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Abstract

Facial Expression Recognition (FER), an essential as-
pect of emotion analysis through artificial intelligence, is a
crucial research area. Although traditional approaches uti-
lizing Convolutional Neural Networks (CNNs) for analyz-
ing human emotions from facial expressions achieve supe-
rior accuracy over conventional machine learning methods,
overfitting —especially arising severely from data collected
in uncontrolled, In-the-wild settings —significantly impedes
CNNs performance. This is due to the data scarcity and in-
herent noise inside In-the-wild data. To address this chal-
lenge, this paper introduces a novel regularization method
that employs Reinforcement Learning (RL) to adaptively
apply regularization hyperparameters appropriate for the
evolving state of trained CNNs. Through experiments on
various datasets such as CIFAR100, FER2013, and Affect-
Net datasets including diverse perspective analysis such as
graphical, Grad-CAM and numerical analysis, it is demon-
strated that the suggested method can alleviate memoriza-
tion of noise in training data and promote learning of essen-
tial features. The significance of the suggested method lies
in its demonstrated remarkable effectiveness in enhancing
CNNs’ generalization and reducing overfitting.

1. Introduction

Facial Expression Recognition (FER) [22] is a significant
area of research in emotion analysis through artificial in-
telligence. Facial expressions are a primary means for hu-
mans to convey emotions, and it is anticipated that Al sys-
tems will soon be adept at discerning and replicating hu-
man emotional states from these expressions during their
interactions and communications with people. The practi-
cal applications of FER are vast, spanning sectors such as
healthcare and entertainment, where it has the potential to
significantly enhance the user experience.

Existing research indicates that leveraging Convolu-
tional Neural Networks (CNNs) [2],[22] allows for a more
accurate analysis of human emotions based on facial expres-
sions than what is achievable with conventional machine
learning approaches. Conventionally, research on FER has
been conducted for the facial images obtained in controlled
settings, such as laboratory environments with explicit emo-
tional prompts [22]. Recently, most of the research has fo-
cused on In-the-wild facial expressions captured in uncon-
trolled environments for applications in practice [22].

In the domain of In-the-wild FER, due to the scarcity of
large datasets and expression-unrelated variations referred
to as noise [22], [40], [21], overfitting [40] becomes a sig-
nificant issue for the practical application of CNNs. Over-
fitting, exacerbated by limited training data and noise, oc-
curs when the CNNs memorize too much irrelevant noise
instead of learning essential features from the training data
and severely becomes dependent on the noise for the pre-
diction, as described in Figure 1.

To distinguish the essential feature from noise, common
approaches such as simplifying the model’s architecture, us-
ing an ensemble and applying regularization techniques are
utilized [11]. The regularization introduces additional con-
straints or penalties [20], [33] to the CNNs being trained,
thereby, decreasing the generalization error on unseen data
[43], [14]. Regularization techniques, universally recog-
nized as effective, involve penalizing parameter magnitudes
[20], injecting noise [27], and applying dropout [35]. Gen-
erally, hyperparameters of regularization are maintained
statically or adjusted iteratively by a hand-crafted scheduler
during training CNNs [30], [36]; refer to Diagram 1 and Di-
agram 2 in Figure 2. A key limitation of these approaches
is their inability to adjust hyperparameters appropriate for
the evolving state of the trained CNNs (state can be param-
eters of trained CNNSs at a certain point which are updated
by Gradient Descent [3]); contrast Diagram 1 and Diagram
2 against Diagram 3 in Figure 2.
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Figure 1. This figure shows the deep learning model’s prediction
for the class of data severely depends on the memorized noise in
the training dataset, not the relevant representative features.

On the other hand, as described in Diagram 3 in Figure 2,
adaptively navigating hyperparameters according to the dy-
namically evolving state during training CNNs can be more
effective than disregarding the state of the trained CNNs
in terms of distinguishing the essential features from noise
[44], [5], [29], [42]. This approach observes the state of the
trained CNNSs, selects appropriate regularization hyperpa-
rameters based on observations, and then trains the CNNs
under the chosen regularization hyperparameters.

Concretely, how regularization hyperparameters are cho-
sen is decided by how the objective of updating hyperpa-
rameters is defined. The selection of hyperparameters is
made in a direction that aims to achieve the defined objec-
tive. For example, in the representative approach where the
objective of adjusting hyperparameters is defined as mini-
mizing training loss, the hyperparameters are updated in a
direction that effectively reduces the training loss. How-
ever, the defined objective of adjusting regularization hy-
perparameters must be distinguished from the objective of
updating the parameters of trained CNNs, which aims to
minimize training loss; refer to Diagram 3 in Figure 2.

Especially, by adopting the approach described in Di-
agram 3 of Figure 2 in the domain of In-the-Wild FER,
the effectiveness of regularization can be significantly en-
hanced. As a precedent example following the approach
described in Diagram 3 of Figure 2 for this domain, the re-
search [13] utilizes the backpropagation-based optimization
not only to update parameters of CNNs but also to update
the regularization hyperparameters appropriate for state of
trained CNNs [23], [6]. In this method, adjustments of both
trained parameters and updated hyperparameters share the
common objective of minimizing training loss. This means
that the hyperparameters are also updated in a direction that
can reduce the training loss by the Gradient Descent, which
can be expressed by the Equation 1 where the Ohyper, o
and L(0) are defined as hyperparameters value for regu-
larization technique, learning rate and training loss gener-
ated by the forward propagation with whole trainable pa-
rameters. Through experiments, as evidenced by [13] and
shown in Table 1, this approach has been proven to be dis-

tinctively effective in learning essential features. However,
given that the goal of updating hyperparameters is to mini-
mize training loss, this objective inherently leads CNNs to
the memorization of noise within the training dataset, which
in turn establishes a fundamental limitation in preventing
the trained CNNs from memorizing this noise.

AL()
aehyper

To tackle overfitting in the In-the-Wild FER domain, we
propose the novel method also adopting the approach in Di-
agram 3 of Figure 2 but overcoming the limitation of the ap-
proach 1. To overcome the limitation, the proposed method
defines the objective of updating the regularization hyperpa-
rameters as preventing the trained CNNs from memorizing
the noise in the training dataset while facilitating the CNNs
to learn essential features, instead of minimizing the train-
ing loss. To implement this, proposed method leverages Re-
inforcement Learning (RL) [15], [38] to train the agent [1],
[4], [32], which adjusts regularization hyperparameters (ac-
tion of agent) applied for training of CNNs, in a direction
that can effectively reduce the noise memorized by trained
CNNs and facilitate the learning of essential features (ob-
jective of agent). Given that the RL algorithm optimizes the
agent to conduct actions that can maximize the accumulated
reward, by defining the MDP (consisting of state, action and
reward [28], [37], [12], [31] and necessary for applying the
RL optimization) which can lead the action to prevent the
trained CNNs from memorizing the noise, the challenging
overfitting issue can be alleviated distinctively. The MDP is
presented in the method section.

As aresult, the proposed method is proven to be distinc-
tively effective for preventing the CNNs from memorizing
the noise in the training data while learning the essential
features.

Contributions: The proposed method contributes to the
community facing challenges for applying FER applica-
tions in practice due to overfitting. It also fills the research
gap of devising regularization techniques remarkably effec-
tive for In-the-wild FER, a domain where developing reg-
ularization still has not received sufficient academic atten-
tion.

Rest of papers: In the related work, the concepts related
to RL and concept of Bayesian Optimization are presented.
Because the suggested method is implemented by the RL
algorithm, the concepts related to the RL are presented.
Moreover, since Bayesian Optimization has both similar
and different points compared to the suggested method, it
can be useful for understanding the suggested method. In
the method section, the MDP formulation is suggested. In
experiments, diverse types of analysis show that the sug-
gested method is effective for In-the-Wild FER domain by
distinctively alleviating the overfitting.
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4616



( Training steps ) /\ Training steps

— / ) /

[ Hypermu ] eee
\_ J/
<Diagram 1> mmm) Objective
( Training steps )

[HypenIHypeerHyper3] ..C (X1} HyperilHyperZIHypem (X X} Hypert ...
\_ J

<Diagram 2> <Diagram 3>

®0 : State(Condition or Status) of trained model

() 1 :Updating hyperparameters based on the state

® U :Training over a specific period with hyperparameters
W = wywa,wsowy) @

: State transition of model after training

<Parameter space>

Figure 2. This figure shows three types of hyperparameter adjustment strategies during training the CNNs. Hyper; and W; are the applied
hyperparameter during training process and parameters of the trained CNNs for ¢ = 1, 2, ...t. The parameter space [34] is the space where
each dimension represents a different parameter that can be adjusted during the training process. In this figure, the state is defined as the
parameters of CNNS at certain point which are updated by the Gradient Descent.
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Figure 4. This figure shows how the Bayesian Optimization works
Environment for Hyperparameter Optimization

Figure 3. This figure shows the relationship among State, Action,

Reward, Agent, Policy, Environment and Child Network. . . . L .
dition or status at a given time, which is considered for de-

ciding the action. An action is a choice made by the policy

2. Related Work network of agent [1], [4]. The reward [9], [18], [8], [17],
[26] is the quantitative assessment on the effectiveness of

As mentioned in the Rest of papers, this section presents the action.

c.oncepts of RL related concepts and Bayesian Optimiza- Under the defined MDP, the agent takes action on the

tion.

constructed Environment, thereby, receiving the reward for
the corresponding action and the transitioned state; refer to

2.1. MDP, Environment and RL Figure 3. Based on this unit of interaction between the agent

Utilizing the RL algorithm requires formulating the Markov and environment, the agent sequentially performs further
Decision Process (MDP) consisting of State, Action, and actions based on the states received from the environment.

Reward [28], [37], [12], [31]; refer to Figure 3. In a Markov In the formed environment, the agent’s objective is to
Decision Process (MDP), a state represents the specific con- explore different sets of actions and exploit [10], [7], [24]
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the optimal actions maximizing the accumulated reward. To
optimize the policy network of the agent, the RL algorithm
is utilized with the rewards collected from the interaction
with the environment; refer to Figure 3.

2.2. Bayesian Optimization for Hyperparameter
Optimization

The approach, enhancing machine learning models through
the optimal selection of hyperparameters of the child net-
work by using Bayesian optimization [39], leverages a
probabilistic model to predict the expected performance
of child network on the validation dataset. As described in
Figure 4, in the context of Bayesian Optimization, the prob-
abilistic model is the deep learning model that decides a cer-
tain combination of hyperparameters (input of probabilistic
model) applied to train the child network through the train-
ing dataset whose performance on the validation dataset
(output of probabilistic model) is utilized for optimizing the
probabilistic model. Through an iterative process that trains
and evaluates a child network on the training and validation
dataset with varying hyperparameter configurations decided
by the probabilistic model, this method identifies the com-
bination of hyperparameters best performing on the valida-
tion dataset. Bayesian optimization optimizes this process
by using information from previous iterations to improve
the search for effective hyperparameters, thereby balancing
the exploration of new configurations against the exploita-
tion of previously successful ones.

Commonly, both the suggested method leveraging the
RL and the Bayesian optimization explore the set of hy-
perparameters that are utilized during the training of a child
network and become optimized by their own algorithm to
find the optimal hyperparameters that are expected to pro-
duce the highest performance on the validation dataset.
Compared to the suggested method, the Bayesian optimiza-
tion statically maintains the hyperparameters configured for
the child network until the training of the child network with
a certain set of hyperparameters is completed, as described
in Diagram 1 in Figure 2, while the suggested method adap-
tively adjusts the hyperparameters according to the evolving
state of the child network during the training process.

However, both the suggested method and Bayesian opti-
mization are solely dependent on the performance evaluated
by a validation dataset for optimization process, which can
have the risk of decreased generalizability on the child net-
work. This deterioration occurs when the model, trained
with the hyperparameters selected by the Bayesian Opti-
mization approach, can only perform well on a specific val-
idation set, compromising its ability to generalize to unseen
data. To counteract this, it is recommended to conduct a
final evaluation on a separate test dataset.

3. Method

In this section, firstly, while utilizing the relationship be-
tween child network and agent, the overall description of
the state, action and reward is presented. Secondly, the con-
cept of Chunk is presented to distinguish the propagations
generated by the child network during the training or vali-
dation process. Thirdly, based on the concept Chunk, the
notations, utilized for defining MDDP, is presented. Finally,
the MDP formulation is presented.

3.1. Overall description of MDP

Firstly, compared to the Bayesian Optimization explained
in the related work, the child network in the suggested
method, which should be separated from the policy network
of agent, is any deep learning model trained with only train-
ing dataset under the regularization whose hyperparameters
are decided by the agent; refer to Figure 3. The policy net-
work of the agent is the Neural Network that produces a cer-
tain value for hyperparameters of regularization (output of
policy network) based on the dynamically evolving state of
the child network (input of policy network). Under the regu-
larization whose hyperparameters are selected by the agent,
the child network is trained, evaluated and tested with the
training, validation and test dataset, respectively.

The state, action and reward are defined based on the re-
lationship between the child network and the policy network
of the agent. The state is defined as the array of the train-
ing loss generated during the training process of the child
network. These sequences of losses can indirectly represent
the status of the trained CNNs with high efficiency. The
action is defined as the selection of regularization hyperpa-
rameters decided by the agent. After the child network is
trained by regularization with certain hyperparameters dur-
ing a certain period, the agent receives the reward, the child
network’s performance evaluated by F1 score on a valida-
tion dataset distinct from the training data.

3.2. Chunk

As described in Figure 5, Chunk is a conceptual holder
containing N steps of forward propagations generated by
the child network during the training or validation process.
This concept is utilized to specify the k-th forward propa-
gation’s order within the forward propagations contained in
the ¢-th Chunk where the k and ¢ are denoted as the order
of certain forward propagation among whole propagations
and order of certain C'hunk, respectively; refer to Figure 5.
To mathematically express this, the relationship among N,
k and t (t > 1) is defined in the Equation 2. By the re-
lationship above, the k-th forward propagation corresponds
to k — (t — 1) x N -th propagation in ¢-th Chunk.

To distinguish the forward propagations generated dur-
ing the training the child network from propagations gen-
erated during validation, the C'hunk is subdivided further.
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With the ¢-th Chunk denoted as C;, Cf“”” is denoted as
the Chunk containing the propagations generated during
training child network. In contrast, Cf“l is denoted as the
Chunk containing the propagations generated during val-
idation process. The propagations generated during train-
ing and validation process are independently counted as de-
scribed in Figure 6.

-

3.3. Notation

]+0 ifk mod N=0

]+1 ifk mod N #0 @

2| 2o

The state, denoted as S;, is defined by the array of training
losses generated in a single chunk C{"*". Training losses
generated during C}"*" are collected and utilized to decide
the hyperparameters determined before starting to proceed
Cfreim and applied during C{74"; refer to Figure 7. We de-
note s;; (¢ = 1, 2, ..., N) as a training loss of child net-
work which is computed from the ¢-th forward propagation
generated within the C}" %",

The action, denoted as Ay, is to decide the hyperparam-
eters before starting to proceed with the training process
in Cfi“f”. These hyperparameters are applied during the
training process in C{7%™. Respectively, we denote [a, b],
a; (1 =1,2,..., h)and mp(S41|S:, A¢) as range where
the hyperparameters can be configured, one of decided hy-
perparameters where the h is denoted as the number of
adjustable hyperparameters and the probability distribution
which the action Ay, 1 follows.

The next state, denoted as Sy 1, is also array of training
losses generated under the selected regularization hyperpa-
rameters (A;); refer to Figure 7.

The reward, denoted as R;, is calculated by subtract-
ing the mean of training F1 scores collected during Cff._af”
from the mean of validation F1 scores collected during
Cffll; refer to Figure 7. The m is the number of randomly
sampled data from the validation dataset while the M is
the total number of data in validation dataset. We denote
TF,;(i=1,2,..., N) as a Fl score evaluated on train-
ing dataset from the child network’s i-th forward propaga-
tion inside the C{™*" and VF;,; (i = 1, 2, ..., m) as a Fl
score evaluated on validation dataset during C%!.

3.4. MDP formulation

The MDP can be described with a tuple: (.S, A, R, ~y), where
>S” stands for the set of states, A’ for the set of actions, "R’
for the reward function, and ’~’ for the discount rate.

3.4.1 State

S, is defined as the array of training losses generated by
the child network during C{"%". Although directly utiliz-
ing parameters of the model itself, as described in Diagram

112(3|4|5|6|7|5| oe®® k
( X X J
1.1 2,1 2,N t.1 t.N
: One Chunk

|:| : One forward propagation

Figure 5. The upper Diagram shows the propagation generated
along with the training process. The lower Diagram shows that
every chunk in the training process consists of forward propaga-
tions(N=4).
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Figure 6. This figure shows the arrangement of C{"*"" and C7*!
across the ¢.
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Figure 7. The image shows the interaction between the agent and
the child network.

3 inside Figure 2, is a straightforward approach for defining
the state, it requires huge computation resources because
the policy network, described in Figure 3, generally utilize
the Deep Neural Network(DNN) to decide the suitable hy-
perparameters. Instead, because the individual training loss
is indirectly correlated with the updated parameter of child
network and sequentially generated training losses can re-
flect the trend of updated parameters, as described in Figure
8, the bundle of training losses can be used for representing
the state of child network.

Sy = (St,h St,2y « vy St,N) 3)

So = (0,0,...,0)
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Figure 8. The image shows the decreasing training loss along with
the updated parameters which correspond to the one of points in
the parameter space

3.4.2 Action

The A; undertaken by the agent is defined as the determi-
nation of specific values for regularization hyperparameters
which also affect the next state, S;y1. The regularization
with those hyperparameters is applied during the training of
the child network. The determined hyperparameters remain
consistent throughout the C{;4". This determination of hy-
perparameters is based on the status of the child network be-
cause the agent utilizes the child network’s training losses
collected during C{"*™", Also, how the hyperparameters
are configured distinctively affect how the training losses
are generated in C{;4™", which means Sy 1 is dependent on
the A; given S;; refer to Figure 3.

- aent “4)

o) a/O,h}

Ay ={ar1, a2, ..
Ag ={ao,1,a0,2,-.

where ag; ~ Ul(a,b)
h = A )

At+1 ~ W0(5t+1|5t7At) (6)

3.4.3 Reward

The R, is defined by subtracting the mean of the training
F1 score, collected during the Cttﬁi”, from the mean val-
idation F1 score collected from the ijjll, as described by
the Equation 7, 8, 9, 10 and 11. The N and m samples are
randomly selected from training and validation datasets to
calculate the means during C{;%"" and C’f_ﬁll, respectively;
refer to Figure 7.

By above definition, the policy network of agent can be
optimized to select the regularization hyperparameters that
can guide the child network both not to memorize the noise
in the training dataset and to learn essential features. The
objective of the agent is select the regularization hyperpa-
rameters that can maximize the reward. To increase the re-
ward, the gap of performances between training dataset and

validation dataset should not widen while performance of
child network on the validation dataset increases. This is
because while MTF/ tends to increase but has an upper
limit, MV F{™, on the other hand, not only escalates con-
tinuously with bigger upper limit than the upper limit of
MTF}X but also typically is greater than MTF/. There-
fore, in the situation where the child network is trained with
only training dataset, the agent explores and exploits strate-
gies that adjust the regularization hyperparameters which
can ensure the child network does not memorize the noise
in the training dataset while learning essential features.

TFN = (TF;1, TF;, ..., TFin) (7
VE"™ = (VF1, VEi9, ..., VEi ) (8)
MTFN = 7HT§'}N”1 9)
MVFE"™ = % (10)

R, = MVF", — MTF}, (11)

4. Experiment

The following experiments show that the method proposed
in this paper can distinctively prevent the deep learning
model from memorizing the noise in the training dataset
while facilitating the child network to learn the essential
features. For the baseline, Dynamic Noise Injection (DNI)
[13] which is already proven to be effective for In-the-
wild FER domain is utilized. For the challengers against
the baseline, the universally utilized regularizations such
as noise injection and dropout are reinforced with the sug-
gested method. We employ not only CIFAR100 [19] but
also In-the-wild FER datasets such as FER2013 [16] and
Affect Net [25]. In the case of In-the-wild FER, it is re-
markable that enhancing model performance through regu-
larization is challenging, as shown in the experiments from
[13] and Table 1. For analysis, the graphical analysis, Grad-
CAM analysis and Numerical analysis are presented.

4.1. Experimental Setup

4.1.1 Hardware and Software

All experiments were conducted using Pytorch. All the ex-
periments were conducted using a GPU server equipped
with two NVIDIA RTX 3090 GPUs, 128 GB RAM, and
an Intel 19-10940X CPU.
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Vanilla [ +NI +D | +DNI(BL) | +RNI [ +RD

CIFART00,Resnet34 | 0.831T | 0.843 [ 0.844 0.851 0.852 1 0.875

1 FER2013,Resnet34 [ 0.6I5 [ 0.602 [ 0.601 0.618 0.616 | 0.626
AffectNet,Resnet34 | 0.489 | 0.480 [ 0.486 0.506 0.515 1 0.534

Table 1. F1 scores on the test dataset across the dataset, model and regularization. NI=Noise Injection, D=Dropout, DNI=Dynamic Noise
Injection [13], BL=Baseline, RNI=Reinforced Noise Injection, RD=Reinforced Dropout

4.1.2 Baseline and Challenger

For the baseline model, ResNet34 trained with the regular-
ization termed Dynamic Noise Injection (DNI) suggested in
[13] (also introduced in the introduction) is utilized. This
regularization is especially developed for alleviating the
overfitting arising in the domain of In-the-Wild FER.

For challengers against a baseline, ResNet34 trained
with suggested regularization methods, which are named
Reinforced Noise Injection (RNI) and Reinforced Dropout
(RD), are utilized. RNI is the Noise Injection whose hyper-
parameter, the standard deviation used in the normal dis-
tribution to sample the noise, is adjusted by agent across
the training process of child network. RD is the Dropout
whose hyperparameter, the drop-rate specifying the frac-
tion of neurons that are temporarily removed, is adjusted
by agent across the training process of child network.

The training detail of the policy network of the agent is as
follows: The agent network employs a Multi-Layer Percep-
tron (MLP) architecture and the Proximal Policy Optimiza-
tion (PPO) algorithm is employed, with an epsilon value of
0.2, as outlined in [41]. The ~ is configured as 0.995.

The training detail of the child network is as follows: The
ResNet34 is utilized as the child network. The datasets used
for training, validation and testing are CIFAR100, FER2013
and AffectNet. CIFAR100 is used for benchmarking image
classification with 600 images in 100 categories. FER2013
features uncontrolled, grayscale images of faces with seven
expressions, suited for real-world emotion recognition chal-
lenges. Affect Net contains images annotated with eight
expressions and is also applicable in real-world scenarios.
For experiments involving the CIFAR100 and FER 2013
datasets, the batch size was set to 64, and the learning rate
was 0.001. In contrast, for the Affect Net dataset, a larger
batch size of 256 and a lower learning rate of 0.0001 were
used. For the loss function of the child network, this paper
employs Cross-Entropy Loss with Adam optimizer. The
primary metric for evaluating model performance was the
F1 score. N and m are configured to both 20.

4.2. Result and Analysis

There are three types of analysis, graphical analysis, Grad-
CAM analysis and the numerical analysis. As mentioned
in the related work, the suggested method involves the op-
timization process of the policy network based on the child
network’s performance on the validation dataset. Conse-

quently, there is a concern that rather, it might lead to an in-
crease in generalization error due to potential bias towards a
specific validation dataset. To check whether there is issue
of this bias, the Grad-CAM and test datasets are utilized for
evaluating the performance.

4.2.1 Graphical Analysis

The trends described below are always identical across the
different dataset even though the graph in Figure 9 only
shows the case of AffectNet.

As described in Figure 9, the training losses generated by
the child network, trained under the regularization of RNI
and RD, are always greater than the training losses gener-
ated by the baseline. Moreover, the validation losses gener-
ated by the child network, trained under the regularization
of RNI and RD, are lower than or at least equal to validation
losses generated by the baseline. These observations imply
that the suggested method can effectively guide the trained
deep learning model both not to memorize the noise in the
training dataset and to learn essential features.

In addition, even though the training is continuously con-
ducted, the training losses generated by the child network,
trained under the regularization of RNI and RD, tends to
decrease slowly while the validation losses tends not to in-
crease. This observation is remarkable, given that the learn-
ing scheduler is not utilized at all. Through this observa-
tion, it can be also confirmed that the suggested method can
be effective for preventing the trained deep learning model
from memorizing the noise in the training dataset.

This effectiveness is possible because the policy network
of agent, optimized by the RL algorithm, can adaptively
adjust the regularization hyperparameters expected to
minimize overfitting according to the dynamically evolv-
ing state of the trained depp learning model.

4.2.2 Grad-CAM Analysis

Given the issue of bias which can rather increase the gener-
alization error by applying the suggested method, the Grad-
CAM is utilized as one way to counter the aforementioned
issue. Grad-CAM, short for Gradient-weighted Class Acti-
vation Mapping, is a technique for making the predictions
of CNNs understandable to humans. It highlights the re-
gions of an input image that are utilized for predictions in
a specific class. The ordering of the child network’s focus
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Figure 9. This figures show the training loss and validation loss
graph on the AffectNet dataset.

areas—red, yellow, and blue—indicates that red represents
the area where the model focuses the most, followed by yel-
low and blue.

Figure 10 illustrates that the DNI, unlike the RD, tends
to memorize noise, as evidenced by its focus on the bubble
around the face for predictions. In contrast, the RD does
not concentrate on the bubble, indicating a relative lack of
noise memorization. Moreover, while the RD utilizes the
all parts of face, including the eyes, nose and mouth, oth-
ers relatively does not utilize the mouth which is also cru-
cial cue for recognizing the emotion. These observations

Figure 10. This figure shows that the result of Grad-CAM where
the true class and the predicted class are identical in the training
data. The far left image is the original image, and from the left in
the second picture are the results of Grad-CAM for DNI, RNI, and
RD.

strengthen the argument that the suggested method can ef-
fectively guide the trained deep learning model both not to
memorize the noise in the training dataset and to learn es-
sential features.

4.2.3 Numerical Analysis

Given the issue of bias which can rather increase the gen-
eralization error by applying the suggested method, the
evaluation on the test dataset is utilized as another way to
counter the aforementioned issue. The evaluations on the
test dataset can be utilized to estimate the generalization ca-
pacity of the trained model. The performances on the test
dataset are presented in the table 1. Especially, as described
in the table, the RD consistently and distinctively outper-
forms other methods. This means the RD has lower gener-
alization error than the baseline. This observation also can
strengthens the argument that the suggested method can ef-
fectively guide the trained deep learning model both not to
memorize the noise in the training dataset and to learn es-
sential features.

5. Conclusion

This paper introduces a novel regularization method that
leverages RL to adaptively adjust the regularization hyper-
parameters according to the dynamically changing state of
CNNs during training. This approach is particularly de-
signed to combat the challenge of overfitting in FER, es-
pecially pronounced in uncontrolled, in-the-wild environ-
ments where traditional methods falter due to the limited
amount of data and noise inherent in such data. The pro-
posed method’s effectiveness is underscored by its ability
to minimize the memorization of noise and learn essen-
tial features from facial expressions, thus significantly en-
hancing the CNNs’ generalization. Experimental results
on diverse datasets such as CIFAR100, FER2013, and Af-
fectNet demonstrates the method’s superiority over conven-
tional regularization techniques, marking a significant step
forward in the development of Al systems capable of ac-
curately recognizing and interpreting human emotions from
facial expressions.
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