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Abstract

This paper describes the 6th Affective Behavior Analy-
sis in-the-wild (ABAW) Competition, which is part of the
respective Workshop held in conjunction with IEEE CVPR
2024. The 6th ABAW Competition addresses contemporary
challenges in understanding human emotions and behav-
iors, crucial for the development of human-centered tech-
nologies. In more detail, the Competition focuses on af-
fect related benchmarking tasks and comprises of five sub-
challenges: i) Valence-Arousal Estimation (the target is
to estimate two continuous affect dimensions, valence and
arousal), ii) Expression Recognition (the target is to recog-
nise between the mutually exclusive classes of the 7 ba-
sic expressions and ’other’), iii) Action Unit Detection (the
target is to detect 12 action units), iv) Compound Expres-
sion Recognition (the target is to recognise between the 7
mutually exclusive compound expression classes), and v)
Emotional Mimicry Intensity Estimation (the target is to
estimate six continuous emotion dimensions). In the pa-
per, we present these Challenges, describe their respective
datasets and challenge protocols (we outline the evaluation
metrics) and present the baseline systems and top perform-
ing teams’ per Challenge, as well as their obtained perfor-
mance. More information for the Competition can be found
in: https://affective-behavior—analysis-—
in-the-wild.github.io/6th.

1. Introduction

The 6th Affective Behavior Analysis in-the-wild (ABAW)
Workshop and Competition continues its tradition of fos-
tering interdisciplinary collaboration by bringing together
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experts from various fields including academia, industry,
and government. This workshop, held in conjunction with
IEEE Computer Vision and Pattern Recognition Confer-
ence (CVPR) 2024, aims to delve into the analysis of affec-
tive behavior in real-world settings, a critical aspect for the
development of human-centered technologies such as HCI
systems and intelligent digital assistants. By understand-
ing human emotions and behaviors, machines can better en-
gage with users irrespective of contextual factors like age,
gender, or social background, thereby enhancing trust and
interaction in real-life scenarios.

The ABAW Competition, an integral part of the work-
shop, is split into five Challenges.

The first Challenge is the Valence-Arousal (VA) Estima-
tion one; the target of this Challenge is to estimate the two
continuous affect dimensions of valence and arousal in each
frame of the utilized Challenge corpora. Valence charac-
terises an affective state on a continuous scale from positive
to negative (in other words from -1 to 1). Arousal charac-
terises an affective state on a continuous scale from active
to passive (in other words from -1 to 1).

Only uni-task solutions are accepted for this Challenge.
Teams are allowed to use any -publicly or not- available
pre-trained model (as long as it has not been pre-trained
on the utilized in this Challenge corpora, Aff-Wild2). The
pre-trained model can be pre-trained on any task (e.g., VA
estimation, Expression Recognition, AU detection, Face
Recognition). However when the teams are refining the
model and developing the methodology they should not use
any other annotations (expressions or AUs): the method-
ology should be purely uni-task, using only the VA anno-
tations. This means that teams are allowed to use other
databases’ VA annotations, or generated/synthetic data, or
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any affine transformations, or in general data augmentation
techniques for increasing the size of the training dataset.

For this Challenge, an augmented version of the Aff-
Wild2 [34, 3642, 44, 106] is used. This corpora is audio-
visual (A/V), in-the-wild and in total consists of 594 videos
of around 3M frames of 584 subjects.

The second Challenge is the Expression (Expr) Recog-
nition one; the target of this Challenge is to recognise be-
tween eight mutually exclusive classes in each frame of the
utilized Challenge corpora; these classes are the 6 basic ex-
pressions (i.e., anger, disgust, fear, happiness, sadness and
surprise), the neutral state and a category ’other’ that de-
notes affective states that are not included in the neutral
state or in the 6 basic expressions.

Only uni-task solutions are accepted for this Challenge.
Teams are allowed to use any -publicly or not- available
pre-trained model (as long as it has not been pre-trained
on the utilized in this Challenge corpora, Aff-Wild2). The
pre-trained model can be pre-trained on any task (e.g., VA
estimation, Expression Recognition, AU detection, Face
Recognition). However when the teams are refining the
model and developing the methodology, they should not
use any other annotations (VA or AUs): the methodology
should be purely uni-task, using only the Expr annotations.
This means that teams are allowed to use other databases’
Expr annotations, or generated/synthetic data (e.g. the data
provided in the ECCV 2022 run of the ABAW Challenge
[33]), or any affine transformations, or in general data aug-
mentation techniques (e.g., [67]) for increasing the size of
the training dataset.

For this Challenge, the Aff-Wild2 is used. This corpora
is audiovisual (A/V), in-the-wild and in total consists of 548
videos of around 2.7M frames.

The third Challenge is the Action Unit (AU) Detection
one; the target of this Challenge is to detect which of the
12 Action Units are activated in each frame of the utilized
Challenge corpora. Action Units refer to a set of facial mus-
cle movements or configurations. The action units that have
been selected for the purposes of this Challenge are the fol-
lowing: AUI1, AU2, AU4, AU6, AU7, AU10, AU12, AU1S,
AU23, AU24, AU2S5 and AU26.

Only uni-task solutions are accepted for this Challenge.
Teams are allowed to use any -publicly or not- available
pre-trained model (as long as it has not been pre-trained
on the utilized in this Challenge corpora, Aff-Wild2). The
pre-trained model can be pre-trained on any task (e.g., VA
estimation, Expression Classification, AU detection, Face
Recognition). However when the teams are refining the
model and developing the methodology, they should not
use any other annotations (VA or Expr): the methodology
should be purely uni-task, using only the AU annotations.
This means that teams are allowed to use other databases’
AU annotations, or generated/synthetic data, or any affine

transformations, or in general data augmentation techniques
(e.g., [67]) for increasing the size of the training dataset.

For this Challenge, the Aff-Wild2 is used. This corpora
is audiovisual (A/V), in-the-wild and in total consists of 542
videos of around 2.7M frames.

The fourth Challenge is the Compound Expression (CE)
Recognition one; the target of this Challenge is to recognise
between the 7 mutually exclusive classes in each frame of
the utilized Challenge corpora. These classes are the fol-
lowing compound expressions: Fearfully Surprised, Hap-
pily Surprised, Sadly Surprised, Disgustedly Surprised, An-
grily Surprised, Sadly Fearful and Sadly Angry.

Teams are allowed to use any -publicly or not- avail-
able pre-trained model and any -publicly or not- available
database (that contains any annotations, e.g. VA, basic or
compound expressions, AUs).

For this Challenge, a part of C-EXPR-DB [35] database
is used, which consists of 56 videos in total. C-EXPR-DB is
an audiovisual (A/V) in-the-wild database and in total con-
sists of 400 videos of around 200K frames.

The final fourth challenge is the Emotional Mimicry In-
tensity (EMI) Estimation challenge where emotional mim-
ics are explored. Participants are asked to predict six emo-
tional dimensions using a multi-output regression approach.
The following emotional expressions have been used:
” Admiration”, ”Amusement”, "Determination”, "Empathic
Pain”, ”Excitement”, and "Joy”.

For the purposes of this challenge, we use the audio-
visual and in-the-wild HUME-Vidmimic2 dataset, a com-
prehensive collection derived from ’in-the-wild’ settings,
which contains more than 17000 videos totaling over 30
hours from the United States, similar to our first version [7].

The sixth ABAW Competition, which is part of the
respective Workshop to be held in conjunction with the
IEEE Computer Vision and Pattern Recognition Confer-
ence (CVPR) 2024 is a continuation of the successful se-
ries of ABAW Competitions held in conjunction with IEEE
CVPR 2023, ECCV 2022, IEEE CVPR 2022, ICCV 2021,
IEEE FG 2020 and IEEE CVPR 2017, with the participa-
tion of many teams coming from both academia and in-
dustry, from all across the world [1, 4-6, 9—14, 16-20, 22—
31,43, 45, 47-52, 54-56, 58-61, 63-65, 68, 70-73, 73, 75—
77, 83, 84, 87-92, 94-100, 108-113, 115, 116, 116, 117,
119, 119].

2. Competition Corpora

In the following, we present a brief synopsis of each Chal-
lenge’s dataset. For a more comprehensive understanding,
readers are encouraged to consult the original documenta-
tion. Additionally, we detail the pre-processing steps under-
taken for the first three Challenges, which involve cropping
and aligning all image-frames. These have been utilized in
our baseline experiments.
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2.1. Valence-Arousal Estimation Challenge

This Challenge’s dataset comprises 594 videos, an expan-
sion of the Aff-Wild2 database, annotated in terms of va-
lence and arousal. Notably, sixteen videos feature two sub-
jects, both of whom are annotated. In total, annotations
are provided for 2,993,081 frames from 584 subjects; these
annotations have been conducted by four experts using the
methodology outlined in [8]. Valence and arousal values are
continuous and range in [—1,1]. The 2D Valence-Arousal
histogram of annotations is visualized in Figure 1.
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Figure 1. Valence-Arousal Estimation Challenge: 2D Valence-
Arousal Histogram of Annotations in Aff-Wild2

Aff-Wild2 is split into training, validation and testing
sets, in a subject independent manner, ensuring each subject
appears exclusively in one set. The training, validation and
testing sets consist of 356, 76 and 162 videos, respectively.

The Train and Validation data along with their cor-
responding annotations are provided to the participating
teams. The unlabeled test data are provided to the partici-
pating teams who will upload their test set predictions to an
evaluation server. Participating teams are allowed to submit
up to five sets of predictions for this challenge.

2.2. Expression Recognition Challenge

In this Challenge, the dataset consists of 548 videos from
Aff-Wild2, annotated for the six basic expressions, neu-
tral state, and an ’other’ category representing non-basic
expressions. Seven videos feature two subjects, both of
whom are annotated. In total, annotations are provided for
2,624,160 frames from 437 subjects. Annotation is con-
ducted by seven experts on a frame-by-frame basis. Table 1
presents the distribution of expression annotations.
Aff-Wild2 is split into training, validation and testing
sets, in a subject independent manner. Aff-Wild2 is split

Table 1. Expression Recognition Challenge: Number of Anno-
tated Images for each Expression

Expressions || No of Images

Neutral 468,069
Anger 36,627
Disgust 24,412
Fear 19,830
Happiness 245,031
Sadness 130,128
Surprise 68,077
Other 512,262

into training, validation and testing sets, in a subject inde-
pendent manner. The training, validation and testing sets
consist of 248, 70 and 230 videos, respectively.

The Train and Validation data along with their cor-
responding annotations are provided to the participating
teams. The unlabeled test data are provided to the partici-
pating teams who will upload their test set predictions to an
evaluation server. Participating teams are allowed to submit
up to five sets of predictions for this challenge.

2.3. Action Unit Detection Challenge

The dataset for this Challenge comprises 542 videos anno-
tated for 12 AUs corresponding to the inner and outer brow
raiser, the brow lowerer, the cheek raiser, the lid tightener,
the upper lip raiser, the lip corner puller and depressor, the
lip tightener and pressor, lips part and jaw drop. The exact
utulized AUs along with their corresponding actions can be
seen in Table 2. Annotations are provided for 2,627,632
frames from 438 subjects. A semi-automatic annotation
procedure, involving both manual and automatic annota-
tions, is employed. Table 2 further details the annotated
AU distribution.

Aff-Wild2 is split into training, validation and testing
sets, in a subject independent manner. The training, vali-
dation and testing sets consist of 295, 105 and 142 videos,
respectively.

The Train and Validation data along with their cor-
responding annotations are provided to the participating
teams. The unlabeled test data are provided to the partici-
pating teams who will upload their test set predictions to an
evaluation server. Participating teams are allowed to submit
up to five sets of predictions for this challenge.

2.4. Compound Expression Recognition Challenge

For this Challenge, a part of C-EXPR-DB database is used
(56 videos in total). C-EXPR-DB is audiovisual (A/V) in-
the-wild database and in total consists of 400 videos of
around 200K frames; each frame is annotated in terms of
12 compound expressions. For this Challenge, the follow-
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Table 2. Action Unit Detection Challenge: Distribution of AU
Annotations in Aff-Wild2

. . . Total Number
Action Unit # Action of Activated AUS

AU 1 inner brow raiser 301,102
AU 2 outer brow raiser 139,936
AU 4 brow lowerer 386,689
AU 6 cheek raiser 619,775
AU 7 lid tightener 964,312
AU 10 upper lip raiser 854,519
AU 12 lip corner puller 602,835
AU 15 lip corner depressor 63,230
AU 23 lip tightener 78,649
AU 24 lip pressor 61,500
AU 25 lips part 1,596,055
AU 26 jaw drop 206,535

ing 7 compound expressions will be considered: Fearfully
Surprised, Happily Surprised, Sadly Surprised, Disgustedly
Surprised, Angrily Surprised, Sadly Fearful and Sadly An-
ary.

Participants are provided with a part of C-EXPR-DB
database (56 videos in total with around 26,500 frames),
which is unannotated, and are required to develop their
methodologies (supervised/self-supervised, domain adapta-
tion, zero-/few-shot learning etc) for recognising the 7 com-
pound expressions in this unannotated part, in a per-frame
basis.

2.5. Emotional Mimicry Intensity Estimation Chal-
lenge

In the Emotional Mimicry Intensity Challenge (EMI-
Challenge), we investigate the study of emotional mimicry
by presenting a large-scale and in-the-wild dataset, HUME-
Vidmimic2, featuring 557 participants and over 30 hours of
audiovisual content. This dataset was collected in naturalis-
tic settings, with participants using their webcams to record
their facial and vocal responses by mimicking a “seed”
video and rating it in the range from O to 100.

The data preparation process involved a speaker-
independent partitioning of the dataset into training, vali-
dation, and test sets. Table 3 statistics of the dataset for
each partition. The train and validation data along with their
corresponding annotations are provided to the participating
teams. The unlabeled test data are provided to the partici-
pating teams who will upload their test set predictions to an
evaluation server.

Along with the data, the participants are provided the
faces of individuals within the videos that were detected
with the use of MTCNN [107] at a frequency of 6 frames
per second. In addition, features extracted from the raw

signals and thus enabling participants to use end-to-end ap-
proaches [78—82] are provided. Specifically, the feature sets
provided are the Vision Transformer (ViT) [3] for the faces
and Wav2Vec 2.0 [2] for the audio signals.

Partition Duration | # Samples
(HH:MM:SS)

Train 15:07:03 8072

Validation 9:12:02 4588

Test 9:04:05 4586

Table 3. HUME-Vidmimic?2 partition statistics.

2.6. Aff-Wild2 Pre-Processing:
Cropped-Aligned Images

Cropped &

Initially, all videos are segmented into individual frames,
after which they undergo processing using the RetinaFace
detector. This step aims to extract face bounding boxes and
five facial landmarks for each frame. Subsequently, the im-
ages are cropped based on the bounding box coordinates,
and these cropped images are provided to the participating
teams.

Using the five facial landmarks (representing two eyes,
the nose, and two mouth corners), a similarity transfor-
mation is applied. This transformation ensures alignment,
resulting in cropped and aligned images, which are also
shared with the participating teams. Ultimately, these
cropped and aligned images are utilized in our baseline ex-
periments.

All cropped and cropped-aligned images are resized to
dimensions of 112 x 112 x 3 pixels and their intensity values
are normalized to fall within the range of [—1, 1].

3. Evaluation Metrics Per Challenge
3.1. Valence-Arousal Estimation Challenge

The performance measure is the average between the Con-
cordance Correlation Coefficient (CCC) of valence and
arousal:

ccc, +CCa,
Pra=——o—"" (1)

CCC evaluates the agreement between two time series
(e.g., all video annotations and predictions) by scaling their
correlation coefficient with their mean square difference. In
this way, predictions that are well correlated with the anno-
tations but shifted in value are penalized in proportion to the
deviation. CCC takes values in the range [—1, 1], where +1
indicates perfect concordance and —1 denotes perfect dis-
cordance. The highest the value of the CCC the better the
fit between annotations and predictions, and therefore high
values are desired. CCC is defined as follows:
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where p,,, is the Pearson’s Correlation Coefficient, s, and
s, are the variances of all video valence/arousal annota-
tions and predicted values, respectively and s, is the cor-
responding covariance value.

3.2. Expression Recognition Challenge

The performance measure is the average F1 Score across all
8 categories (i.e., macro F1 Score):

expr
Zempr Fl

3 3)

Pexpr =

The F; score is a weighted average of the recall (i.e.,

the ability of the classifier to find all the positive samples)

and precision (i.e., the ability of the classifier not to label

as positive a sample that is negative). The F} score takes

values in the range [0, 1]; high values are desired. The F}
score is defined as:

P 2 X precision X recall
1 =

“)

precision + recall

3.3. Action Unit Detection Challenge

The performance measure is the average F1 Score across all
12 AUs. Therefore, the evaluation criterion for the Action
Unit Detection Challenge is:

Zau F](.lu

12 ®)

Pav =

3.4. Compound Expression Recognition Challenge

The performance measure is the average F1 Score across all
7 compound expressions. Therefore, the evaluation crite-
rion for the Compound Expression Recognition Challenge
is:

expr
Zea:pr Fl

- (6)

Pcep =
3.5. Emotional Mimicry Intensity Estimation Chal-
lenge

The performance measure is the average Pearson’s Correla-
tion Coefficient (p) across the 6 emotion dimensions:

6 i
Pemr = E:Z:Tlp (7N
Pearson’s Correlation Coefficient (p) takes values in the

range [—1, 1]; high values are desired.

4. Participating Teams’ and Baseline Methods’
Results

All baseline systems are built solely on existing open-source
machine learning toolkits to maintain result reproducibility.
TensorFlow is the chosen framework for implementing all
systems.

In this Section, we describe the baseline systems devel-
oped for each Challenge, as well as present the top-3 per-
forming teams per Challenge. Finally, we present both par-
ticipating teams’ and baseline methods’ obtained results.

4.1. Valence-Arousal Estimation Challenge

In total, 60 Teams participated in the VA Estimation Chal-
lenge. 23 Teams submitted their results. 10 Teams made in-
valid (incomplete) submissions, whilst surpassing the base-
line. 3 Teams scored lower than the baseline. 10 Teams
scored higher than the baseline and made valid submissions.

Table 4 presents the leaderboard and results of the partic-
ipating teams’ algorithms that scored higher than the base-
line and made valid submissions in the Valence-Arousal Es-
timation Challenge. Table 4 illustrates the CCC evaluation
of valence and arousal predictions on the Aff-Wild2 test set;
it further shows the baseline network results. The baseline
comprises a ResNet architecture with 50 layers, initially
trained on ImageNet (ResNet50). It incorporates a linear
output layer responsible for providing the final estimations
for valence and arousal.

For the sake of reproducibility, links to Github reposi-
tories detailing each participating team’s methodology are
available on the leaderboard published on the official web-
site of the 6th ABAW Competition.

Table 4. Valence-Arousal Estimation Challenge Results; *Total’ is
the average CCC between valence and arousal

\ Teams [ Total [[ CCC-V | CCC-A |
Netease Fuxi Al Lab [114] || 0.6721 || 0.6873 | 0.6569
DeepAVER [66] 0.5807 || 0.5418 | 0.6196
CtyunAT [118] 0.564 || 0.5223 | 0.6057
SUN_CE [15] 0.5608 | 0.5355 | 0.5861
USTC-IAT-United [103] [ 0.5478 || 0.5208 [ 0.5748
HSEmotion [74] 0.5193 | 0.4925 | 0.5461
KBS-DGU [32] 0.5077 || 0.4836 | 0.5318
ETS-LIVIA [85] 04434 ]| 0.4198 | 0.4669
CAS-MAIS[93] 0.3830 || 0.4245 | 0.3414
IMLAB [57] 0.2684 || 0.2912 | 0.2456

\ baseline [46] [ 0201 [[ 0211 | 0.191 ]

As can be seen in Table 4, the winner of this Challenge
is: Netease Fuxi Al Lab. It can be observed this method
achieved the overall best performance, as well as the best
performance in both valence and arousal estimation. In their
developed methodology, they employ a Masked Autoen-
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coder (MAE) for visual data, pre-trained on a large facial
dataset with a “mask-then-reconstruct” strategy to enhance
feature generalizability, followed by fine-tuning. Audio fea-
tures are extracted using a pre-trained VGGish model, and
textual features through the LoRA model. These modali-
ties are fused using a transformer-based approach. Finally,
an ensemble learning strategy is applied, by training sepa-
rate classifiers for data subsets and combining their outputs
through a voting mechanism.

The runner up of the Challenge is: DeepAVER. In
their developed methodology, they fine-tune a pre-trained
Resnet-50 for visual inputs, a pre-trained VGG-Net for au-
dio inputs, and a BERT encoder for textual data. All modal-
ities are processed through Temporal Convolutional Net-
works (TCNs) to capture dynamic changes over time. The
core element of the method is the Recursive Joint Cross-
Modal Attention mechanism that fuses features from each
modality. This process involves pre-processing and con-
catenating the modality inputs, then applying cross-modal
attention to enhance semantic integration and refine the fea-
ture representations recursively.

In the third place is: CtyunAl. In their developed method-
ology, they employ a MAE pre-trained on a vast facial
dataset for initial feature extraction and then fine-tune it on
Aff-Wild2. Temporal dynamics are addressed by segment-
ing videos and processing these segments through a pre-
trained ViT-Base encoder and a TCN, which captures the
temporal information effectively. A Transformer Encoder
further enhances this by modeling within-segment tempo-
ral details, while overlapping segments help capture inter-
segment relationships.

Finally let us mention that the baseline network’s aver-
age CCC performance on the validation set is 0.22 (the CCC
for valence is 0.24 and the CCC for arousal is 0.20).

4.2. Expression Recognition Challenge

In total, 70 Teams participated in the Expression Recogni-
tion Challenge. 40 Teams submitted their results. 14 Teams
made invalid (incomplete) submissions, whilst surpassing
the baseline. 16 Teams scored lower than the baseline. 10
Teams scored higher than the baseline and made valid sub-
missions.

Table 5 presents the leaderboard and results of the partic-
ipating teams’ algorithms that scored higher than the base-
line and made valid submissions in the Expression Recog-
nition Challenge. Table 5 illustrates the F1 score evalu-
ation of predictions on the Aff-Wild2 test set; it further
shows the baseline network results. The baseline adopts a
VGG16 architecture with fixed convolutional weights (i.e.,
non-trainable), while only the three fully connected layers
are trainable. It is pre-trained on the VGGFACE dataset
and equipped with an output layer featuring a softmax ac-
tivation function, facilitating the prediction of eight expres-

sions. Mixaugment [67] has been used as data augmentation
technique.

MixAugment is a simple and data-agnostic data augmen-
tation routine that trains a method on convex combinations
of pairs of examples and their labels. It extends the training
distribution by incorporating the prior knowledge that linear
interpolations of feature vectors should lead to linear inter-
polations of the associated targets. MixAugment constructs
virtual training examples (Z, §) as follows:

J=Xyi + (1= Ay, ®)

where x; and z; are two random raw inputs (i.e., images),
y; and y; € {0,1}® are their corresponding one-hot label
encodings and A ~ B(o, «) € [0, 1] (i.e., Beta distribution)
for o € (0, 00).

During each training iteration, the baseline network is
trained concurrently on both real (r) and virtual (v) exam-
ples. Specifically, in each training iteration, the network is
fed with both z; and x;, and the generated image  (of Eq.
8).

For the sake of reproducibility, links to Github reposi-
tories detailing each participating team’s methodology are
available on the leaderboard published on the official web-
site of the 6th ABAW Competition.

Table 5. Expression Recognition Challenge Results

Teams [ Fl
Netease Fuxi Al Lab [114] 0.5005
CtyunAl [118] 0.3625
USTC-IAT-United [101] 0.3534
HSEmotion [74] 0.3414
M2-Lab-Purdue [53] 0.3228
KBS-DGU [32] 0.3005
SUN_CE [15] 0.2877
AIOBT [62] 0.2797
CAS-MALIS [93] 0.265
IMLAB [57] 0.2296
baseline [46] (with MixAugment [67]) 0.2250
baseline [46] (without MixAugment [67]) || 0.2050

As can be seen in Table 5, the winner of this Challenge
is: Netease Fuxi Al Lab. Their method is the same as de-
scribed in the Valence-Arousal Estimation Challenge.

The runner-up of the Challenge is: CtyunAl. Their
method is the same as described in the Valence-Arousal Es-
timation Challenge.

In the third place is: USTC-IAT-United. Their developed
methodology consists of two phases. The first phase is the
spatial pre-training one; they use a semi-supervised learning
approach with a student-teacher model for de-biasing. The
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second phase is the temporal refinement one; the trained
student network extracts image features, which are then an-
alyzed by a temporal encoder using a transformer-based
architecture to capture temporal relationships in video se-
quences, enhancing the dynamic recognition of facial ex-
pressions. They also apply a post-processing sliding win-
dow technique to ensure consistent and accurate labeling of
expressions across frames.

Finally let us mention that the baseline network’s av-
erage F1 score performance on the validation set is 0.25
(when MixAugment is used) and 0.23 (when MixAugment
is not used).

4.3. Action Unit Detection Challenge

In total, 63 Teams participated in the Action Unit Detec-
tion Challenge. 40 Teams submitted their results. 16 Teams
made invalid (incomplete) submissions, whilst surpassing
the baseline. 17 Teams scored lower than the baseline. 7
Teams scored higher than the baseline and made valid sub-
missions.

Table 6 presents the leaderboard and results of the partic-
ipating teams’ algorithms that scored higher than the base-
line and made valid submissions in the AU Detection Chal-
lenge. Table 6 illustrates the F1 score evaluation of predic-
tions on the Aff-Wild2 test set; it further shows the baseline
network results. The baseline adopts a VGG16 architec-
ture with fixed convolutional weights (i.e., non-trainable),
while only the three fully connected layers are trainable. It
is pre-trained on the VGGFACE dataset and equipped with
an output layer featuring a sigmoid activation function, fa-
cilitating the detection of the twelve AUs.

For the sake of reproducibility, links to Github reposi-
tories detailing each participating team’s methodology are
available on the leaderboard published on the official web-
site of the 6th ABAW Competition.

Table 6. Action Unit Detection Challenge Results

Teams [ F1
Netease Fuxi Al Lab [114] || 0.5601
CtyunAI [118] 0.4941
HSEmotion [74] 0.4878

USTC-IAT-United [102] 0.484

KBS-DGU [32] 0.4652
M2-Lab-Purdue [53] 0.3832
baseline [46] [ 0365

As can be seen in Table 6, the winner of this Challenge
is: Netease Fuxi Al Lab. Their method is the same as de-
scribed in the Valence-Arousal Estimation Challenge.

The runner-up of the Challenge is: CtyunAl. Their
method is the same as described in the Valence-Arousal Es-
timation Challenge.

In the third place is: HSEmotion. Their developed
methodology utilizes a two-phase, multi-task learning strat-
egy. Initially, lightweight neural network architectures are
pre-trained for facial recognition and are then fine-tuned
for recognizing eight expressions as well as valence and
arousal. The embeddings of the penultimate layer of these
architectures are extracted and fed to a MLP which is fur-
ther fine tuned on the Aff-Wild2.

Finally let us mention that the baseline network’s aver-
age F1 score performance on the validation set is 0.39.

4.4. Compound Expression Recognition Challenge

In total, 40 Teams participated in the Compound Expression
Recognition Challenge. 17 Teams submitted their results.
12 Teams made invalid (incomplete) submissions. 5 Teams
made valid submissions.

Table 7 presents the leaderboard and results of the par-
ticipating teams’ algorithms that made valid submissions in
the Compound Expression Recognition Challenge. Table
7 illustrates the F1 score evaluation of predictions on C-
EXPR-DB. No baseline network and results are provided
for this Challenge due to the nature of the Challenge.

For the sake of reproducibility, links to Github reposi-
tories detailing each participating team’s methodology are
available on the leaderboard published on the official web-
site of the 6th ABAW Competition.

Table 7. Compound Expression Recognition Challenge Results

Teams H F1
Netease Fuxi Al Lab [114] || 0.5526
HSEmotion [74] 0.2708
USTC-IAT-United [104] 0.2240
SUN_CE [69] 0.2201
USTC-AC [86] 0.1845

As can be seen in Table 7, the winner of this Challenge
is: Netease Fuxi Al Lab. Their method is the same as de-
scribed in the Valence-Arousal Estimation Challenge.

The runner-up of the Challenge is: HSEmotion. Their
method is the same as described in the AU Detection Chal-
lenge.

In the third place is: USTC-IAT-United. Their developed
methodology is a late-fusion ensemble model that combines
three architectures: Vision Transformer (ViT), Multi-scale
and Focal Attention Network (MANet), and ResNet. Fea-
tures extracted from each architectures are concatenated and
fed to an MLP that produces the final predictions.

4.5. Emotional Mimicry Intensity Estimation Chal-
lenge

In total, 7 Teams participated in the Emotional Mimicry In-
tensity Estimation Challenge. 4 Teams scored higher than
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the baseline and made valid submissions.

Table 8 presents the leaderboard and results of the partic-
ipating teams’ algorithms that scored higher than the base-
line and made valid submissions in the Emotional Mimicry
Intensity Estimation Challenge. Table 8 illustrates the PCC
score evaluation of predictions on the HUME-Vidmimic2
test set. It further shows the baseline networks’ results. We
set initial baseline results with two distinct sets of features.
Initially, we utilized features derived from a pre-trained Vi-
sion Transformer (ViT), which were then processed by a
three-layer Gated Recurrent Unit (GRU) network. Subse-
quently, we leveraged features extracted from Wav2Vec2,
paired with a linear processing layer. Furthermore, by av-
eraging the predictions from both of these unimodal tech-
niques, we pursued a multimodal strategy.

For the sake of reproducibility, links to Github reposi-
tories detailing each participating team’s methodology are
available on the leaderboard published on the official web-
site of the 6th ABAW Competition.

Table 8. Emotional Mimicry Intensity Estimation Challenge Re-
sults

Teams [ PCC
Netease Fuxi Al Lab [114] || 0.7185
HCAI-VIS [21] 0.5536
USTC-IAT-United [105] 0.3594
HSEmotion [74] 0.3316
audio baseline [40] 0.2705
vision baseline [46] 0.1318
multimodal baseline [46] 0.2926

As can be seen in Table 6, the winner of this Challenge
is: Netease Fuxi Al Lab. Their method is the same as de-
scribed in the Valence-Arousal Estimation Challenge.

The runner-up of the Challenge is: HCAI-VIS. Their de-
veloped methodology utilizes a pre-trained Wav2Vec model
enhanced with a Valence-Arousal-Dominance (VAD) pre-
diction module and a global pooling, followed by a LSTM
model.

In the third place is: USTC-IAT-United. Their devel-
oped methodology standardizes video frame rates, employs
a pre-trained ViT and ResNet18 for visual feature extraction
and Wav2Vec2.0 for audio feature extraction, a TCN and a
Transformer Encoder for integrating these features, and a
late fusion strategy for averaging them.

Finally let us mention that: i) the vision baseline net-
work’s average PCC score performance on the validation
set is 0.09; ii) the audio baseline network’s average PCC
score performance on the validation set is 0.24; and iii) the
multimodal baseline network’s average PCC score perfor-
mance on the validation set is 0.25.

5. Conclusion

In this paper we have presented the sixth Affective Behavior
Analysis in-the-wild Competition (ABAW) held in conjunc-
tion with IEEE CVPR 2024. This Competition is a contin-
uation of the series of ABAW Competitions. This Com-
petition comprises five Challenges targeting: i) Valence-
Arousal Estimation, ii) Expression Recognition (8 cate-
gories), iii) Action Unit Detection (12 action units), iv)
Compound Expression Recognition (7 categories) and v)
Emotional Mimicry Intensity Estimation (6 emotion dimen-
sions). The databases utilized for this Competition are an
extended version of Aff-Wild2, the C-EXPR-DB and the
Hume-Vidmimic?2 dataset.

The sixth ABAW Competition has been a very suc-
cessful one with the participation of 60 Teams in the
Valence-Arousal Estimation Challenge, 70 Teams in the
Expression Recognition Challenge, 63 Teams in the Action
Unit Detection Challenge, 40 Teams in the Compound
Expression Recognition Challenge, and 7 Teams in the
Emotional Mimicry Intensity Estimation Challenge.
All teams’ solutions were very interesting and cre-
ative, providing quite a push from the developed baselines.
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