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Abstract

In recent years, deep learning has achieved innovative
advancements in various fields, including the analysis of
human emotions and behaviors. Initiatives such as the Af-
fective Behavior Analysis in-the-wild (ABAW) competition
have been particularly instrumental in driving research in
this area by providing diverse and challenging datasets that
enable precise evaluation of complex emotional states. This
study leverages the Vision Transformer (ViT) and Trans-
former models to focus on the estimation of Valence-Arousal
(VA), which signifies the positivity and intensity of emo-
tions, recognition of various facial expressions, and detec-
tion of Action Units (AU) representing fundamental muscle
movements. This approach transcends traditional Convolu-
tional Neural Networks (CNN) and Long Short-Term Mem-
ory (LSTM) based methods, proposing a new Transformer-
based framework that maximizes the understanding of tem-
poral and spatial features. The core contributions of this
research include the introduction of a learning technique
through random frame masking and the application of Focal
loss adapted for imbalanced data, enhancing the accuracy
and applicability of emotion and behavior analysis in real-
world settings. This approach is expected to contribute to
the advancement of emotional computing and deep learning
methodologies.

1. Introduction

Recently, deep learning has undergone significant
changes in various fields such as computer vision, natu-
ral language processing, and especially in analyzing hu-
man emotions and behaviors. One of the key developments
in this field is the Affective Behavior Analysis in-the-wild
(ABAW) competition held by Kollias et al. [6–17, 24] These
competitions facilitate research by providing diverse and
challenging datasets such as AffWild2, C-EXPR-DB, and
Hume-Vidmimic2, encouraging the development of models
capable of accurately assessing complex emotional states.

*Sejoon Lim is the corresponding author.

These models provide keys through Valence-Arousal (VA)
estimation, facial expression (EXPR) recognition, and Ac-
tion Unit (AU) detection, which are essential components
in understanding human emotions.

In the field of emotional analysis, VA estimation pro-
vides the foundation by quantifying the positivity (Valence)
and intensity (Arousal) of emotions, while facial expression
recognition focuses on classifying facial expressions into
distinct emotions. Furthermore, Action Unit detection em-
phasizes identifying the basic muscle movements that con-
stitute these expressions, offering finer details in interpret-
ing emotional states.

Recent studies have embraced various deep learning ap-
proaches, including Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM), achieving notable
success. Additionally, the emergence of transformer mod-
els [21] has introduced a new paradigm in understanding
temporal and spatial features, expanding the limits of how
machines can interpret human emotions and states.

This research builds on these advancements, proposing
a new learning framework that utilizes temporally ordered
pairs of masked features derived from facial expressions,
Action Units, and valence-arousal indicators. By integrat-
ing advancements in feature extraction and sequence mod-
eling, we aim to refine the accuracy and applicability of
emotional and behavioral analysis in real-world environ-
ments and contribute to the evolving landscape of emotion
computing and deep learning methodologies.

The main contributions of this study are as follows:

• Introduction of random frame masking learning tech-
nique: This study proposes a new learning method that
improves the generalization ability of emotion recogni-
tion models by randomly masking selected frames.

• Application of Focal loss to imbalanced data: By using
Focal loss, we have significantly improved the perfor-
mance of the model in addressing the imbalance problem
in facial expression recognition and Action Unit detec-
tion.
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2. Related Works
The advancement of deep learning has brought signifi-

cant changes to the study of human emotional behavior as
well. The Affective Behavior Analysis in-the-wild (ABAW)
competition has been a tremendous contribution to driving
such needed changes and pushing the field forward. ABAW
provides a wide variety of datasets, including Aff-Wild2
and C-EXPR-DB, for challenges and research opportuni-
ties. In this direction, apart from the Hume-Vidmimic2
dataset, it proposes a challenge with a number of tasks.

2.1. Valence-Arousal Estimation

Valence-Arousal Estimation is a type of emotional anal-
ysis that gives an emphasis on forecasting the Valence and
Arousal of the persons. Valence is referred to as a charac-
teristic of either positivity or negativity of the emotions. An
increase in Valence will symbolize an increase in positive
emotion, while a reduction in Valence will show negative
emotions. Greater Arousal would indicate that the emotions
were more actively energized, while lesser Arousal would
mean that the emotions were cool and composed. Recent
studies have been doing quite well with performance in [20]
using CNNs and LSTMs. Some recent progress has been
reported in the application of transformer models as well.

2.2. Expression Recognition

The task for Expression Recognition is a mutually ex-
clusive class recognition problem. Each frame of the video
should be classified to one of the defined categories: Neu-
tral, Anger, Disgust, Fear, Happiness, Sadness, Surprise,
Other. The research has been carried out using visual and
audio information where there exists, to a greater extent,
emotional content. References include [25–27]. Nguyen et
al.[19] proposed to use only images, and for each of them,
a feature vector is extracted using a pretrained network and
then supplied to a transformer encoder.

2.3. Action Unit Recognition

In Action Unit Recognition, the determination of spe-
cific Action Units (AU) based on the human face’s features
is done in every frame of the video. It requires facial mo-
tion analysis down to the last detail. Yu et al.[23] proposed
a feature fusion module based on self-attention, which is re-
sponsible for integrating overall facial characteristic and re-
lationship feature between AUs. Zhang et al.[26] and Wang
et al. [22] initialized a Masked Autoencoder This enabled
the extraction of various general features associated with
the face.

3. Approach
In this paper, we propose a network that can learn

Valence-Arousal (VA), human expressions, Action Units

(AU) and temporally masked features for each frame. So,
the first step is the feature extraction for each of the input
images. Section 3.1 details the feature extraction step. After
the features have been extracted, they are randomly masked,
put together into temporal pairs, and then inputted into the
transformer encoder. This process is followed by an fully
connected (FC) layer to produce the final output. We de-
scribe the functioning principle of the transformer classifier
module in 3.2. Section 3.3 describes the loss function used
for learning. In Figure 1, we show the schema of our whole
network.

3.1. Feature Extractor

We utilize a pretrained Vision Transformer (ViT) [4] net-
work in order to extract useful features. Instead of using
the ‘cls’ token from ViT’s final output in the conventional
manner, we apply average pooling to the output of the last
layer based on the method put forth in [1]. This approach
saves computational power required during training time by
pre-extracting features for the Aff-Wild2 dataset. Addition-
ally, employing a large-scale pretrained network facilitates
the extraction of generalized representations that are bet-
ter adapted to the diverse contexts of the images. This en-
hances the network’s ability to process and analyze the input
images’ complex emotional expressions and related action
units.

3.2. Transformer Classifier

Masked inputs in the Transformer model have been
validated in different parts of the Transformer Classifier:
GPT [2], BERT [3], MAE [5] Motivated by the works dis-
cussed above, we propose designing a Transformer Classi-
fier with features processed in the order of time and an input
mask. The proposed encoder is designed to realize the self-
attention mechanism that can process efficient sequences of
image data. This approach significantly enhances our un-
derstanding of changes in facial expressions within a tem-
poral image sequence, which is crucial for accurately rec-
ognizing emotions and AU. During training, the temporal
feature pairs are input with a certain probability p, having
been partially masked beforehand. This method ensures
that overfitting is completely avoided, thereby increasing
the model‘s generalization performance.

3.3. Loss function

For AU and Expression, Focal Loss [18] is effective
against the imbalanced distribution of data. Focal loss per-
forms very well when learning models from severely class-
imbalanced datasets. It is defined as follows:

Lfocal = −α(1− pt)
γ log pt (1)

Where, pt denotes the predicted probability, and α and γ
are tuning parameters. These hyperparameters assign more
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Figure 1. illustrates the comprehensive pipeline of the our model. Initially, a pretrained vision transformer individually extracts features
from each input frame image (where b stands for batch size, and n represents sequential length), ensuring a detailed analysis of every
frame. To avert the risk of overfitting, these extracted features from each frame are randomly masked. In the final step, a transformer
classifier sequentially processes these randomly masked frame features to predict the outcome ŷ

importance to hard samples and reduce their importance for
easier ones, so that the model gets to focus more on the
part it struggles within the learning process. This approach
significantly boosts the performance of focal loss on imbal-
anced datasets.

For VA measurement, Concordance Correlation Coeffi-
cient (CCC) loss was used. It is computed as follows:

Lccc = 1− 2ρσxy

σ2
x + σ2

y + (x̄− ȳ)2
(2)

Here, ρ is the correlation coefficient between the two
variables, and σxy, σ

2
x, and σ2

y represent their respective av-
erages. The CCC loss function measures the concordance
between the predicted and actual values, making it an ap-
propriate loss function for predicting emotional states. The
foregoing greater importance to the difficult samples and
reducing the importance of easy samples allows the model
to focus more on parts that should get more concentrating
in the learning process. Consequently, Focal loss is the
optimal function for substantially improving performance
in highly imbalanced datasets. On the other hand, CCC
loss function is particulary effective in predicting emotional
states because it gives a way that makes it possible to quan-

tify the agreement between the predicted and the target val-
ues.

4. Experiments
4.1. Experimental Setup

This study employs the ImageNet21k and Aff-Wild2
datasets to train our model. ImageNet21k, a comprehen-
sive dataset comprising roughly 21,000 classes and 14 mil-
lion images, is used for pre-training the feature extractor.
The Aff-Wild2 dataset, specifically utilized for training the
Transformer Encoder, is applied only to cropped facial im-
ages.

Our model architecture includes a ViT Base for the fea-
ture extraction and a Transformer Classifier with 8 heads
and 6 layers, incorporating a dropout rate of 0.2. The model
processes sequences with a temporal length of 100 and op-
erates with a batch size of 512. Optimization is achieved
through AdamW with a learning rate of 0.0001 and a con-
sistent weight decay of 0.001. Focal Loss is used as the loss
function, setting alpha at 0.25 and gamma at 2. A random
masking probability of 0.2 is included to enhance training
robustness and prevent overfitting. This configuration is de-
signed to efficiently facilitate learning and address the com-
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plexities of emotion recognition across diverse and exten-
sive datasets.

4.2. Results on Validation set

Table 1 evaluates the effectiveness of our complete
methodology on the Aff-Wild2 validation set across three
key challenges: Valence-Arousal (VA) estimation, Expres-
sion (EXPR) recognition, and Action Unit (AU) detection,
comparing these results with a baseline model to underscore
the enhancements provided by our approach.

For VA estimation, we employ the Concordance Correla-
tion Coefficient (CCC), which merges the scores of Valence
and Arousal to encapsulate the emotional state. Our method
significantly improves with a CCC of 0.39, compared to the
baseline’s 0.22, indicating a marked enhancement from our
model’s architecture and training regimen.

EXPR and AU are assessed using the F1 score. In EXPR
recognition, our methodology achieves an F1 score of 0.29,
slightly higher than the baseline score of 0.25, suggesting
an increased capability in recognizing facial expressions.
Similarly, AU detection performance improves marginally
with an F1 score of 0.40, compared to the baseline’s 0.39.
These results demonstrate our model’s enhanced ability to
identify subtle nuances in facial expressions and behavioral
units more effectively than the baseline configuration.

Challenge Metric Method Result

VA CCC Ours
0.39

(V:0.33, A:0.44)

Baseline
0.22

(V:0.24, A:0.20)

EXPR F1 Score Ours 0.29
Baseline 0.25

AU F1 Score Ours 0.40
Baseline 0.39

Table 1. Results on Validation set of Aff-Wild2

4.3. Results on Test set

In the VA estimation, EXPR recognition, and AU de-
tection challenges conducted in this study, specific results
were derived as described in Tables 2, 3 and 4 respectively.
In the VA estimation category, 60 teams participated, and
only 10 of them obtained scores that exceeded the baseline
and submitted valid results. In the EXPR recognition cat-
egory, 70 teams participated, and only 10 teams achieved
performance that exceeded the baseline and submitted valid
results. In the AU detection category, 40 teams participated,
and only 7 of them scored higher than the baseline and sub-
mitted valid results. In particular, our team ranked 10th
in the VA and EXPR categories, respectively, and scored
higher than the baseline and was named on the Leaderboard.

This shows that unlike most teams using a multi-modal ap-
proach that combines image data and audio data, important
results could be achieved without additional data by using
only image data and applying a random masking technique.

Team CCC-V CCC-A Total Score
Netease Fuxi AI Lab 0.6873 0.6569 0.6721

DeepAVER 0.5418 0.6196 0.5807
CtyunAI 0.5223 0.6057 0.5640
SUN CE 0.5355 0.5861 0.5608

USTC-IAT-United 0.5208 0.5748 0.5478
HSEmotion 0.4925 0.5461 0.5193
KBS-DGU 0.4836 0.5318 0.5077
ETS-LIVIA 0.4198 0.4669 0.4434
CAS-MAIS 0.4245 0.3414 0.3830

Ours 0.2912 0.2456 0.2684
baseline 0.2110 0.1910 0.2010

Table 2. VA Estimation results of the 6th ABAW Competition

Team F1 Score
Netease Fuxi AI Lab 0.5005

CtyunAI 0.3625
USTC-IAT-United 0.3534

HSEmotion 0.3414
M2-Lab-Purdue 0.3228

KBS-DGU 0.3005
SUN CE 0.2877
AIOBT 0.2797

CAS-MAIS 0.2650
Ours 0.2296

baseline 0.2250

Table 3. EXPR Recognition results of the 6th ABAW Competition

Team F1 Score
Netease Fuxi AI Lab 0.5601

CtyunAI 0.4941
HSEmotion 0.4878

USTC-IAT-United 0.4840
KBS-DGU 0.4652

M2-Lab-Purdue 0.3832
baseline 0.3650

Ours 0.35

Table 4. AU Detection results of the 6th ABAW Competition

4.4. Ablation Study

The ablation studies specifically focus on the role of the
masking component in our model, as detailed in Table 5.
When the masking procedure is removed, VA estimation
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scores decrease from 0.39 to 0.35. Although these scores
still surpass the baseline, this reduction highlights the cru-
cial role of masking in achieving higher accuracy. Simi-
larly, for EXPR and AU detection, the removal of masking
leads to reduced scores of 0.27 and 0.38, respectively. These
scores represent a decrease from the full model’s perfor-
mance but remain above the baseline, emphasizing the im-
portance of masking in enhancing model performance and
generalization.

Additionally, Table 6 presents the empirical performance
metrics of the model across individual frames for each task.
It is evident that the performance for VA estimation and
AU detection improves incrementally with an increase in
the number of frames. In contrast, the EXPR task shows a
negligible correlation with the frame count. Based on these
observations, a temporal length of 100 frames has been de-
termined to be optimal and was therefore employed in the
final evaluation submission.

Challenge Metric Method Result

VA CCC Ours
0.39

(V:0.33, A:0.44)

w/o Masking
0.35

(V:0.28, A:0.42)

EXPR F1 Score Ours 0.29
w/o Masking 0.27

AU F1 Score Ours 0.40
w/o Masking 0.38

Table 5. ablation study on the impact of masking for VA, EXPR,
and AU Challenges

Challenge Metric Frame Result

VA CCC

1 0.2868
10 0.2965

100 0.3509
200 0.3906

EXPR F1 Score

1 0.2683
10 0.2622

100 0.2699
200 0.2599

AU F1 Score

1 0.3006
10 0.3522

100 0.3756
200 0.3652

Table 6. Ablation study on the impact of frame count for VA,
EXPR, and AU Challenges

5. Conclusions
This study explores the use of ViT and Transformer mod-

els for VA estimation, EXPR recognition, and AU detec-

tion in the 6th ABAW competition. In line with the grow-
ing trend towards Transformer-based models, which are
increasingly favored over traditional CNN and LSTM ap-
proaches, this research introduces a novel methodology uti-
lizing these advanced models. The primary contribution of
this work is the introduction of a random frame masking
technique during the training process, which significantly
improves the models’ generalization performance. Notably,
this technique has helped achieve top leaderboard rankings
in the VA estimation and EXPR recognition tasks. Addi-
tionally, the validity of the proposed approach is demon-
strated through ablation studies that assess frame-wise per-
formance and the impact of the masking technique.

However, this study is limited to an image-based ap-
proach, in contrast to the majority of participating teams
that employed multimodal approaches. Furthermore, the
research is constrained by the inability to implement im-
age augmentation techniques, highlighting a potential area
for improvement. Future research will aim to address these
limitations and explore methods to enhance the robustness
and generalization capabilities of the models.
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