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Abstract

Facial Expression Recognition (FER) is a critical task
within computer vision with diverse applications across
various domains. Addressing the challenge of limited FER
datasets, which hampers the generalization capability of
expression recognition models, is imperative for enhanc-
ing performance. Our paper presents an innovative ap-
proach integrating the MAE-Face self-supervised learning
(SSL) method and multi-view Fusion Attention mechanism
for expression classification, particularly showcased in the
6th Affective Behavior Analysis in-the-wild (ABAW) compe-
tition. By utilizing low-level feature information from the
ipsilateral view (auxiliary view) before learning the high-
level feature that emphasizes the shift in the human facial
expression, our work seeks to provide a straightforward yet
innovative way to improve the examined view (main view).
We also suggest easy-to-implement and no-training frame-
works aimed at highlighting key facial features to determine
if such features can serve as guides for the model, focus-
ing on pivotal local elements. The efficacy of this method
is validated by improvements in model performance on the
Aff-wild2 dataset, as observed in both training and valida-
tion contexts.

1. Introduction
Facial expressions are key in conveying emotions and

are increasingly important in areas like human-computer
interaction [27], healthcare [2], and driving safety [42].
Real-world static image datasets like RAF-DB [22], Af-
fectNet [31], and FERPlus [1] have seen advancements in
Facial Expression Recognition (FER) due to deep learning.
However, recognizing dynamic facial expressions (DFER)

Figure 1. Our proposed pipeline for two-stage pre-training and
fine-tuning with fusion, a synthesizing framework to take the in-
formative facial feature with uni-task expression annotations.

from videos remains challenging due to data scarcity, lim-
ited dataset diversity, and the complexity of interpreting ex-
pressions over time.

Prior works nowadays usually enhance one path for-
ward by leveraging the ample and varied SFER data as
a foundational knowledge base to enhance DFER perfor-
mance, considering the considerable overlap in information
between SFER and DFER data. Additionally, effectively
modeling the temporal dimension to capture the nuances
of facial expressions over time remains a crucial challenge
in DFER. While various methods utilizing 3D [7] and 2D
Convolutional Neural Networks, combined with Recurrent
Neural Networks or Transformer [48] architectures, have
shown promise, these techniques often fall short in explic-
itly modeling the dynamic nature of facial expressions in
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videos, thus not fully capitalizing on the temporal informa-
tion available.

Researchers recently have leveraged Masked Autoen-
coders (MAE) [24] to pre-train models on extensive, un-
labeled facial datasets, enabling the models to learn the un-
derlying probability distribution of human faces and to re-
construct them effectively. The pre-training phase of the
encoder block is thus expected to preserve critical human
features that distinguish individual faces, thereby enhanc-
ing the model’s versatility for a variety of downstream tasks.
The work of [29] showed that it can improve performance
on visual representation by incorporating a two-pass pre-
training process and a two-pass fine-tuning process.

Recent studies on facial key points suggest that a focused
analysis of facial regions or combining specifically the ac-
tion units (AUs) [5, 23, 25, 26] or feature point tracking al-
gorithm [3], can enhance the robustness of FER models.
This combination is designed to precisely capture facial ex-
pressions, thereby directing the model’s attention towards
emotion-relevant facial regions for more nuanced analy-
sis. With realizing the potential of action unit facial part
by extracting and analyzing cropped AU parts of the face
without relying on AU-specific annotations, we shift the fo-
cus to recognizing expressions based on overall emotional
states rather than discrete facial muscle movements. This
approach simplifies the labeling process and potentially re-
duces the subjectivity in annotations.

Many previous works have been studied about the ef-
fectiveness of exploiting multi-view networks to boost the
performance of classification tasks [33, 40]. Most of these
approaches mainly focus on medical applications such as
breast cancer diagnosis. Integrating this method with a
multi-view analysis capitalizes on the strengths of both
static and dynamic expression data. This leads to the cre-
ation of a Fusion Multi-View Network that is not only more
resilient in interpreting expressions in varied contexts but
also reduces the dependency on extensive and precise AU
annotations, focusing on the holistic portrayal of emotions.
Thus, we aim to address the gaps in Dynamic Facial Expres-
sion Recognition (DFER) by building a model grounded
in the realistic representation of expressions, reinforced by
the insights from the rebuilt smaller static dataset and tai-
lored to the intricacies of dynamic facial expressions by
the post-processing. Our approach includes setting up two
stages of multi-view analysis. The first stage involves fine-
tuning with a pre-trained Masked Autoencoder for Faces
(MAE-Face) model, followed by researching various muta-
tions of multi-view networks to understand the effectiveness
of fusion at multiple positions in the architecture to robust
the feature extracted. We proposed four strategies for fu-
sion types: Mean, Concat, UpDown-Mean, and UpDown-
Concat. Overall, our main contributions can be summarized
from Fig.1 as follows:

• A new robust facial synthesis auxiliary view frame-
work: This network uniquely combines cropped AU
analysis with feature point tracking, focusing on
emotion-related areas with informative regions that are
important for emotional representation.

• Two-Stage Multi-View Analysis with Pretrained
MAE-Face Model: Incorporating a two-stage analy-
sis, starting with fine-tuning a pre-trained MAE-Face
model, enhances the network’s ability to interpret com-
plex facial expressions by guiding the model to focus
on the important image’s parts.

• Comprehensive Study on Fusion Strategies: By ex-
perimenting with four distinct fusion strategies: Mean,
Concat, UpDown-Mean, and UpDown-Concat. We in-
vestigate the impact of integrating multi-view analy-
sis at different stages in the network architecture, con-
tributing to a more robust feature extraction and inter-
pretation of emotional expressions.

2. Related Work
2.1. Facial Expression Recognition

Facial expression recognition (FER) is a cornerstone
of pattern recognition research. Historically, leveraging
fully supervised data has marked significant advancements
in FER, as evidenced by methodologies detailed in sev-
eral studies [4, 5, 43, 49]. Furthermore, multi-view strate-
gies incorporating dual or multiple images, or supplemen-
tal augmented views, have proven to bolster performance
[6, 37]. Recent trends pivot towards fortifying feature con-
nections across divergent feature spaces. One innovative
strategy introduces an attention mechanism comprising spa-
tial and channel attention units that collaboratively hone in
on pertinent spatial and channel-specific features [41]. The
POSTER framework extends this concept with an integrated
facial landmark detector, a foundational image backbone,
cross-fusion transformer encoders, and a pyramid network,
addressing inter-class similarity, intra-class variability, and
sensitivity to scale in unison [30]. In video applications,
the S2D model, a multi-view landmark-aware lightweight
adaptation for static images, has set new benchmarks [6].
The novel MDF-HF architecture encapsulates this evolu-
tion, commencing with meticulous data preprocessing. This
includes the transformation of video to image sequences,
facial detection and cropping, and alignment, thereby mini-
mizing background distractions. Details on adaptive key-
frame selection, dynamic feature extraction, and the nu-
ances of hybrid fusion follow [35].

2.2. Learning from unlabeled data

Lately, the realm of self-supervised learning has gar-
nered attention for its ability to extract value from unlabeled
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Figure 2. The architecture of our proposed model consists of two stages. First, the pre-trained model MAE is fine-tuned on two different
datasets, the original dataset, and the extracted feature dataset. Secondly, we train the feature spaces of two fine-tuned models on the
attention fusion models with four methods, including concat, mean, updown-concat, updown-mean, on the key generator module.

data, presenting an innovative avenue to mitigate the chal-
lenges of annotating FER datasets. These methods [32] di-
verge from traditional supervised learning, which relies on
human-provided labels, by engaging the model in pretext
tasks that do not require annotations. Such tasks include
image inpainting [36], jigsaw puzzle solving [34], and con-
trastive learning [8], among others. For instance, some re-
searchers [24] utilized Masked Autoencoders (MAE) to pre-
train models across extensive facial recognition databases
for the ABAW competitions, leading to impressive out-
comes. Additionally, a semi-supervised approach intro-
duced by [45] employs a dynamic threshold module (DTM)
to effectively harness unlabeled data by adjusting the confi-
dence threshold across various classes and throughout dif-
ferent stages of training.

Nonetheless, it’s important to note that these pretext
tasks are primarily designed for general image classifica-
tion purposes, such as identifying object species, and may
not be as effective in directly extracting features that are
critical for recognizing facial expressions in FER tasks.

3. Methodology
In this section, we will describe our proposed approach

in detail in Fig.2. At the core of our model lies an archi-
tecture composed of several critical components. Initially,
we employ a pre-trained Masked Autoencoder (MAE-Face)
as a primary feature extractor to capture nuanced facial ex-
pressions and affective cues. This base is further refined by

fine-tuning the MAE-Face on the Aff-wild2 dataset, ensur-
ing our feature extraction is highly tailored to the intricacies
of affective behavior. To process these features effectively,
we incorporate self-attention blocks, which allow our model
to discern the most relevant affective signals dynamically.
The integration of these elements culminates in a Multilayer
Perceptron (MLP) that serves as the final prediction mech-
anism, offering a precise and reliable analysis of emotional
expressions.

3.1. Pre-processing

3.1.1 Clean data

First of all, in order to uphold the integrity and quality of
the training dataset, we implement a rigorous data-cleaning
process. This involves the systematic removal of corrupt
files, non-face images, and those with insufficient resolu-
tion, thereby ensuring the robustness and reliability of the
dataset for subsequent analyses and model training.

3.1.2 Synthesis Framework

The Dlib framework [9] is applied to filter out all the fa-
cial images that do not have sufficient key points for eyes,
eyebrows, nose, and mouth. In the fine-tuning phases, face
images are cropped by a percentage of frame sizes to extract
features of the eyes and mouth. The eyes are extracted by
cutting from 0.35 to 0.55 in height and 0.2 to 0.8 in width,
and the mouth is cropped with the same length but at 0.7 to
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0.9 in height Fig.3. Finally, image transformation is applied
to resize the face image patches.

3.2. MAE-Face

The proposed model employs a Vision Transformer
(ViT) pre-trained via a self-supervised learning method,
leveraging a Masked Autoencoder (MAE) for the process
called MAE-Face [28]. Specifically, input images are seg-
mented into 16×16 patches, of which 75% are masked, fo-
cusing the training on reconstructing these patches from
the remaining visible ones. The model is pre-trained on
a comprehensive facial image dataset, including AffectNet
[31], CASIA-WebFace [44], IMDB-WIKI [38], and CelebA
[47], totaling 2,170,000 images, to enhance its capability
in understanding facial features without relying on labels.
Post pre-training, the model transitions to fine-tuning for
downstream task Expression recognition on the Aff-wild2
dataset. We extracted the feature based on the pre-training
and fine-tuned the MAE face for further processing.

3.3. Fusion Attention block for Emotion Recogni-
tion

In the approach employed, a fusion-based methodology
is utilized for enhancing facial emotion recognition (FER)
through the integration of two pre-trained models. The
methodology makes use of an attention-based network, con-
centrating on both self-attention and local attention, to ef-
fectively combine the strengths of these models.

3.3.1 Fusion Attention Network

The proposed fusion attention network incorporates a multi-
layer perceptron (MLP) for combining features from two
emotion recognition models. By concatenating or adding
and then downsampling these features, the network applies
self-attention and local attention mechanisms in the Multi-
head Attention Block to refine the feature representation for
emotion classification.

3.3.2 Self-Attention and Local Attention

The self-attention mechanism operates by computing the at-
tention scores based on the dot product of features from
pre-trained networks, serving as the Key (K) and Query
(Q), followed by a softmax function. The local attention
mechanism employs convolution operations to extract more
refined features. The attention formula is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dK

)
⊗ V (1)

where K is the Key, Q is the Query, V is the Value, and
dK is the dimensionality of the Key. This approach not only

leverages the distinct advantages of both attention mech-
anisms but also enhances the model’s ability to recognize
complex emotional states from facial expressions.

3.3.3 Skip Connection

To bolster the model further, a skip connection is introduced
to preserve and reinforce prominent features, thereby en-
hancing the learning process and robustness of the model.
The skip connection allows for the direct flow of informa-
tion by adding the input directly to the output of the atten-
tion block. The formula for a skip connection, represented
in LaTeX code, is as follows:

Output = Attention(Q,K, V ) + X (2)

Where x represents the stronger input feature. This ad-
dition of the input to the output of the attention mechanism
helps in mitigating the issue of vanishing gradients, allow-
ing for deeper network architectures without the loss of rel-
evant feature information through the layers.

3.4. Loss function

The cross-entropy loss function is commonly used in
classification tasks and calculates the difference between
the predicted probability distribution and the true distribu-
tion of the classes.

The standard cross-entropy loss function is given by:

L = −
N∑
i=1

C∑
j=1

yij log(ŷij) (3)

where N is the number of batch samples, C is the number
of predicted classes (eight for Aff-Wild2), and yij , ŷij rep-
resent the ground-truth label and predicted scores, respec-
tively.

3.5. Post-processing

Given that the Aff-Wild2 dataset is derived from the
entirety of video frames and facial expressions typically
evolve gradually over time, rapid changes in expressions
across adjacent frames are uncommon. Furthermore,
following the removal of non-face, corrupted, and low-
resolution images, a sliding window approach is adopted
for post-processing prediction results to ensure smoother
labels. We chose a window size is 50 for our approach.

4. Experiment
In this section, we will provide a detailed description of

the used datasets, the experiment setup, and the experimen-
tal results.
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Figure 3. After the images are cropped and aligned in the Aff-wild2 dataset, the image parts that contain just the mouth and eye are
extracted for further processing.

Features Accuracy Neutral Anger Disgust Fear Happy Sad Surprise Other Marco F1
Not crop (normal) 0.512 0.624 0.295 0.188 0.015 0.515 0.448 0.287 0.502 0.359
Eye 0.257 0.390 0.001 0.000 0.412 0.134 0.012 0.052 0.213 0.157
Nose 0.239 0.071 0.049 0.117 0.033 0.244 0.121 0.063 0.402 0.137
Mouth 0.324 0.388 0.072 0.011 0.406 0.250 0.246 0.110 0.433 0.239
Eye + Mouth 0.491 0.559 0.257 0.023 0.019 0.482 0.233 0.257 0.559 0.304
Eye + Mouth + Nose 0.443 0.551 0.192 0.015 0.233 0.512 0.289 0.165 0.495 0.302

Table 1. Results on fine-tuning process of the validation set off Aff-widl2

4.1. Dataset

Aff-wild2 [10–21, 46] is a large-scale video database
for ABAW competitions. It annotated 548 videos, around
2.7M frames, into eight pre-defined categories: anger, dis-
gust, fear, happiness, sadness, surprise, neutral, and others.
Thanks to the release of this database, we conduct exper-
iments to explore the effectiveness of our method in the
ABAW challenge. In our paper, we obtain 8,000 labeled
images for each class category from the Aff-Wild2 dataset
through uniform sampling.

4.2. Setup

All training face images are resized to 224×224 pixels,
our proposed method is implemented with the PyTorch tool-
box on NVIDIA Tesla A6000 GPUs. The model is fine-
tuned with the Adam optimizer for 100 iters. The learning
rate for the fine-tuning process is set at 1e-4. The batch size
is set to 512. The average f1 Score across all eight cate-
gories on the validation set is reported.

4.3. Metrics

The average F1 Score across all eight categories on the
validation set is measured as a performance assessment.

P =

8∑
i=1

F1i
8

(4)

where F1 denotes f1-score, is calculated by:

F1 = 2 · precision · recall
precision + recall

(5)

4.4. Results

In the fine-tuning process, we experience many meth-
ods with our approach as shown in Table 1. We have tried
training the model with just eyes, nose, or mouth. After
that, we try other cases by combining these objects, such as
eye and mouth or eye and mouth and nose, to analyze the
importance and influence of each feature on the emotions.
However, we prioritize the normal feature model, which re-
mains the original image, and the eye-mouth model, which
uses the eye and mouth of the face, to feed into the fusion
training process. The ratio gets each feature:

4788



Fusion Accuracy Neutral Anger Disgust Fear Happy Sad Surprise Other Marco F1
Mean 0.527 0.615 0.349 0.231 0.012 0.527 0.454 0.264 0.553 0.376
Concat 0.529 0.622 0.364 0.241 0.018 0.538 0.432 0.271 0.554 0.380
UpDown + Mean 0.518 0.613 0.282 0.265 0.018 0.524 0.453 0.252 0.539 0.368
UpDown + Concat 0.520 0.614 0.261 0.274 0.033 0.520 0.457 0.268 0.549 0.372

Table 2. Results on fusion process of the validation set of Aff-wild2

• Eye: width ∈ [0.2, 0.8], height ∈ [0.35, 0.55]

• Mouth: width ∈ [0.2, 0.8], height ∈ [0.7, 0.9]

• Nose: width ∈ [0.4, 0.6], height ∈ [0.2, 0.8]

Next, we utilize the feature embeddings of two distinct
models to train the fusion attention model. We change
the key generator in many cases, such as concat methods
(includes 1 dense layer), mean method (1 dense layer),
UpDown-Mean(2 dense layers), and UpDown-Concat (3
dense layers). Finally, we conclude that the concat method
is the main approach of our model. We can see the results
in Table 2.

4.5. Ablation Studies

An ablation study was conducted to assess the contribu-
tion of different facial regions and fusion methods to the
performance of a facial expression recognition model. The
study’s results are delineated in two tables, presenting the
outcomes of the fine-tuning process and the fusion strate-
gies, respectively. From the first table, it’s evident that dif-

Method F1
w/o. MAE finetune, Fusion, Post-processing 0.236
w/o. Fusion,Post-processing 0.359
w/o. Post-processing 0.380
Ours 0.401

Table 3. Results of overall method of the validation set of Aff-
wild2

ferent facial features contribute variably to the accuracy of
the model. When the model does not use any cropped fea-
tures and utilizes the full face (normal), it achieves a base-
line accuracy of 0.512. However, when isolating the fea-
tures, the ’Eyes’ alone result in a lower accuracy (0.257),
which suggests that while the eyes are important for recog-
nizing some emotions, they are not sufficient on their own
however they can highlight where the expression is ’Fear’.
The ’Nose’ and ’Mouth’ features also show limited effec-
tiveness when used independently, with accuracies of 0.239
and 0.324, respectively.

Combining features improves the model’s performance,
with ’Eye + Mouth’ significantly improving the accuracy to
0.491. The combination of all three features (’Eye + Mouth

+ Nose’) further enhances the performance, yielding an ac-
curacy of 0.443. This implies that a holistic representation
of facial features, encompassing multiple regions, is more
effective for emotion recognition tasks.

The second table explores the effectiveness of different
feature fusion strategies. ’Mean’ fusion leads to an accu-
racy of 0.527, while ’Concat’ fusion slightly outperforms
it with an accuracy of 0.529, suggesting that concatenation
of features might be slightly more beneficial than averag-
ing them. Furthermore, advanced fusion strategies, such as
’UpDown + Mean’ and ’UpDown + Concat’, yield com-
parable results with accuracies of 0.518 and 0.520, respec-
tively. These methods appear to be robust, offering a bal-
ance between detail retention and abstraction.

As shown in Table 3, by implementing a sliding win-
dow approach with a window size of 50, a technique in-
formed by the study in [39], our models attained an overall
F1 macro score of 0.401. This indicates that selecting an
optimal smoothing window size, denoted as k, can signif-
icantly enhance the performance metrics observed on the
validation dataset.

The performance of our method in the 6th ABAW chal-
lenge as shown in Table 4, while not reaching the high mark
set by the leading team, Netease Fuxi AI Lab, does manage
to exceed the baseline. This indicates a promising direction
for our approach, suggesting that with further development,
there’s potential to bridge the gap to the SOTA performance.

Teams Test
Netease Fuxi AI Lab 0.5005
CtyunAI 0.3625
USTC-IAT-United 0.3534
HSEmotion 0.3414
M2-Lab-Purdue 0.3228
KBS-DGU 0.3005
SUN-CE 0.2877
Ours 0.2797
CAS-MAIS 0.265
IMLAB 0.2296
baseline 0.2250
Ours (Post challenge) 0.2866

Table 4. Result on the test set of 6th ABAW challenge
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5. Conclusion
In this study, we present an efficient approach for eval-

uating the performance of the Fusion MAE-Face technique
in uni-task expression analysis using the Aff-Wild2 dataset.
Our method improves the learning of facial expressions by
refining preprocessing steps that focus on facial features
while reducing interference from background pixels. The
model initially learns low-level features from two symmet-
ric perspectives separately and then combines these features
to learn high-level information through a process of fea-
ture fusion. Our tests on the Aff-Wild2 dataset show that
starting with pre-trained MAE-Face weights and integrat-
ing fusion attention mechanisms significantly enhances the
model’s ability to identify meaningful features. This allows
our method to outperform baseline models with less than
10% of the training data. Our methodology is innovative
and provides new insights into focusing on crucial local de-
tails and exploring how different views can enhance model
performance.

Acknowledgement
This research was funded by University of Economics

Ho Chi Minh City, Vietnam and AI VIETNAM.

References
[1] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and

Zhengyou Zhang. Training deep networks for facial expres-
sion recognition with crowd-sourced label distribution. In
Proceedings of the 18th ACM international conference on
multimodal interaction, pages 279–283, 2016. 1

[2] Carmen Bisogni, Aniello Castiglione, Sanoar Hossain, Fabio
Narducci, and Saiyed Umer. Impact of deep learning ap-
proaches on facial expression recognition in healthcare in-
dustries. IEEE Transactions on Industrial Informatics,
18(8):5619–5627, 2022. 1

[3] Daniel Canedo and António JR Neves. Facial expression
recognition using computer vision: A systematic review. Ap-
plied Sciences, 9(21):4678, 2019. 2

[4] Jia-Ren Chang, Yong-Sheng Chen, and Wei-Chen Chiu.
Learning facial representations from the cycle-consistency of
face. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9680–9689, 2021. 2

[5] Yunliang Chen and Jungseock Joo. Understanding and mit-
igating annotation bias in facial expression recognition. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14980–14991, 2021. 2

[6] Yin Chen, Jia Li, Shiguang Shan, Meng Wang, and Richang
Hong. From static to dynamic: Adapting landmark-aware
image models for facial expression recognition in videos.
arXiv preprint arXiv:2312.05447, 2023. 2

[7] Yin Fan, Xiangju Lu, Dian Li, and Yuanliu Liu. Video-based
emotion recognition using cnn-rnn and c3d hybrid networks.
In Proceedings of the 18th ACM international conference on
multimodal interaction, pages 445–450, 2016. 1

[8] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-
ity reduction by learning an invariant mapping. In 2006 IEEE
computer society conference on computer vision and pattern
recognition (CVPR’06), volume 2, pages 1735–1742. IEEE,
2006. 3

[9] Davis E King. Dlib-ml: A machine learning toolkit.
The Journal of Machine Learning Research, 10:1755–1758,
2009. 3

[10] Dimitrios Kollias. Abaw: Valence-arousal estimation, ex-
pression recognition, action unit detection & multi-task
learning challenges. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2328–2336, 2022. 5

[11] Dimitrios Kollias. Abaw: learning from synthetic data &
multi-task learning challenges. In European Conference on
Computer Vision, pages 157–172. Springer, 2023. 5

[12] Dimitrios Kollias. Multi-label compound expression recog-
nition: C-expr database & network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5589–5598, 2023. 5

[13] D Kollias, A Schulc, E Hajiyev, and S Zafeiriou. Analysing
affective behavior in the first abaw 2020 competition. In
2020 15th IEEE International Conference on Automatic
Face and Gesture Recognition (FG 2020)(FG), pages 794–
800. 5

[14] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Face behavior a la carte: Expressions, af-
fect and action units in a single network. arXiv preprint
arXiv:1910.11111, 2019. 5

[15] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Distribution matching for heterogeneous multi-
task learning: a large-scale face study. arXiv preprint
arXiv:2105.03790, 2021. 5

[16] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal esti-
mation, expression recognition, action unit detection & emo-
tional reaction intensity estimation challenges. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5888–5897, 2023. 5

[17] Dimitrios Kollias, Panagiotis Tzirakis, Alan Cowen, Ste-
fanos Zafeiriou, Chunchang Shao, and Guanyu Hu. The 6th
affective behavior analysis in-the-wild (abaw) competition.
arXiv preprint arXiv:2402.19344, 2024. 5

[18] Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A Nicolaou,
Athanasios Papaioannou, Guoying Zhao, Björn Schuller,
Irene Kotsia, and Stefanos Zafeiriou. Deep affect prediction
in-the-wild: Aff-wild database and challenge, deep architec-
tures, and beyond. International Journal of Computer Vision,
pages 1–23, 2019. 5

[19] Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect,
action unit recognition: Aff-wild2, multi-task learning and
arcface. arXiv preprint arXiv:1910.04855, 2019. 5

[20] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis
in-the-wild: Valence-arousal, expressions, action units and a
unified framework. arXiv preprint arXiv:2103.15792, 2021.
5

4790



[21] Dimitrios Kollias and Stefanos Zafeiriou. Analysing affec-
tive behavior in the second abaw2 competition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3652–3660, 2021. 5

[22] Shan Li, Weihong Deng, and JunPing Du. Reliable crowd-
sourcing and deep locality-preserving learning for expres-
sion recognition in the wild. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2852–2861, 2017. 1

[23] Ximan Li, Weihong Deng, Shan Li, and Yong Li. Com-
pound expression recognition in-the-wild with au-assisted
meta multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5734–5743, 2023.

[24] Yifan Li, Haomiao Sun, Zhaori Liu, Hu Han, and Shiguang
Shan. Affective behaviour analysis using pretrained model
with facial prior. In European Conference on Computer Vi-
sion, pages 19–30. Springer, 2022. 2, 3

[25] Liqian Liang, Congyan Lang, Yidong Li, Songhe Feng, and
Jian Zhao. Fine-grained facial expression recognition in the
wild. IEEE Transactions on Information Forensics and Se-
curity, 16:482–494, 2020. 2

[26] Mengyi Liu, Shaoxin Li, Shiguang Shan, and Xilin Chen.
Au-aware deep networks for facial expression recognition.
In 2013 10th IEEE international conference and workshops
on automatic face and gesture recognition (FG), pages 1–6.
IEEE, 2013. 2

[27] Zhentao Liu, Min Wu, Weihua Cao, Luefeng Chen, Jianping
Xu, Ri Zhang, Mengtian Zhou, and Junwei Mao. A facial ex-
pression emotion recognition based human-robot interaction
system. IEEE CAA J. Autom. Sinica, 4(4):668–676, 2017. 1

[28] Bowen Ma, Rudong An, Wei Zhang, Yu Ding, Zeng Zhao,
Rongsheng Zhang, Tangjie Lv, Changjie Fan, and Zhipeng
Hu. Facial action unit detection and intensity estima-
tion from self-supervised representation. arXiv preprint
arXiv:2210.15878, 2022. 4

[29] Bowen Ma, Wei Zhang, Feng Qiu, and Yu Ding. A unified
approach to facial affect analysis: the mae-face visual rep-
resentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5923–5932,
2023. 2

[30] Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Binling
Nie, and Aibin Huang. Poster++: A simpler and stronger
facial expression recognition network. arXiv preprint
arXiv:2301.12149, 2023. 2

[31] Ali Mollahosseini, Behzad Hasani, and Mohammad H Ma-
hoor. Affectnet: A database for facial expression, valence,
and arousal computing in the wild. IEEE Transactions on
Affective Computing, 10(1):18–31, 2017. 1, 4

[32] Ba Hung Ngo, Ba Thinh Lam, Thanh Huy Nguyen,
Quang Vinh Dinh, and Tae Jong Choi. Dual dynamic consis-
tency regularization for semi-supervised domain adaptation.
IEEE Access, 2024. 3

[33] Thanh-Huy Nguyen, Quang Hien Kha, Thai Ngoc Toan
Truong, Ba Thinh Lam, Ba Hung Ngo, Quang Vinh Dinh,
and Nguyen Quoc Khanh Le. Towards robust natural-
looking mammography lesion synthesis on ipsilateral dual-
views breast cancer analysis. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pages 2564–2573, 2023. 2

[34] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean conference on computer vision, pages 69–84. Springer,
2016. 3

[35] Bei Pan, Kaoru Hirota, Yaping Dai, Zhiyang Jia, Edwardo F
Fukushima, and Jinhua She. Adaptive key-frame selection-
based facial expression recognition via multi-cue dynamic
features hybrid fusion. Information Sciences, 660:120138,
2024. 2

[36] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 3

[37] Andrés Romero, Juan León, and Pablo Arbeláez. Multi-view
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