformer-based architectures [5, 43,
63]. Although RNNs have been most popular in ER domain
so far, the Transformers-based architectures are taking the
lead in the last years.

To leverage the most effective architectures, we em-
ployed the Transformer-based temporal aggregation method
as well. The implemented ER dynamic model is schemat-
ically depicted in Fig. 1 (c). Thus, the dynamic model
consists of a static feature extractor and the temporal part
of three consecutive Transformer-encoder layers inspired
by [62]. Lastly, the regression head completes the decision-
making process.

For the comparison and as an alternative, we developed a
simpler temporal aggregation method: the statistical-based
model that calculates functionals over a fixed period. Here,
based on former research [12], we fix the analysis win-
dow to 2 seconds. We apply mean, minimum, and maxi-
mum functional statistics to non-overlapping 2-second win-
dows and utilize the Kernel Extreme Learning Machine
(KELM) [19]. KELM aims to solve a regularized least
squares regression problem between a kernel (instance sim-
ilarity) matrix K and a target vector (or matrix) T from the
training dataset, and hence is very fast to train given the
kernel. The set of weights (β) in KELM is calculated via:

β = (I/C + K)−1T, (1)

where I is the identity matrix, and C is the regularization
coefficient optimized via cross-validation on the challenge
development set. The prediction for a test instance x is ob-
tained via ŷ = K(D, x)β, where K() and D denote the
kernel function and the training dataset, respectively.

3.3. Fusion Schemes

Fusion, particularly to leverage multi-modal information, is
an important stage in ER systems. Here, we experimented
with late and model-based fusion strategies. In the latter, the
features from audio and video models are combined through
trainable cross-attention mechanism, complementary lever-
aging the strengths of every modality.

For late fusion, we experimented with two schemes.
First, we used Dirichlet-based Random Weighted Fusion
(DWF), where fusion matrices containing weights per
model-VA combination are randomly sampled from the
Dirichlet distribution. A large pool of such matrices is gen-
erated and the best one in terms of the challenge measure is
selected for the test set submission. This approach is shown
to generalize well to in-the-wild data [12, 23].

The second decision fusion approach is based on Ran-
dom Forests (RF) [4], where the concatenated probability

Figure 3. VA distribution of the AffWild2 train and dev sets.

vectors from the base models are stacked to RF as in [22].
To avoid over-fitting, out-of-bag predictions are probed to
optimize the number of trees.

4. Experimental Setup
4.1. Experimental Data

For all experiments presented in this work, the AffWild2
dataset and corresponding labels from the 6th ABAW chal-
lenge [36] were used. The AffWild2 dataset is an audio-
visual in-the-wild corpus, that serves as a comprehensive
benchmark for multiple affective behavior analysis tasks.
Comprising 594 videos with approximately 3M frames
from 584 subjects, it is annotated in terms of Valence and
Arousal emotional continuous labels in the [-1, 1] range.
Additionally, a subset of 548 videos is annotated for ex-
pression recognition across 8 emotional classes.

We should note, however, that the Valence-Arousal an-
notations are not evenly distributed as depicted in Fig. 3.
As we can see, the labels have a high bias towards the pos-
itive value of Arousal, posing additional challenges for the
deep learning models’ training.

To pre-train our visual static ER models, we used a range
of publicly available Facial Expression Recognition (FER)
datasets. Those datasets were combined into one large
mixed dataset that has been used for the pre-training. Train,
development, and test splitting have been done in a speaker-
independent way. As labels, Ekman’s six basic emotions
were selected from the aforementioned datasets along with
Valence and Arousal values. We summarized the informa-
tion about all used pre-training corpora in Tab. 1.

After the pre-training phase, the static ER models have
been fine-tuned on the AffWild2 dataset.

4.2. Data Preprocessing

4.2.1 Audio

Before training an audio model, in addition to extracting au-
dio signals from multimedia files, we perform voice activ-
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Table 1. Summary of pre-training corpora used in this work (only the volume of data utilized in this work is presented).

.

Dataset Modality Data volume Annotations Conditions
RECOLA [53] Audio, Visual 3:50 hours A, V Lab.
SEWA [38] Audio, Visual 9:10 hours A, V In-the-wild
SEMAINE [47] Audio, Visual 6:30 hours A, V Lab.
AFEW-VA [37] Visual 30,000 images A, V In-the-wild
AffectNet [50] Visual 420,299 images C, A, V In-the-wild
SAVEE [21] Audio, Visual ≈24 minutes C Lab.
EMOTIC [39] Visual 23,571 images C, A, V In-the-wild
ExpW [72] Visual 91,793 images C In-the-wild
FER+ [15] Visual 35,887 images C In-the-wild
RAF-DB [42] Visual 29,672 images C In-the-wild

A – Arousal, V – Valence, C – Categories, Lab. - Laboratory conditions

ity detection. Due to the specific nature of the acoustic data
provided by the ABAW 2024 challenge organizers, audio
data may include background noise and multiple speakers,
making it difficult to identify the target speaker. Therefore,
methods based only on audio analysis are not suitable for
this dataset. That is why, for the appropriate usage of au-
dio modality, we rely on video modality by analyzing the
visual data frame by frame. For this purpose, facial land-
marks are extracted using the MediaPipe framework [46].
Then, mouth landmarks are detected, and the corresponding
region of interest is extracted. Obtained information is used
to determine whether the target speaker’s mouth is open or
closed. In parallel, we separate the speech signal from noise
(including music) using Spleeter by deezer.3

Next, 4-second windows with a step of two seconds are
formed on the filtered voice segments. We downsampled
the annotations to 5 Frames Per Second (FPS) for all videos.

To enhance the generalizability of the audio models, we
employ several augmentation techniques, including polarity
inversion, the addition of white noise, or variation in audio
volume. These techniques help to reduce the confidence
level of the models in their emotion predictions.

4.2.2 Video

Depending on the model type (static or dynamic), several
preprocessing steps have been applied as depicted in Fig. 4.
For the static models, we first detect faces and crop them,
adding 15 pixels to all bounding box boundaries to include
the chin and other human facial features. We have uti-
lized the RetinaFace model [8, 10] based on the MobileNet
[17] architecture, namely the MobileNet-0.25 version. We
utilized this model because it is one of the most effective
face recognition models known nowadays, yet very com-
putationally efficient, since it has only around 1.7 million

3https://github.com/deezer/spleeter

parameters. The next step in the static data preprocess-
ing pipeline is to resize the image and normalize the pixel
values. In this work, we employed the pre-defined image
resolutions and normalization values provided by the au-
thors of corresponding models (EfficientNet [59], ViT-B-
16 [11], and HRNet [58]). Finally, to improve the perfor-
mance and robustness of the deep learning models, the fol-
lowing data augmentation techniques were applied: random
image padding, changing of brightness, contrast, saturation,
and hue of the image, Gaussian noise addition, random rota-
tion, cropping, image posterization, changing of sharpness,
equalization, and flipping. All augmentations were applied
to every image with probability of 0.05, resulting in approx-
imately 46% of images augmented every training epoch.

The data preprocessing for dynamic models closely mir-
rors the static methodology except for one important step:
we use additional normalization applied to embeddings to
avoid the gradient explosion that can arise in early stages of
training. Two different normalization methods were tried:
MinMax and Per-Video-MinMax scalings. The difference
in methods is that MinMax scaling computes the corre-
sponding min and max values across the whole training set
(and then applied to every instance), while the Per-video-
MinMax scaling does it for every video separately, applying
normalization values only within the corresponding video.

It is well-known that Transformer-based models can op-
erate with sequences of arbitrary length. However, different
FPS of videos and varying lengths of the sequences can sig-
nificantly harm the training process. Therefore, to stabilize
it and ensure convergence, we downsampled all videos to 5
FPS and fixed the window length during training. It is ex-
perimentally shown that the size of a temporal window can
significantly influence the efficacy of the ER model [12].
That is why we have done experiments with different tem-
poral context lengths, namely: 1, 2, 3, 4, 6, and 8 seconds.
Finally, the model with the highest CCC score was used for
test set submissions.
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Figure 4. Pipeline of preprocessing of the video data for dynamic emotion recognition modeling. Note that in the case of the pose static
model, face detection is not applied.

4.3. Post-processing

After getting Valence and Arousal values for every frame,
several post-processing steps were applied. Since dynamic
models have been trained using reduced FPS, we first up-
sampled the models’ predictions to align them with the ac-
tual video FPS on the development and test sets. We used
linear interpolation, filling in missing values between two
consecutive predictions. After interpolation, the upsampled
values were smoothed using Hamming window [61]. The
size of the window has been chosen to be 0.5 seconds.

4.4. Training Hyperparameters

For the training of both static and dynamic ER models, we
used an AdamW [45] optimizer with the learning rate (LR)
set to 0.005. Moreover, a linear LR warmup was used with
a starting value of 0.00005 for the first 100 training steps
to avoid the gradient explosion. Additionally, the cyclic LR
scheduler was applied with a minimum LR value of 0.0001
and an annealing period of 5. We set the early stopping
number of epochs to 10 epochs.

For static models, we also applied two various fine-
tuning techniques called discriminative learning and grad-
ual unfreezing. Discriminative learning is a training tech-
nique that fine-tunes pre-trained neural networks by setting
different learning rates for each layer, helping to increase
model performance on specific tasks. The main idea is
that earlier layers extract more general features and should
undergo minimal changes, while deeper layers are more
task-specific and require significant adjustments, so learn-
ing rates are gradually decreased from deep to early lay-
ers. We applied a 0.9 factor for every LR of consecutive
layers starting from newly initialized ones. On the other
hand, gradual unfreezing is a technique that unfreezes Deep
Neural Networks (DNN) layers over training epochs to pre-
vent overfitting or knowledge loss due to large initial gra-
dients. Typically, only the added layers are unfrozen first,
with more layers (often in blocks) being unfrozen in subse-
quent epochs, allowing the model to adjust gradually to the

Table 2. Best development set CCC results per acoustic base-
model on the VA challenge.

Model Valence Arousal Avg.
AudioModelV3 0.290 0.400 0.345
AudioModelV1 0.282 0.377 0.329
AudioModelV2 0.241 0.375 0.308

target task. We should note that we tried all possible com-
binations of those techniques for every static ER model.

For the visual Transformer-based ER models, we set the
number of heads equal to 8 and dropout to 0.1. Addition-
ally, the positional encoding employed in [62] is applied to
embeddings.

5. Experimental Results
The challenge measure for the Valence-Arousal Estimation
challenge is set to be the Concordance Correlation Coeffi-
cient (CCC). CCC is recently popularly used in regression
tasks over the Pearson’s Correlation (PC), as it also consid-
ers the difference in means [41]:

CCC =
2 · σt,p

σ2
t + σ2

p + (µt − µp)2
, (2)

where µt and µp denote the averaged ground truth and pre-
dicted scores for all test clips, respectively; σt and σp denote
the respective standard deviations; σt,p is the covariance be-
tween t and p.

In the next subsections, we report the results obtained
for each modality, concluding with the recognition perfor-
mance of the multi-modal systems submitted for the test
part of the VA challenge.

5.1. Audio-based Models

For the acoustic modality, we obtained three different mod-
els via fine-tuning of the modifications of the PDEM model.
All of the top approaches used data augmentation and
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Spleeter for background noise separation. The best results
on the development set for the VA challenge are presented
in Tab. 2. Note that the results here are reported for 4-
second windows excluding the silent (absence of voice) seg-
ments, rather than frame-wise over which the ground truth
annotations are provided. As we can see, the best perfor-
mance is demonstrated by the AudioModelV3 for both Va-
lence and Arousal. Therefore, we utilized this model to gen-
erate the test set predictions for decision-level fusion.

5.2. Video-based Models

For the video modality, as described in Sec. 3.2, several
training steps were implemented. First, we pre-trained vari-
ous static visual models (EfficientNet-B1, EfficientNet-B4,
ViT, and HRNet) on a large amount of ER data and then
fine-tuned them on the AffWild2 dataset. As we trained
models in static mode, ignoring the temporal axis, we have
chosen the LogCosh (Eq. (3)) as the loss function due to its
statistical properties [56] and the Root Mean Squared Error
(RMSE) as the development measure. The LogCosh loss
L(y, ŷ) between the ground truth y and the prediction set ŷ
is defined as:

L(y, ŷ) =

n∑
i=1

log(cosh(ŷi − yi)). (3)

All combinations of applying gradual unfreezing and dis-
criminative learning techniques were experimented. Tab. 3
shows the best results per deep learning model used. As
we can see, the best fine-tuning techniques for every static
model type turned out to be the combination of discrimina-
tive learning and gradual unfreezing. This can be due to the
fact that both EfficientNets and ViT are already pre-trained
on many ER datasets, providing them with strong initial
representations. Such a combination of fine-tuning tech-
niques enables the smooth usage of those representations,
while simultaneously avoiding gradient explosion and over-
fitting. One more interesting finding is that the most com-
pact model has shown the best recognition performance,
pointing out that it is not always necessary to have the heav-
iest model in such domains as Affective Computing. Thus,
we have chosen the trained EfficientNet-B1 model as the
visual feature extractor for further experiments.

Next, we experimented with Functionals-based ap-
proach. In this model, the extracted by EfficientNet-B1
model embeddings are summarized over 2-second non-
overlapping windows to make a single prediction for the
whole window. Such an approach demonstrated decent re-
sults on the VA Estimation challenge (see Tab. 4). Even
though the combination of suprasegmental features summa-
rized using min and mean functionals performed slightly
better on the development set, we opted to train the VA pre-
diction model using the combination of mean, min, and max
functionals as it performed significantly better in another

Table 3. Best development set RMSE results for visual static ER
models.

Model DL GU Valence Arousal Avg.
EN-B1 + + 0.3593 0.2392 0.2993
EN-B4 + + 0.3611 0.2387 0.2999

ViT-B-16 + + 0.3805 0.2516 0.3111
HRNet N/A N/A 0.4173 0.2804 0.3489

DL – Discriminative Learning, GU – Gradual Unfreezing
EN – EfficientNet, N/A – Not Applicable

Table 4. Best development set CCC results per functionals combi-
nation using KELM with EN-B1 embeddings on the VA challenge.

Functionals Valence Arousal Avg.
mean, min, max 0.398 0.581 0.489

mean, max 0.393 0.583 0.488
mean, min 0.411 0.580 0.495

(EXPR) ABAW’24 challenge. Using this combination of
video features with KELM, the best development set CCC
of 0.489 (average over two dimensions) was obtained, with
corresponding CCC performances of 0.398 and 0.581 for
Valence and Arousal, respectively.

Extensive experiments with the uni-modal visual dy-
namic models (Fig. 1 (b)) showed the sensitivity of these
models to extracted embeddings. Interestingly, the dy-
namic model based on the embeddings extracted by HRNet
(body language) demonstrated development CCC scores of
0.0984 and 0.0415 for Valence and Arousal, respectively.
Such results can indicate poor generalization ability of those
features, especially in the temporal context, and can be
caused by the frequent disappearance of participants’ bod-
ies in the course of the video. On the contrary, the best
E2E facial-based model (Fig. 1 (b), EfficientNet-B1 embed-
dings) reached an average CCC performance of 0.574, with
corresponding arousal and valence CCC scores of 0.626 and
0.523, demonstrating high robustness and generalization.

Thus, as the visual uni-modal components of the final
multi-modal ER pipeline, we employed the top perform-
ing End-to-End (E2E) and functional-based ER systems,
specifically: (1) the Kernel ELM based on mean, mini-
mum, and maximum functionals, and (2) the face-based
E2E model based on EfficientNet-B1 embeddings.

5.3. Multi-modal Models and Test Submissions

We selected the best-performing audio and visual models,
extracted embeddings, and experimented with the fusion of
modality-specific features based on a cross-attention mech-
anism inspired by [2, 60]. Surprisingly, this approach could
not outperform the face-based E2E system on the develop-
ment set. Therefore, instead of intermediate fusion, we de-
cided to use the decision-based fusion schemes described
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Table 5. Development and Test set CCC performances of the submitted systems for the VA challenge.

Development Test
Sys # Modality Method Valence Arousal Avg. Valence Arousal Avg.
1 Visual Face-based E2E model 0.523 0.626 0.574 0.5355 0.5861 0.5608
2 Audio-visual DWF (Sys1 + Audio) 0.532 0.649 0.591 0.5307 0.5792 0.5549
3 Audio-visual DWF (Sys1 + Audio + Func.) 0.528 0.641 0.584 0.5259 0.5624 0.5441
4 Audio-visual RF (Sys1 + Audio + Func.) 0.738 0.787 0.763 0.4014 0.4635 0.4324

DWF – Dirichlet-based Random Weighted Fusion, RF – Random Forest-based fusion, and Func. – Functionals of visual
embeddings fed to Kernel ELM.

earlier. For our test set probes, we used one uni-modal
(best face-based E2E system) and three multi-modal sys-
tems, based on the development set performances.

Tab. 5 reports the challenge development and test set per-
formances of the VA challenge. We observe an interesting
pattern concerning the performance of the E2E uni-modal
visual model and the multi-modal models. Overall, con-
trary to our expectations, the multi-modal systems that show
better performance over the video-only model do not gen-
eralize well to the test set. The E2E dynamic visual model
used in the first submission not only yields the best test set
performance among the four submissions, but also has the
most similar development and test set average CCC scores.

The inclusion of the audio modality improves the arousal
prediction performance on the development set, however,
reduces the test set performance on the same emotion prim-
itive. This may partly be attributed to the covariance shift
and the label distribution gap between training, validation,
and the tests. The ML learns not only the mapping from the
inputs to the outputs, but also the pattern of the output dis-
tribution, bringing major challenges in cross-corpus or “in-
the-wild” acoustic ER [14]. The VA covariance structure
depicted in Figure 3 tells us that while the majority of the
instances on both the training and validation sets have pos-
itive arousal, the validation set has lower negative arousal
samples. This may be further exacerbated by the gap in the
covariance structure of the test set labels, which are cur-
rently not accessible by the competitors.

The test set CCC performance of the top competitors
along with our system and the baseline system is shown in
Table 6. Among the 60 teams that participated, 23 made
submissions and 10 of them surpassed the baseline. On the
valence prediction task, we rank third, and on the overall
(average of arousal and valence) our system ranks fourth. It
is important to remind that this performance is reached via
a single E2E dynamic visual model.

6. Conclusion and Future Work

The results of our research highlight the potential of deep
learning models for audio-visual emotion recognition in un-
constrained, “in-the-wild” settings. The face-based end-

Table 6. Comparison of test set CCC scores of top systems in the
ABAW 2024 Competition and our work.

System Valence Arousal Avg.
Zhang et al. [71] 0.6873 0.6569 0.6721
Praveen and Alam [51] 0.5418 0.6196 0.5807
Zhou et al. [73] 0.5223 0.6057 0.5640
Our contribution [13] 0.5355 0.5861 0.5608
Yu et al. [68] 0.5208 0.5748 0.5478
Savchenko [57] 0.4925 0.5461 0.5193
Kim et al. [24] 0.4836 0.5318 0.5077
Waligora et al. [65] 0.4198 0.4669 0.4434
CAS-MAIS Team 0.4245 0.3414 0.3830
Min et al. [49] 0.2912 0.2456 0.2684
Baseline [36] 0.2110 0.1910 0.2010

to-end dynamic models, leveraging salient embeddings ex-
tracted by the EfficientNet-B1 model, achieved a competi-
tive efficacy, outperforming the traditional functional-based
approaches. However, optimizing video models still re-
mains computationally very demanding, posing additional
challenges in deploying these solutions for “in-the-wild”
scenarios. While our experiments on the development
set suggested that combining audio and video modalities
through fusion techniques could significantly enhance per-
formance, the acoustic modality’s arousal prediction perfor-
mance did not generalize well to the test set. Improving the
robustness of the acoustic model for more accurate arousal
prediction as well as usage of other contextual information
(background sound, linguistics, etc.) will constitute our fu-
ture work. Ultimately, progress in this field holds promise
for enabling the naturality of human-computer interaction.
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