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Abstract

Current unsupervised 2D-3D human pose estimation
(HPE) methods do not work in multi-person scenarios due
to perspective ambiguity in monocular images. Therefore,
we present one of the first studies investigating the feasi-
bility of unsupervised multi-person 2D-3D HPE from just
2D poses alone, focusing on reconstructing human inter-
actions. To address the issue of perspective ambiguity, we
expand upon prior work by predicting the cameras’ eleva-
tion angle relative to the subjects’ pelvis. This allows us to
rotate the predicted poses to be level with the ground plane,
while obtaining an estimate for the vertical offset in 3D be-
tween individuals. Our method involves independently lift-
ing each subject’s 2D pose to 3D, before combining them
in a shared 3D coordinate system. The poses are then ro-
tated and offset by the predicted elevation angle before be-
ing scaled. This by itself enables us to retrieve an accurate
3D reconstruction of their poses. We present our results
on the CHI3D dataset, introducing its use for unsupervised
2D-3D pose estimation with three new quantitative metrics,
and establishing a benchmark for future research.

1. Introduction
Monocular 3D human pose estimation (HPE) is known

to be an ill-posed inverse problem, as multiple different 2D
poses can correspond to the same 3D pose. Despite this,
unsupervised algorithms have developed rapidly in tackling
single-person 2D-3D HPE from a single image, where they
attempt to lift a 2D skeleton to 3D via some form of re-
projected 2D pose likelihood [2, 3, 6, 14, 16]. Due to fun-
damental perspective ambiguity however, the absolute met-
ric of depth cannot be obtained from a single view alone
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Figure 1. Errors obtained when trying to use current unsuper-
vised 2D-3D lifting approaches, to lift multiple people to 3D. In
the above scenario, the root coordinate is the mid-point between
each person’s pelvis in 2D. We show a side view of the GT and
Predicted 3D to highlight both pose prediction and 3D distance
errors. Note how the person further back in the image appears to
be floating and smaller in the predicted 3D when compared to the
GT, this is due to the depth ambiguity in a perspective projection
setting.

[2, 12]. To deal with this, unsupervised approaches cen-
tre the detected 2D pose around a root joint (typically the
pelvis), while also setting the 3D prediction of the root to be
a fixed unit of c from the camera. This means that instead of
absolute depth, these models learn to predict the 3D depth
offset from the root joint when the root is assumed to be c
units from the camera. Although this works well in scenar-
ios where we want to lift a single person, if we adapt this
approach to lift multiple people simultaneously we obtain
errors both in terms of the pose, as well as in the 3D distance
between the two people as seen in Fig. 1. Therefore, the aim
of this paper is to obtain an accurate reconstruction of 3D
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Figure 2. Overview of our multi-person pose estimation approach. Given two or more detected 2D poses our lifting network [6] predicts
the 3D location for each joint for each pose independently. The 3D poses are then combined in their own global coordinate system. An
elevation compensation approach accurately predicts the offset of each person’s pelvis in a 3D setting. Lastly, each pose is scaled so that
their feet are on the same ground plane which produces our final prediction.

human poses interacting within a shared coordinate system,
relying solely on their 2D poses obtained from a single im-
age. Additionally, in our extensive survey of prior literature,
we found no prior work tackling unsupervised multi-person
2D-3D HPE from 2D poses alone. Therefore, we take the
first leap in exploring if it is feasible to reconstruct an ac-
curate 3D estimate of two people interacting from their 2D
poses alone.

2. Methodology
In this section, we present our unsupervised learning ap-
proach to independently lift 2D poses to 3D, combining
them to a shared coordinate space and predicting the relative
elevation angle of each person which is used for elevation
and rotation compensation. An illustrative depiction of our
approach is provided in Fig.2. Our 2D poses consisted of
N keypoints, (xi, yi), i = 1...N , where the root keypoint,
located at the origin (0, 0), was the midpoint between the
left and right hip joint (pelvis). Similar to prior work we
adopted the practice of fixing the distance of the pose from
the camera at a constant c units and normalising such that
the average distance from the head to the root keypoint was
1
c units in 2D, with c being set to 10 as is consistent with
previous research [2, 6, 14, 16].

2.1. Independent Lifting and Pose Combining

Our lifting networks were trained to predict the 3D depth
offset (d̂) from the poses root keypoint for each 2D keypoint
(x, y). To compute the final 3D location of a specific key-
point, xi, we employed perspective projection, as defined
by:

xi = (xiẑi, yiẑi, ẑi),

where ẑi = max(1, d̂i + c).
(1)

Here, di represents the depth-offset prediction made by our
lifting network for keypoint i. Each 2D pose obtained from
an image was lifted into 3D independently. This approach

effectively mitigated the 3D pose estimation errors present
when lifting both poses together, as demonstrated in Fig.1.
Since both 3D poses shared the same root location, they
were combined into a unified coordinate system, as depicted
in the ’Combined 3D Poses’ section in Fig.2. For our lift-
ing network, we adopted the LInKs algorithm, originally
introduced by Hardy and Kim [6]. We extended this al-
gorithm to lift two additional keypoints, specifically the left
and right hands. This inclusion was motivated by the signif-
icance of hand movements in contact-based interactions. It
is worth noting that these additional keypoints are not typi-
cally present in most 3D pose datasets, such as Human3.6M
[7] and MPI-INF-3DHP [11].

2.2. 3D Elevation and Rotation Compensation

As natural human behaviour places the subjects of interest
in the centre of an image while holding the camera horizon-
tally, and “narrow-angle” lenses typically have little or no
horizontal distortion [1, 14], we can assume the horizontal
displacement of the 2D poses can correspond to the horizon-
tal displacement in 3D once scaled. However, if we naively
used the elevation displacement in the 2D poses, and then
applied scaling, we would obtain substantial errors, as de-
picted in Fig.3. These errors predominantly stem from the
variable elevation angle of the camera, which when angled
up or down exaggerates the perceived height differences for
people in a scene. Moreover, any predicted 3D pose will
be tilted to or from the camera depending on the camera’s
elevation angle, further increasing the error. To tackle this,
we expanded the work of Wandt et al. [14], who noticed
that using a random elevation angle during 3D rotation and
2D reprojection can lead to unnatural 2D poses. Therefore,
they sought to compensate by learning the elevation angle
that would align the camera with the root of the pose be-
fore any further 3D transformations. However, it was not
considered in their work how this predicted elevation angle
could be used to calculate the elevation offset for two poses
from the same scene. Therefore we include the same ele-
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Figure 3. Top right shows the errors obtained in both scaling and
displacement when we assume that the original vertical 2D dis-
placement of the poses (top left) accurately represents the height
offset in the real world. The bottom right image shows our pro-
posed elevation compensation approach to displacement and scal-
ing, allowing for more accurate depth offset and scaling to be pre-
dicted.

vation angle prediction branch in our own lifting network
while using the elevation angle prediction for the following
additional steps. Let us have two predicted 3D poses, y1

and y2, along with their respective elevation angle predic-
tions, θ1 and θ2. As the root of both poses is predicted to
be c units from the camera, the vertical distance the cam-
era needs to move to align with the root of pose y1 and y2,
is given by c · tan(θ1) and c · tan(θ2) respectively. Con-
sequently, we estimated the vertical offset ∆h of y1 and y2

by considering the difference in vertical distance the camera
has to move to align with the root of each pose:

∆h = c · (tan(θ1)− tan(θ2)) (2)

To solve the error of our 3D poses being tilted depending on
the camera’s elevation angle, we also introduced a rotational
compensation for each pose around the x axis. To do this
we created the rotation matrix R1 and R2 from each poses
respective θ where:

R =

1 0 0
0 cos(−θ) − sin(θ)
0 sin(θ) cos(θ)

 (3)

In summary, we obtained the horizontal displacement of y1

and y2 from the image, and the elevation displacement was
obtained via trigonometry using the predicted elevation an-
gle of each pose. First, as both poses are centred around the
same origin, we rotated them by their respective rotation
matrix R. We then displaced both poses along the x and
y axis, based on the horizontal distance in the image and

the predicted vertical distance via elevation compensation.
Lastly, we scaled each pose so that the lower of their two
feet were aligned on the y plane. This entire process led to
the complete 3D reconstruction of the scene.

3. Evaluation
The Close Human Interactions (CHI3D) dataset introduced
by Fieraru et al. [4], was one of the first 3D human in-
teraction datasets, and new at the time of writing. It con-
tains the 3D ground truth (GT) joints from mocap obtained
from images taken by 4 cameras. Each sequence contains 2
people in various interactions such as grabbing, pushing,
or holding hands. In our extensive literature review, we
found that only two previous publications mentioned the
CHI3D dataset in their writing. These publications include
the original dataset release, and subsequent research work
led by the same authors [5]. Additionally, we found two
other studies that submitted their results for evaluation on
the CHI3D webpage [8, 10]. All of these approaches relied
on imagery or video, and estimated the GHUM [15] and
SMPLX [13] body models for evaluation. Furthermore, out
of the 5 sequences that make up CHI3D the 3D data per-
taining to sequences 1 and 5, as employed for evaluation
in prior research [4, 5, 8, 10], has not been made publicly
available at the time of writing. As we do not use imagery or
videos in our study, but just 2D poses, we are unable to train
or evaluate our approach using the same protocols. There-
fore we first detail our training approach as well as the four
evaluation metrics we use and their definitions, followed by
our results on the CHI3D dataset.

3.1. Training Approach and Error Metrics

To train our lifting models and normalising flows we use the
2D pose data in sequences 2 and 3. Sequence 4 is then used
for evaluation. As the relative size of the CHI3D dataset is
much smaller than traditional HPE datasets, we do not use
“interesting” frames depending on the subjects’ movement,
but use all frames for training and evaluation. We pre-train
our normalising flows for 100 epochs and train our lifting
network for 40 epochs. We use the Adam Optimiser with
an initial learning rate of 2×10−4 which decayed exponen-
tially by 0.95 every epoch. We used an identical architecture
for our flows and lifting networks as detailed within Hardy
and Kim [6]. Additionally, as our predicted poses are within
a normalised 3D coordinate system, we aligned them to the
GT via Procrustes alignment prior to evaluation. Note that
we treat the poses within our scene as one rigid structure
during alignment, meaning that if pose 1 was scaled by s
and translated by t the same would happen to pose 2. The
evaluation metrics we used are:
• PA-MPJPE: PA-MPJPE is the mean per joint position er-

ror in millimetres (mm), representing the Euclidean dis-
tance between the predicted and the GT 3D keypoints.
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Unlike prior approaches, we report this error collectively
for all poses within a scene instead of for each pose in-
dividually. This inflates the error but provides a more
accurate and comprehensive depiction of the joint errors
within the reconstructed 3D scene.

• Scale Error (SE): SE represents the mean difference in
mm between the L2 norm of the poses within our pre-
dicted and GT scenes. In other words, it assesses how
much the total size of the poses in our predicted scene de-
viates from the poses in the GT scene. SE offers a detailed
evaluation of scaling accuracy by focusing specifically on
pose size instead of the overall scene size.

• Translation Error (TE): TE represents the L2 norm of
the mean absolute translation error in mm between our
predicted and GT 3D scenes. It provides insight into the
accuracy of our 3D reconstruction with respect to transla-
tion.

• Root Displacement Error (RDE): RDE quantifies the
mean error in mm between the pelvis displacement in the
GT scene and the pelvis displacement in our predicted 3D
scene. The RDE metric assesses whether our predicted
3D poses are displaced by the correct amount within our
reconstruction.

3.2. Results and Limitations

We show the results of our model using 2D image displace-
ment, our elevation compensation approach for displace-
ment, and elevation and rotation compensation in Table 1.
Qualitative results can be seen in Fig. 4. Our results show
that both of our changes improved results, with the rota-
tion compensation alone reducing the PA-MPJPE error by
23.4%. Furthermore, both of our changes reduced the error
in scaling and displacement between the predicted and GT
poses, showing how much the elevation angle of the camera
can exaggerate the size and displacement of people within
a scene. The main limitation of our approach is that it re-
lies on an accurate 2D pose estimate to perform optimally,
particularly an accurate pelvis keypoint. This is because
the elevation angle prediction depends on this keypoint be-
ing accurate. Furthermore, we find multiple discrepancies
in the CHI3D dataset between the 2D annotation, images
and 3D poses. For example, when there is contact between
subjects, the image and GT 3D poses showed a negligible
vertical displacement in the pelvises along the y axis. How-
ever, the 2D annotation often showed a large displacement.
To mitigate this, when the vertical pelvis distance between
both poses in the image was 50 pixels or less, we assumed
θ1 = θ2. To mitigate this constraint, in future work we plan
on combining our elevation compensation approach with a
contact detector. This would allow us to use the contact
point as a reference when displacing and scaling the poses
removing this constraint.

Method
Elevation

Compensation
Rotation

Compensation
θ1 = θ2

when ≤ 50 pixels PA-MPJPE ↓ SE ↓ MTE ↓ RDE ↓

Ours ✗ ✗ ✗ 208.1 ±5.3% 87.6 148.4
Ours ✗ ✗ ✓ 166.1 ±4.8% 76.5 129.4
Ours ✗ ✓ ✓ 163.4 ±4.1% 74.6 126.6

Ours ✓ ✓ ✓ 149.4 ±2.5% 69.9 105.8

Table 1. Ablation results showing the effect of all of our changes
for each of our error metrics on the CHI3D dataset.

Figure 4. Qualitative results on the CHI3D dataset

4. Conclusion
To conclude, we presented a novel and one of the first unsu-
pervised approaches to reconstruct multi-person 3D human
interactions from 2D poses alone. We identified the limita-
tions in using 2D pose displacement in an image due to cam-
era elevation angle variations and addressed this with an el-
evation and rotation compensation method. Our lifting and
compensation approach distinguishes itself from other 3D
reconstruction methods by its lightweight nature capable of
real-time operation [9], thereby enhancing its applicability
to real-world scenarios. Furthermore, our study is among
the first to utilise the CHI3D dataset for 3D and introduced
three new quantitative measures to demonstrate the accu-
racy of our approach and to serve as benchmarks for future
research. We hope our work will inspire further research
into the challenging task of unsupervised multi-person 3D
reconstruction from 2D poses alone.
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