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Abstract

Ultra-high-resolution aerial videos are becoming in-
creasingly popular for enhancing surveillance capabilities
in sparsely populated areas. However, analyzing human
activities automatically, such as ”who is doing what?” in
these videos, is desirable to realize their surveillance po-
tential. In contrast, atomic visual action detection has suc-
cessfully recognized such activities in movie data. However,
adapting it to ultra-high resolution aerial videos is chal-
lenging because the target persons appear relatively tiny
from overhead views and are sparsely located. Addition-
ally, existing atomic visual action detection methods are
based on single-label actions. However, people can perform
multiple actions simultaneously, so a multi-label approach
would be more appropriate. To address these problems, we
propose a multi-label action detection/recognition frame-
work using a hybrid attention vision transformer (HAT)
to recognize recurrent actions more efficiently. Addition-
ally, a multi-scale, multi-granularity module inside the ac-
tion recognition transformer block extracts relevant fea-
tures without redundancy. Using the Okutama Dataset, we
demonstrated that our method performs better than existing
state-of-the-art methodologies for interpreting aerial videos
for human activity.

1. Introduction

Surveillance cameras are commonly deployed in cities to
ensure public safety, but not in sparsely populated regions
with limited safety concerns. Drones may monitor such
areas periodically because there are no tall trees or build-
ings. The mobility of drones allows them to monitor a wide
range of sparsely populated areas, and it is advantageous to
analyze the surveillance videos automatically to determine

Figure 1. Overview of the proposed system that uses ultra-high-
resolution aerial images acquired by drones to detect and recog-
nize complex recurrent actions. As a result of the detected actions,
attention maps are generated, highlighting the target individuals to
estimate the action label.

”who is doing what?”. According to atomic visual action,
people can discover their spatiotemporal location and ac-
tions in videos at each frame to determine human actions
[14]. However, aerial drone videos make accurate detec-
tion challenging due to their unique characteristics, such as
ultra-high-resolution images, tiny object appearance, sparse
location, and fast movements. To streamline action detec-
tion in aerial videos, we propose a novel framework that
seamlessly integrates object detection, multi-object track-
ing, and action recognition (illustrated in Figure 1).

Action detection in surveillance videos relies heavily on
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object detection, the detected object’s quality, and effective
motion capturing. Though drone-captured aerial images
are usually ultra-high-resolution, the objects typically cap-
tured from a distance appear tiny with unusual backgrounds,
making them hard to detect using simple object detection
methods [8, 21, 22, 28]. Furthermore, processing such high-
resolution imagery is computationally expensive. Down-
sampling is typically used to reduce the computational bur-
den; it further reduces the spatial resolution of the objects,
thereby decreasing performance. Alternatively, some exist-
ing methods use a sliding window to make patches from an
image before object detection. In contrast, approaches crop
an ultra-high-resolution aerial image into smaller patches
(proposals) before object detection [10, 16, 26]. Object de-
tection performance has improved significantly with the use
of these methods. However, these methods are inefficient
when the target objects are sparsely located. To address the
issue, we utilize regional locations by exclusively selecting
areas that contain the target objects. This method may result
in fewer selected areas compared to using a sliding window
in situations where people are sparsely located. However,
it’s important to note that atomic visual actions (AVA) de-
tection provides estimates of actions for each frame, which
essentially identifies ”who is doing what.”

To gather information about a person’s activity, it is im-
portant to consider their spatiotemporal context. Typically,
spatiotemporal tubes are utilized in recent models for this
purpose [13,17]. However, in drone-recorded aerial videos,
the person being recorded may appear to shift positions due
to the drone’s movement, even though they are staying in
the same location. To avoid this issue, we use a multi-object
tracking method to create spatiotemporal tubes that capture
the person’s movements over time. We then align the spa-
tiotemporal tube to its first frame to eliminate any discrep-
ancies caused by the drone’s movement. We focus on the
target person within recurrent tubes to ensure accurate ac-
tion recognition. Unlike potentially inconsistent observa-
tions of other objects, we assume consistent observation of
the target person throughout their tube.

We propose a novel hybrid attention vision transformer
(HAT) that utilizes multi-scale and multi-granularity fusion.
This approach efficiently recognizes recurrent actions per-
formed by the target person. Our team’s contributions are
threefold. Firstly, we propose a new framework for multi-
label action detection and recognition on aerial surveillance
videos that outperforms existing baseline methods based on
experiments. Secondly, we present a vision transformer-
based action recognition model that utilizes a fused vision
strategy of multi-scale and granularity. Thirdly, we intro-
duce a new granularity layer that combines coarse-grained
and fine-grained information to more efficiently and quickly
identify human action. Furthermore, we conducted exten-
sive experiments and evaluated our model on the widely

used Okutama recurrent action recognition dataset [4] and
achieved higher accuracy than existing models, making it
more efficient for multi-label action detection and recogni-
tion tasks. An overview of the proposed approach is illus-
trated in Figure 1

2. Related Work
Detecting small objects is a challenging problem, and

many studies have attempted to address it. There are two
main scenarios for small object detection and recognition.
In one scenario, the image has low resolution, resulting in
tiny objects containing only a few pixels. Techniques like
amplification [15], and resolution enhancement have been
applied to improve detection performance [3]. Another
scenario contains many pixels on a relatively small area
of the image, which makes it appear relatively small, al-
though it contains numerous pixels. High-resolution aerial
images exemplify this second scenario, where object detec-
tion and recognition directly on the original image are pre-
ferred. While prior approaches have utilized patch-based
object detection for aerial videos for some time [10,16,26],
the recent advancement lies in jointly employing region pro-
posals and clustering to reducing the number of necessary
patches, particularly when dealing with sparsely distributed
objects [19].

Density map regression on downsized aerial images can
learn promising regions likely containing objects. After
defining an image size, these regions can be further clus-
tered based on their relative distances. An effective clus-
tering strategy should satisfy two key conditions - first, re-
ducing the number of images, and second, completely pre-
serving the object’s appearance. However, these two condi-
tions can somewhat conflict. Solely meeting the first condi-
tion may result in partially cropped objects, while assigning
each object to an individual patch can satisfy the second
condition but introduce redundant patches.

Previous work used grid-based clustering, but it is con-
strained by predefined grid size and location, potentially re-
sulting in incomplete object cropping and affecting bound-
ing box detection [19]. To address this issue, we utilize peak
point Non-Maximum Suppression and hierarchical cluster-
ing in our pre-processing steps to ensure each object is fully
contained in at least one frame.

Architectures based on Transformer models [31] have
emerged recently. Beyond its natural language processing
roots, the Transformer excels at capturing long-range de-
pendencies and modeling complex relationships. People
started exploring Transformer applications in computer vi-
sion after introducing Vision Transformer (ViT) in 2020,
which initially applied it to image classification [9]. This
method recognizes actions in videos by treating image se-
quences as temporally evolving frames, capturing both spa-
tial content and motion.
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Building upon the success of ViT as a backbone for ac-
tion recognition, the Swin Transformer (released in 2021)
introduces a novel computational strategy. This strategy
utilizes shifting windows to restrict self-attention calcu-
lations within local areas of the image, promoting effi-
ciency [23, 24]. TimeSFormer captures spatiotemporal fea-
tures from frame-level patches that use the main architec-
ture of ViT for video processing [6]. ViViT is a model that
uses Transformers to extract spatiotemporal tokens from
videos. It is a purely Transformer-based model with multi-
ple Transformer layers [2]. These models rapidly developed
and used for action detection and recognition [5, 30, 35].

However, due to the Transformer’s large size, recent re-
search focuses on reducing attention complexity to make
it more efficient. For example, MViT combines multi-scale
hierarchies with Transformers using lower input/channel di-
mensions, progressively increasing capacity at lower reso-
lutions [11,20]. Some studies, like Video Transformer Net-
work [25] and MoViNets [18], explore enhancing Trans-
former efficiency. These efforts aim to reduce compu-
tational/memory costs while maintaining performance for
real-time processing.

We were motivated by [12, 29] and multi-granularity
methods [37,38] in diverse domains. Therefore, we present
a new ViT with a Multi-Scale and Multi-Granularity Fused
vision strategy for action recognition in aerial video. This
design integrates a module within Transformer blocks to ef-
ficiently reduce secondary attention computations, result-
ing in lower computational costs and memory requirements
while maintaining performance.

3. Proposed Architecture
Our proposed framework coherently generates frames,

bounding boxes, and sequence tubes processed by trans-
formers with multi-scale fusion to recognize multiple ac-
tions per frame (as illustrated in Fig. 2). Using a frame 2160
x 3840 input size, our system first downsamples frames to
1280×720. The modified YOLOv8p object detector, which
is based on YOLOv8 [27], then generates bounding boxes
for each detected person within the frames. A multi-person
tracker connects the bounding boxes to form recurrent tubes
over successive frames. Sample frames from the tracks are
then input into our proposed action recognition module to
obtain corresponding visual features. A multi-granularity
hybrid attention module leverages these features to gener-
ate fused attention maps at multiple scales and granulari-
ties, focusing on target persons’ actions. A second trans-
former block finally uses the concatenated attention maps
and their multiplied transformed features to estimate multi-
label action classes, as visually illustrated in Fig. 2. In
summary, our end-to-end framework performs multi-label
action detection within ultra-high resolution aerial surveil-
lance videos by coherently processing frames, generating

bounding boxes and recurrent tubes, and recognizing mul-
tiple concurrent activities via a multi-scale feature fusion
transformer.

3.1. Proposed Action Recognition Module

A multiple-object tracking method was used in our ap-
proach to link bounding boxes into recurrent tubes, called
DeepSort [33]. In Deep SORT, two descriptors (IoU and ap-
pearance) are combined with a Kalman filter to calculate bi-
partite bounding boxes. To overcome occlusions and long-
time tracking problems, an appearance descriptor is derived
from a CNN network trained by a Cosine Softmax Classi-
fier [32]. In the next step, we use a novel module called
Action Recognition to obtain the actions of each person at
each frame once we have obtained their recurrent tubes. We
present a novel Transformer unit that utilizes a combined
multi-scale and multi-granularity fused vision-based strat-
egy. As a result of combining multiple scales and granular-
ities, a large amount of salient information is saved, both in
terms of sample length and sequence length.

In the proposed actions recognition module, we utilize
the transformer blocks to extract the salient information
through a novel architectural paradigm to process parallel
and extract global context across the entire input that is ef-
fective in the computer vision field. The attention part of
the transformer quantifies how well the query matches parts
of the input, guiding the model to focus on salient features.
This significantly enhances the ability to recognize perti-
nent visual patterns and objects by simultaneously model-
ing inter-dependencies across the entire scene or image con-
tent.

3.1.1 Proposed Multi-Granularity Attention Module

Current transformer models heavily depend on direct at-
tention computations to recognize actions. This approach
can be extremely naive, particularly with multi-label ac-
tion detection and recognition complexity. To overcome
limitations in existing approaches, we introduce a novel vi-
sion transformer unit called the Multi-Granularity Attention
Module (MGAM). MGAM combines two strategies for ef-
ficiency: multi-scale processing and multi-granularity sam-
pling.

Multi-scale processing: This approach shortens the se-
quence length required for self-attention calculations. It
starts with the original input resolution and smaller chan-
nel sizes. It then hierarchically increases the channel ca-
pacity while transforming the spatial resolution into one-
dimensional signals through patches. Pooling operations
are applied on intermediate tensors to capture information
from different spatial scales.

Multi-granularity sampling: This strategy focuses on
the most informative parts of the data. MGAM employs a
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Figure 2. The proposed architecture begins with each ultra-high-resolution aerial image (3840 × 2160), wherein the system converts the
video into frames. Subsequently, detectors are applied to these selected frames to produce precise bounding boxes for each person. These
bounding boxes are then interconnected as tubes using a multi-person tracking algorithm. The frames are sampled from these tubes and
fed to the action recognition module to generate attention maps, highlighting the target individuals to estimate multi-label action classes.

scale-granularity fusion module with score assignment and
inverse transformation. This allows the model to select only
the most critical cues for subsequent calculations within the
multi-scale framework. Relative positional information is
further incorporated by adding relative positions to the self-
attention computation, considering the distance between to-
kens within the attention matrix.

Further enhancing efficiency, the multi-granularity com-
putation employs a two-part approach: coarse-grained and
fine-grained. Coarse-grained computation operates di-
rectly on the attention matrix within the multi-scale mod-
ule, and Fine-grained computation involves performing
attention computation followed by operations on the out-
put tokens. The multi-granularity module at the core of this
computation calculates the significance score of each input
token. This score serves as the basis for differentiating be-
tween coarse- and fine-grained levels of analysis.

The significance score SJ uses the self-attention matrix.
Each row in this matrix sums to 1 due to the attention mech-
anism, and the output token is obtained through a weighted
summation of the attention weights. These weights repre-
sent the importance of input tokens relative to output tokens.
The computation of output tokens at the self-attention level
heavily relies on the attention matrix, denoted by A, and
the pooling operator, denoted by p(V ; ΘV ). The formula
for calculating the attention significance score is presented
as follows:

SJ = A1,J × ∥P (VJ ; ΘVJ
)∥

×
∑L′

I=2 A1,I × ∥p(VI ; ΘVI
)∥

I
, J ∈ {2...l′}

(1)

The output token from the attention layer is passed
through a Hybrid granularity layer to calculate the signif-
icance score as:

I(x
(t)
j )I(xj) =

n∑
i=1,i̸=j

Ai,j =
1

h

h∑
t=1

I(x
(t)
j ) (2)

Following the significance score calculation, a two-stage
process integrates coarse and fine granularities through
sampling. The fine-grained attention reduction leverages
the attention map to eliminate redundant output tokens us-
ing the significance scores. Similarly, granularity fusion re-
duction reduces the length of the token sequence by focus-
ing on tokens with less informative content. Sampling em-
ploys the Cumulative Distribution Function (CDF) based on
the normalized significance scores to interpret probability
distribution. The CDF allows us to sample tokens based on
their importance. The inverse transform method is then ap-
plied using the following formula to perform the sampling:

CDFI =

J=I∑
J=2

SJ (3)

Ψ(K) = CDF−1(K), K ∈ [0, 1] (4)

To obtain the desired K samples, we employ a two-step
approach that avoids excessive randomization often encoun-
tered in the Top-k method, especially with a large K value.
We deviate from a purely random approach and opt for a
fixed sampling strategy. This involves selecting k values
from a pre-defined set: K = {2K1 , 2K3 , ..., 2K2K−1}. Since
the significance score function (Ψ(.)) operates on real num-
bers, we identify the index of the token with the closest
significance score to each chosen k value. This approach
mitigates potential issues associated with exact matches in
a continuous domain.

Following this sampling process, we obtain a refined at-
tention matrix, AS ∈ R(K′+1)×(N+1), by selecting the cor-
responding rows of the original attention matrix based on
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the chosen indices. Finally, the output token is computed
using the following formula:

O = ASP (V ; ΘV ) + P (q; Θq) (5)

Building upon the significance score calculation (Equa-
tion (2)), we leverage this information to categorize tokens
at the individual level. This categorization distinguishes be-
tween more informative and less informative tokens within
the sequence. Let’s denote the sequence of input token vec-
tors as Xcls ⊕ X . Here, X = [X1, X2, ..., XS ] represents
the length of the output token sequence after the adaptive
sampling step in the previous section.

We employ a Top-k approach to identify the top K to-
kens with the maximum significance scores (Equation (2)).
These tokens denoted as Xin, form the set of more infor-
mative tokens and have dimensions Xin ∈ RK×D. The re-
maining tokens with lower significance scores are grouped
into a separate sequence, denoted as Xlow, representing less
informative tokens. This sequence has dimensions Xlow ∈
R(K′−K)×D, where K ′ is the total number of unique in-
dices selected after sampling. Unlike pruning operations
that completely remove uninformative tokens, our approach
retains them in the sequence Xlow.

X ′
low = pool(Xlow) (6)

OR average weighted pooling:

α · xkX
′
low = softmax(I(xlow)) = pool(αXlow) (7)

The resulting sequence incorporates informative and less
informative tokens following the token classification and
aggregation steps. The length of the token sequence be-
comes [xcls ⊕Xin ⊕X ′

low] after granularity mixing.
where Xlow′ ∈ R(K′−K)′ ×D represents the aggregated

version of sequence Xlow
This process effectively reduces the original sequence

length while preserving essential information.
To determine the optimal number of informative tokens

(K), we introduce a new set of learnable parameters, de-
noted by R = [R1, ..., RS ]. These parameters are con-
strained to the range [0, 1] through a uniform distribution.
The learnable parameter RI associated with each token XI

influences its representation in the final sequence. Here’s
how:

• If RI is close to 1, the token’s influence (XI ) remains
relatively unchanged.

• If R=I is closer to 0, the token’s influence is scaled
down, emphasizing the focus on more informative to-
kens.

The specific value of Kl for the lth layer is determined by
the following formula:

Kl = ceil(sum(l;R))× S.K.Kl+1 ≤ kl (8)

The final tensor feeds further to the final transformer
block for the final prediction and recognition of recurrent
actions in the input sequence, as mentioned in Fig. 2

3.1.2 Proposed Action Module Configuration

Our proposed multi-granularity hybrid module builds
upon the MViTv2 [20] architecture with related
stages/components. Every stage utilizes transformer
blocks with a channel of a consistent size. The input data
undergoes a preprocessing step, which is divided into small
patches and then cropped using an inception approach.
This processed data is then projected into specific cubes
before feeding into the network. As the network progresses
through the four scale stages, the spatial resolution of
the features is reduced while the channel dimension is
concurrently increased. Importantly, pooling operations
only affect the feature maps, excluding the processed class
token information.

The network’s attention strategy employs several heads
that grow proportionally with the increasing channel dimen-
sion. Our innovative multi-granularity module is designed
to seamlessly integrate with these scale modules. Addition-
ally, a specific sampling parameter is set within the attention
layer for optimal performance. Finally, a learnable param-
eter sequence is utilized to determine the most informative
tokens at each level, enhancing the overall efficiency of the
model.

4. Experimental Setup & Results
4.1. Dataset

The Okutama-action [4] is a large and popular dataset,
enabling the evaluation and experimentation of a multi-label
visual action detection system for aerial videos 3. We uti-
lized the Okutama dataset for our proposed action detection
and recognition system. This dataset consists of 43 min-
utes of footage recorded by two drones in the morning and
evening, meticulously annotated with bounding boxes en-
compassing relevant subjects in each frame. Notably, the
annotations encompass 12 distinct categories of human ac-
tions, such as Handshaking, Hugging, Reading, Drinking,
etc. Significantly, the multi-label nature of the annotations
allows for the assignment of multiple action classes to a sin-
gle subject simultaneously, accurately reflecting real-world
scenarios where individuals may engage in multiple actions
concurrently. For instance, a person could be labeled with
both ”Reading” and ”Sitting” actions simultaneously. By
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Figure 3. Sample frames from Okutama drone action detection
dataset [4]

leveraging this comprehensive and representative dataset,
the researchers aim to develop and validate a robust multi-
label visual action detection system tailored for aerial video
analysis.

4.2. Experimental Details

The experimental setup and implementation details for
the proposed multi-label visual action detection system us-
ing the Okutama-action dataset are meticulously outlined
[4]. Adhering to previous work, the dataset is divided into
a training set comprising 33 aerial videos and a testing set
with 10 aerial videos. Crucial hyper-parameters, such as the
peak point confidence threshold and distance threshold, are
determined through validation experiments, ensuring opti-
mal performance. To train the action recognition module
effectively, we employ a two-pronged approach. First, we
sample 32 ground-truth recurrent tubes from each action
class to ensure the model learns diverse action sequences.
In order to significantly enhance the performance of our
machine learning model, we confidently employ the Adam
optimizer coupled with a decaying learning rate sched-
ule. This optimizer helps the model converge efficiently
while the decaying learning rate prevents overfitting. Ad-
ditionally, we leverage data augmentation techniques such
as flipping, rotation, resizing, and cropping. These tech-
niques artificially expand the training dataset, improving
the model’s generalization ability to unseen data. Finally,
the pre-normalization setup with residual connections and
layer normalization further aids in training by facilitating
the flow of gradients and enhancing model stability. Re-
markably, despite the challenges posed by large-size aerial
videos, the framework ingeniously decomposes the prob-
lem into multiple simpler tasks, enabling a plug-and-play
model implementation on a single NVIDIA TITAN X GPU.
This modular approach streamlines the training process and
demonstrates the system’s scalability and efficiency in han-
dling complex aerial video data.

4.3. Ablation Study

The experimental evaluation process is rigorously de-
signed to analyze the proposed multi-scale and multi-
granularity action recognition module’s performance on the
targeted Okutama dataset. The model undergoes random
initialization and training on the dataset in typical scenar-
ios. However, the researchers conduct ablation experiments
to gain comprehensive insights, meticulously examining the
Top-1 accuracy and complexity metrics. The multi-head
pooled self-attention mechanism is a critical design element
within the multi-scale module. Here, the selection of the
pooling function is paramount for optimal performance. Af-
ter a comprehensive evaluation, we have determined that
channel-wise convolution with layer normalization pooling
is the most effective approach among the three methods ex-
amined.

Average Pooling: This method reduces the sequence
length by averaging elements within a sliding window.
However, our experiments revealed that average pooling
significantly hinders performance (by 2.3 % and 3.5 % com-
pared to max pooling and convolutional pooling, respec-
tively) as it can overlook crucial information within the se-
quence. Channel-wise Convolution with Layer Normal-
ization Pooling: This method emerged as the most effec-
tive approach, demonstrably outperforming both max pool-
ing and average pooling. As shown in Table 1, applying
channel-wise convolution with layer normalization pooling
resulted in a noteworthy 1.2 % improvement compared to
max pooling.

Table 1. Ablation study about the impact of Pooling Function
(Max, Average, ConvLN) on Accuracy (Acc)

Kernel Size (s+1) Pooling Function Acc

s+1 Max 54.22
s+1 Average 57.44
s+1 Conv 58.85
3x3x3 ConvLN 60.76

We investigate coarse-grained pooling within the multi-
granularity module’s granularity fusion layer to optimize
the system for real-time applications. Pooling aggregates
tokens processed coarsely. We explore two methods, av-
erage pooling and weighted average pooling, and evalu-
ate their effectiveness through ablation studies. Using one
and five units, we test different configurations for coarse-
grained units in the mixed-granularity setting. Pooling re-
duces the computational sequence length by aggregating
coarsely sampled tokens while retaining information. Ex-
periments show that weighted average pooling achieves 1.4
% better than average pooling. This is because it consid-
ers each token’s importance, leading to a more comprehen-
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Figure 4. Visual result examples of the proposed multi-label action detection/recognition system.

sive representation of the input sequence and better feature
capture. Additionally, the later stages of coarse-grained
sampling compensate for reducing the fine-grained atten-
tion matrix, providing the model with more recognition fea-
tures. This configuration improves performance by 2.8 %
compared to using one unit (See Table 2).

Table 2. Ablation study about the impact of Aggregation Method
(Average, Weighted Average) on Performance

Pool Method Acc

Avg Pool-1 59.10
Avg Pool-5 59.53
Weight Avg-1 59.55
Weight Avg-5 60.76

We analyze the impact of the attention significance score
within our model’s multi-scale mechanism. This score de-
termines which tokens are most important. We compared
several methods to calculate this score: random selection,
summing weights of self-attention for all tokens, and using
the attention weights specifically for recognition. We found
that using the attention weights yielded the best results (as
shown in Table 3). This approach identifies tokens signif-
icantly influencing the final classification because classifi-
cation tokens directly contribute to category selection. By
focusing on these crucial tokens, the model becomes more
sensitive to key features, ultimately enhancing its perfor-
mance.

In our ablation study for efficient token selection within
the model, we evaluated three approaches: Top-k subsam-
pling, inverse transform sampling, and a novel combined
method utilizing the mixed granularity layer. Top-k sub-
sampling, while fast, discards potentially valuable tokens

Table 3. Ablation study on Attention Significance Score Strategies
and their Influence on Model Accuracy

Scoring Strategy Acc

Random 52.63
Self-Attention 56.30
Proposed 60.76

and lacks flexibility in later stages, restricting overall per-
formance. Conversely, inverse transform sampling retains
a broader range of information, benefiting lower layers and
the final classification, but may not be the most computa-
tionally efficient. To address this trade-off, we propose a
combined method. It leverages the mixed granularity layer
to replace discarded tokens from Top-k with more efficient
computational units. This ingenious approach, validated
through ablation studies (refer to dedicated section), allows
us to reduce computation without sacrificing significant in-
formation, ultimately enhancing model efficiency.

4.4. Discussion and Comparison

This section analyzes the performance of our model on
the Okutama action recognition dataset (Table 3). We be-
gin by evaluating a baseline model using an MViT-2 mod-
ule [20] to capture spatial features without the proposed
multi-granularity module. This achieves 48.34 % accuracy,
exceeding previous baseline results on Okutama. Introduc-
ing the multi-granularity module significantly improves per-
formance. By feeding the network ”fused” frames instead
of originals, the model achieves 60.76 % accuracy, a 25.26
% increase over the previous state-of-the-art and an 11.42
% improvement from the baseline. This suggests the mod-
ule effectively focuses on action regions while disregarding
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Table 4. Significant Performance Gains on Okutama Dataset [4]: Comparison with Prior Work

Method Year Backbone Accuracy (%)

AARN [34] 2019 C-RPN + YOLOv3-tiny 33.75
Lite ECO [39] 2018 BN-Inception + 3D-Resnet-18 36.25
13D(RGB) [7] 2017 3D CNN backbone 38.12
3DCapsNet-DR [36] 2021 3D CNN + Capsule 39.37
3DCapsNet-EM [36] 2021 3D CNN + Capsule 41.87
DroneCaps [1] 2022 3D CNN + BVC + Capsule 47.50
Ours Baseline 2024 MViTv2 48.34
Ours (HAT) 2024 MViTv2 60.76

irrelevant background information.
Our revolutionary approach achieves 60.76 % accuracy

on Okutama, surpassing existing methods. The granular-
ity attention module with scoring and inverse transforma-
tion allows the network to concentrate on action areas and
ignore background noise, unlike previous 3D CNN-based
methods [1]. Additionally, our plug-and-play design offers
superior computational efficiency compared to prior works.
This efficient and accurate model, capable of distinguish-
ing similar classes, paves the way for real-time applications
involving multi-label action recognition with recurrent tube
processing. A visual illustration of the result is shown in
Fig 4.

While our model significantly reduces computation and
improves recognition compared to existing methods, there’s
room for further development. Firstly, for challenging
datasets like Okutama, there’s still potential to improve
recognition accuracy. Secondly, the current model focuses
solely on action recognition and could be adapted to broader
video understanding tasks. Finally, incorporating additional
performance metrics would provide a more comprehensive
evaluation. Our future work will address these limitations.
We aim to refine the model for even higher accuracy on de-
manding datasets. Additionally, we plan to explore the ap-
plication of our proposed modules to diverse video under-
standing domains.

5. Conclusion

This work addresses the challenge of recurrent action de-
tection and recognition in aerial surveillance videos, par-
ticularly for sparsely populated areas where public safety
is a concern. We propose a novel multi-label framework
that offers several advantages. Firstly, it allows for flex-
ible replacement of detection and tracking modules based
on specific needs. This enables training and inference of
all modules on a single system, making it more adaptable
than existing solutions for multi-label action detection in
aerial videos. Furthermore, our framework tackles the cru-
cial challenge of improving efficiency in multi-label action
recognition by employing a multi-level refinement strat-

egy that integrates multi-scale and multi-granularity mech-
anisms.

This strategy leverages attention and token-based ap-
proaches to optimize performance in real-world scenarios.
By introducing multi-granularity selection on top of the
multi-scale approach, we shorten the computational length
of the sequence effectively, leading to increased efficiency
for action recognition tasks. Our proposed method has
been extensively tested, and the results of our experiments
demonstrate its effectiveness. We envision its future devel-
opment for a wider range of application scenarios, where a
balance between retaining feature information and reducing
computational costs remains paramount.
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