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Abstract

Emotional Mimicry Intensity (EMI) estimation aims to
identify the intensity of mimicry exhibited by individuals in
response to observed emotions. The challenge in EMI esti-
mation lies in discerning nuanced facial expression cues on
mimicry behaviors based on the seed video and the text in-
structions. In this paper, we propose a multi-modal EMI es-
timation framework by leveraging visual, auditory, and tex-
tual modalities to capture a comprehensive emotional pro-
file. We first extract representations for each modality sep-
arately and then fuse the modality-specific representations
via a Temporal Segment Network, optimizing for temporal
coherence and emotional context. Furthermore, we find that
participants demonstrate notable proficiency in mimicking
text instructions, yet exhibit less effectiveness in replicat-
ing facial expressions and vocal tones. In light of this, we
design a contrastive learning mechanism to refine the ex-
tracted feature based on textual guidance. By doing so,
features derived from similar text instructions are closely
aligned, enhancing the estimation of emotional mimicry in-
tensity by leveraging the dominant textual modality. Exper-
iments conducted on the Hume-Vidmimic2 dataset illustrate
the effectiveness of our framework in EMI estimation. Our
framework is recognized as the leading solution in the Emo-
tional Mimicry Intensity (EMI) Estimation Challenge at the
6th Workshop and Competition on Affective Behavior Anal-
ysis in-the-wild (ABAW). More information for the Compe-
tition can be found in: 6th ABAW.

1. Introduction

Emotional Mimicry Intensity (EMI) refers to the degree to
which individuals mimic the emotional expressions, voices,
or gestures of others during social interactions [35, 38, 39,
41, 42]. With the development of artificial intelligence tech-
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nology, how to utilize AI systems to accurately identify and
respond to human emotional states has drawn a widespread
concern [22, 66]. This task is crucial for improving Human-
Computer Interaction (HCI), enabling computers and robots
to respond more naturally and making interactions more en-
gaging and effective [20, 57, 67].

To investigate the analysis of emotional behavior in real-
world environments, the 6th Affective Behavior Analysis
in-the-wild (ABAW) Competition [33–42, 42, 43, 82] es-
tablishes a track for the Emotional Mimicry Intensity Es-
timation Challenge. This challenge focuses on analyzing
and assessing the emotional intensity that participants ex-
hibit when they mimic or respond to emotions displayed
in a “seed” video. It employs the multi-modal Hume-
Vidmimic2 [43] dataset, which consists of 15,000 videos,
totaling more than 25 hours of content. Participants in these
videos imitate the emotional expression seen in the seed
videos and then evaluate the intensity of these emotions
across several dimensions, such as “Admiration”, “Amuse-
ment”, “Determination”, “Empathic Pain”, “Excitement”,
and “Joy”.

In this paper, we propose an effective Emotional
Mimicry Intensity estimation framework by fully integrat-
ing the emotional features from multi modalities i.e., visual,
audio, and text. In this competition, we mainly focus on the
following two aspects: (1) how to obtain the advantageous
modal representations and (2) the impact of various modali-
ties on the accuracy of emotional mimicry. We demonstrate
that these are the two key factors for achieving a more ro-
bust emotional intensity assessment approach.

To achieve the first objective, we employ three large-
scale foundation models as our feature extractors, i.e., the
Masked Auto Encoding (MAE) [25, 84], the Wav2Vec2 [3],
and the ChatGLM3 [17, 83]. Note that, since the MAE is
pre-trained on the large-scale general dataset, which priori-
tizes broad feature representation, we fintune the model on
AffectNet [53]. In this fashion, the visual feature extractor
is more suitable for the emotion analysis task. Wav2Vec2
[3] and ChatGLM3 [17, 83] are trained on large and diverse
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datasets, and we directly leverage their pre-trained models
to extract audio and text features, respectively. Then we
devise a Temporal Segment Network to fuse the specific
multi-modal representations. Specifically, we employ the
GRUs (BiGRUs) to model the temporal information and in-
tegrate emotional cues from various modalities.

Moreover, we observe that the impact of various modal-
ities varies in the seed video on mimicry accuracy. Com-
pared with audio and visual cues, text instructions can pro-
vide the mimicry with more explicit guidance. Inspired by
this, we consider the text feature as the primary feature and
leverage contrastive learning [17, 83] to narrow the gap be-
tween the three modalities. This design enhances the cor-
relation between different modalities, allowing our model
to better integrate and utilize various information, thereby
improving the emotional intensity estimation accuracy.

Experiments conducted on the official validation dataset
demonstrate the effectiveness of our method designs. More-
over, our team (i.e., NetEase Fuxi AI Lab) attain first place
in the EMI track, further proving the generalization capabil-
ity of our method. Overall, our contributions are two-fold:

• We leverage the large foundation models to generate
the multi-modal representations and integrate them via a
Temporal Segment Network. This enriches the emotional
features at the spatial and temporal dimensions.

• We regard the text feature as a guiding force and align the
multimodal features with it. This enhances the general-
ization ability and estimation performance of our model.

2. Related Work
2.1. Emotional Mimicry Intensity Estimation

Emotional mimicry, defined as the automatic replication of
another’s non-verbal expressions, has long been recognized
as a fundamental component in the communication of af-
fective states [4, 21]. Lipps [45] and Rogers [58] posit
that mimicry facilitates empathic communication and of-
fers insights into an individual’s internal state, a concept
further embraced by various therapeutic practices [65]. Fa-
cial mimicry, often described as a reflex-like, automatic
process [24, 27, 45, 76–81], involves an observer’s facial
expressions mirroring those observed, contributing to emo-
tional contagion—a phenomenon where an individual’s af-
fective state aligns with that of another. Despite the close re-
lationship between mimicry and emotional contagion, dis-
tinctions are made, with mimicry pertaining solely to ex-
pressive components and contagion encompassing affective
states [24].

Empirical evidence [26] support the prevalence of
mimicry across various behaviors and age groups, high-
lighting its role in congruent emotional displays. However,
instances of counter-mimicry, as found in competitive ver-

sus collaborative settings [26, 44] suggest that mimicry’s
automaticity may be influenced by context and task type.
Moreover, the relationship between mimicry and emotion
recognition remains complex. While mimicry is hypoth-
esized to facilitate emotional understanding through feed-
back mechanisms [27, 45], recent findings challenge this
assumption, indicating no significant link between mimicry
and enhanced emotion recognition [5, 23, 26].

The context-dependency of mimicry, particularly in
response to less prototypical and more natural expres-
sions [23, 26, 44], as well as its modulation by personal
attitudes [6, 26, 52], suggests a nuanced understanding of
mimicry, beyond reflex-like responses to extreme stimuli.
This insight raises questions about the everyday applicabil-
ity of mimicry and its role in emotion recognition, espe-
cially when employing prototypical, intense expressions as
stimuli.

Prior research on quantifying emotional mimicry has re-
lied on facial muscle activity measured through electromyo-
graphy (EMG) or the Facial Action Coding System (FACS)
applied to facial movements [18]. While these methods of-
fer precise measurement, they are either invasive (EMG)
or require extensive manual analysis (FACS). To address
these limitations, recent work has explored utilizing com-
puter vision and statistical techniques for automatic esti-
mation of facial expressions, postures, and emotions from
video recordings [13, 31, 63, 64, 70]. This video-based
approach offers a non-invasive, automatable, and scalable
solution for real-world applications like human-agent inter-
action, albeit with the current drawback of potentially lower
precision compared to physiological signal-based measure-
ments. In this work, by leveraging multi-modal data, in-
cluding visual, audio, and textual inputs, we aim to enrich
the quality of expression features derived, thereby enhanc-
ing the robustness and applicability of emotion recognition
systems [48, 55, 84–87] in complex, uncontrolled environ-
ments.

2.2. Multi-modal Feature Extraction

Multi-modal Feature Extraction plays a pivotal role in
enhancing the performance of emotion recognition sys-
tems [30, 32, 46, 47, 54, 62, 87] by leveraging diverse
sources of information. In the realm of audio features, the
adoption of models such as Wav2Vec 2.0 [3], HuBERT [28],
and WavLM [10] exemplifies the trend towards utilizing
self-supervised learning techniques to capture rich speech
representations from large-scale unlabeled audio data [7, 8,
72]. Specifically, the Wav2Vec 2.0 [3] framework, with
its predictive audio encoder and quantization module, has
been instrumental in learning nuanced speech representa-
tions that are highly beneficial for emotion-related tasks.

The evolution of text features has been markedly accel-
erated with the advent of Large Language Models (LLMs),
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Figure 1. The overview of our proposed framework. First, we extract unimodal features from images, audio, and text separately. Then, we
introduce a temporal augmentation module to sample image feature sequences, enhancing their temporal generalizability. We consider the
text modality as the leading modality and introduce contrastive learning to align the final multimodal features with text features. Finally,
we use a late fusion strategy to obtain the multimodal features and estimate the intensity of emotions.

such as LLaMA [69], GLM [16], and GPT [1]. These mod-
els, by virtue of their vast parameter scales and extensive
pre-training on diverse corpora, have significantly outper-
formed traditional models in extracting text features that
are more effective for emotion recognition [74]. The use
of LLMs in combination with instruction tuning techniques
has further pushed the boundaries, enabling these models to
adapt more effectively to the task-specific nuances of emo-
tion recognition from textual data.

Video feature extraction [9, 15, 19, 25] has also seen no-
table advancements with the integration of models like Vi-
sion Transformer (ViT) [14] and Facial Action Unit (FAU)
detectors [29]. The use of ViT, particularly those pre-
trained methods such as Masked Autoencoder (MAE) [25]
and DINO [9], underscores the shift towards self-supervised
learning paradigms in the video domain [68]. In this paper,
our designed framework allows for the extraction of facial
features that are more aligned with emotional expressions,
thereby enhancing the overall efficacy of multi-modal emo-
tion recognition systems.

3. Method

This section presents our multimodal framework designed
to estimate the emotional mimicry intensities of individu-
als in videos. Our method consists of three branches, each
extracting unimodal features from images, audio, and text,
respectively. To enhance the generalizability of the model,
we introduced a temporal augmentation module to sample
the feature sequences. Then, we use a late fusion strategy to
integrate multimodal features for estimating the intensities
of six mimicry emotions. Additionally, we position text as
the dominant modality and introduce contrastive learning to
constrain the final output results.

3.1. Unimodal feature extraction

We define the input face images for the visual branch as
Xv ∈ {I1, I2, .., It, ...IT }, where T is the number of total
frames and It is the t-th image in an image sequence.

3.1.1 Visual feature

For visual features, we utilize the vision transformer (ViT)
[14] model as the visual encoder to extract spatial feature
fv ∈ RT×dv from each frame, where dv is the feature
dimension of the output in ViT encoder. To obtain more
robust visual features, our ViT encoder is trained in two
steps. First, in a self-supervised manner, we employ the
masked auto encoding (MAE) method to train the model
on an image reconstruction task in an unlabeled large-
scale face dataset, which includes AffectNet [53], CASIA-
WebFace [73], CelebA [49] and IMDB-WIKI [59]. Specif-
ically, we train a model comprising a ViT encoder and a de-
coder. The input of the model is a facial image with a large
portion (75%) of patches masked, and it is required to re-
construct raw pixel values and output the complete original
image. MAE is capable of learning a network with excel-
lent generalization ability. After training, we retain only the
ViT encoder as our visual encoder.

In the second step, we add two fully connected layers
after the ViT encoder and then finetune the model on an
expression classification task. The purpose of this step is
to enhance the model’s ability to understand specific down-
stream tasks, specifically improving the network’s capabil-
ity to analyze emotional behaviors. This enables us to ex-
tract more effective visual features for our final task. More
specifically, we finetune the ViT encoder on the Affect-
Net [53] dataset. Our model achieves the top-1 accuracy of
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69.77% and F1 score of 0.3515 on the test set of AffectNet.
After completing the training, we freeze the parameters of
the ViT encoder, using it as our visual encoder to extract fa-
cial expression features from images. We denoted our ViT
as EmoViT.

3.1.2 Audio feature

We utilize a speech model, Wav2Vec2 [3] to extract au-
dio features fa ∈ RT×da from the raw wavefrom of the
speech signal, where da is the feature dimension of the out-
put. Wav2Vec2 conceals parts of the speech input within the
latent space and addresses a contrastive task that is defined
based on a quantization of the latent representations, which
are learned simultaneously.

3.1.3 Text feature

To extract text features, we first need to transcribe the text
from the audio. In this work, we use Whipser [56] to convert
the speech into text. Whisper is a state-of-the-art automatic
speech recognition (ASR) system developed through train-
ing on approximately 680,000 hours of supervised multilin-
gual and multitask data sourced from the internet. The ex-
tensive and varied nature of this dataset enhances its adapt-
ability to various accents, and resilience against background
accents, background noise, and technical language. Ad-
ditionally, this system supports transcription in numerous
languages and offers capabilities for translating these lan-
guages into English.

After that, we incorporate a large language model (LLM)
to extract text features. Large language models stand out for
their capacity to perform general-purpose language genera-
tion and to tackle various natural language processing tasks,
such as classification, text generation and emotion analy-
sis. LLMs develop these capabilities by learning statistical
correlations from text documents during a computationally
intensive self-supervised and semi-supervised training pro-
cess. Specifically, we use ChatGLM3 [17, 83] as the text
encoder to extract features ft ∈ RT×dt from words, where
dt is the feature dimension of the output. To ensure the ac-
curacy of text extraction, we used the Fuxi Youling Crowd-
sourcing Platform and Fuxi Agent-Oriented Programming
(AOP) System for text verification.

3.2. Temporal augmentation

Given the considerable variation in the number of frames
T across videos, we implement a segment-based sampling
approach akin to the one utilized in Temporal Segment Net-
works (TSN) [71]. This strategy allows our model to cap-
ture the temporal characteristics of the entire video, inde-
pendent of its duration. Moreover, this approach also serves
as a form of temporal augmentation. Performing random

sampling within each video segment effectively broadens
the model’s capacity for temporal generalization.

Specifically, for a sequence of features F , we divide
it into K segments {F1,F2, ...,Fk} with the same frame
number. And then we sample one frame from each seg-
ment randomly to form a new sequence of feature F̂ ∈
{f1, f2, .., fK} with K frames.

Following the temporal augmentation module, or each
of the three modalities, we employ a separate Bidirectional
Recurrent Unit (BiGRU) block to aggregate contextual in-
formation, thereby extracting temporal features from se-
quences. Our BiGRU block consists of two BiGRU lay-
ers following a layer normalization [2] and a linear layer.
To further augment the feature representation capacity, we
additionally use a linear layer to produce the final 256-
dimensional unimodal features f̂v , f̂a and f̂t for image, au-
dio, and text, respectively.

3.3. Late fusion

When expressing and understanding emotions, signals from
different modalities often complement each other. To con-
duct a more comprehensive analysis of emotions and avoid
overfitting to any specific modality during training, we em-
ployed a late-fusion approach to integrate features from
multiple modalities.

Specifically, we simply use an average pooling layer of
three features f̂v , f̂a and f̂t extracted by visual, audio, and
text branches, respectively. To enhance the generalization
ability of the model, two fully connected layers following a
dropout layer are adopted to estimate the emotional intensi-
ties. Because the value range of labels is between 0 and 1,
we add a sigmoid activation function to normalize the pre-
dicted results to (0,1). The process can be formulated as:

ŷ = Sigmoid(FC(AvgPool(f̂v, f̂a, f̂t))) (1)

where ŷ denotes the predicted intensity.

3.4. Text-based contrastive learning

Our experiments reveal that the dominant modality for emo-
tional mimicry intensity estimation is the textual modality
(refer to Table 1). This is attributed to the dataset’s collec-
tion method, which involves imitating a seed video. Partic-
ipants are generally able to mimic the dialogue accurately,
but their imitation of facial expressions and tone of voice
is less precise. Therefore, based on contrastive learning,
we introduced a triplet loss based on textual features. This
means constraining the relative distances of the output re-
sults to align with the relative distances of the input text
features.

To be specific, we first use a Global Average Pooling
layer to the word features extracted by ChatGLM3 along
the temporal dimension, resulting in a one-dimensional text
feature. During the training process, we randomly sample
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three examples from a mini-batch to form a triplet. Based
on the relative distances of their text features, we label them
as anchor, positive, and negative, respectively. Within a
triplet, the distance from the anchor to the positive should
be smaller than the distance from the anchor to the nega-
tive. Then, we utilize the triplet loss to constrain the final
prediction results, which is calculated as follows:

f̂ = AvgPool(f̂v, f̂a, f̂t) (2)

Ltriplet = max

(
0,
∥∥∥f̂anc − f̂pos

∥∥∥2 − ∥∥∥f̂anc − f̂neg

∥∥∥2 + γ

)
+max

(
0,
∥∥∥f̂anc − f̂pos

∥∥∥2 − ∥∥∥f̂pos − f̂neg

∥∥∥2 + γ

)
(3)

where f̂ is the multimodal features fused by three unimodal
features, f̂anc and f̂pos are interchangeable with each other,
γ is a enforced margin and set to 0.1.

4. Experiment

4.1. Dataset

For the Emotional Mimicry Intensity Estimation Challenge,
we utilize the multimodal Hume-Vidmimic2 [11] dataset,
which aims to address the problem of acquiring data re-
lated to human affective behavior. In this dataset, subjects
are required to mimic the individuals in the seed videos.
Subsequently, the seed videos need to be annotated with
the intensity of seven specified emotions, e.g. Admiration,
Amusement, Determination, Empathic Pain, Excitement,
and Joy. In total, Hume-Vidmimic2 collects more than
15,000 videos, with a total duration exceeding 25 hours.

4.2. Experimental Setting

We first extract frames from all videos in the Hume-
Vidmimic2 database by OpenCV. Then we utilize Reti-
naFace [12] for face detection and subsequently crop the
facial images from the original pictures. Besides that, we
employ a speech recognition model, Whisper [56], to tran-
scribe the spoken words in the videos, facilitating the ex-
traction of text features for subsequent analysis.

Before fed into the network, all facial images are uni-
formly resized to a dimension of 224 × 224. The exper-
imental codebase is developed in the PyTorch framework,
with the training and validations executed on NVIDIA A30
GPUs. For optimization, we use AdamW[51] as our op-
timizer and set the size of the mini-batch to 16. When
training the multimodal network, we set different learning
rates for the various modules. Specifically, for the visual
feature extraction module, we set the learning rate at 1e-6;
for the text and audio feature extraction modules, we use

Table 1. Comparison of the results of emotion mimicry intensity
estimation models trained on different features.

Visual Audio Text ρ

ViT 0.0873
EmoViT 0.1685

ViT
+EmoViT

0.1490

Wav2Vec2 0.2576
HuBERT 0.1472

Wav2Vec2
+HuBERT

0.2028

ChatGLM3 28th 0.4665
ChatGLM3 21st 0.4846
ChatGLM3 14th 0.4842

ChatGLM3 28th lora 0.4592
ChatGLM3 21st

+ChatGLM3 28th
0.4879

EmoViT HuBERT
ChatGLM3 21st

+ChatGLM3 28th
0.4931

Table 2. Comparison of the results of emotion mimicry intensity
estimation models with different settings.

Temporal
Augment EMA

Triplet
Loss Fusion ρ

× × × Average 0.4931
× × × Concatnate 0.4879

× × × Multimodal
Transformer 0.4645

✓ × × Average 0.5124
✓ ✓ × Average 0.5247
✓ ✓ ✓ Average 0.5851

a learning rate of 1e-4. As for the final multimodal fea-
ture fusion module, we apply a learning rate of 1e-6. The
learning rate is dynamically adjusted according to the Co-
sine Annealing [50] strategy, featuring a minimum learning
rate of 1e-8 and restart epochs every 5 cycles. To ensure
optimal training duration and efficiency, an early-stopping
mechanism is enforced, activating after a patience interval
of 10 epochs. To further ensure the stability of the training
phase, the Exponential Moving Average (EMA) strategy is
adopted, characterized by a decay rate of 0.999.

4.3. Metrics

For the Emotional Mimicry Intensity Estimation Challenge,
we evaluate the performance by averaging Pearson’s corre-
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Table 3. The Pearson’s correlations of models that are trained and tested on different folds (including the original training/validation set of
Hume-Vidmimic2).

Admiration Amusement Determination Empathic Pain Excitement Joy Average

Official 0.7155 0.6159 0.6303 0.3488 0.6174 0.5793 0.5851
fold-1 0.6305 0.6355 0.6242 0.6070 0.6399 0.6322 0.6282
fold-2 0.6365 0.6419 0.6319 0.6124 0.6450 0.6397 0.6346
fold-3 0.6399 0.6450 0.6353 0.6150 0.6490 0.6451 0.6382
fold-4 0.6509 0.6526 0.6436 0.6266 0.6554 0.6560 0.6475
fold-5 0.6442 0.6488 0.6397 0.6197 0.6509 0.6491 0.6421

lations (ρ) across the 6 emotion dimensions, defined as:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(4)

PEMI =

∑6
c=1 ρc
6

. (5)

where n is the number of data points, xi and yi are the indi-
vidual sample points indexed with i, x̄ and ȳ are the means
of the samples X and Y , respectively. The coefficient ρ
ranges from -1 to 1. A value of 1 implies a perfect positive
linear relationship, -1 implies a perfect negative linear re-
lationship, and 0 implies no linear relationship between the
variables. And c represents the category ID.

4.4. Results

4.4.1 Comparison of different features.

First, we compared the results of different unimodal
features based on the official validation set of Hume-
Vidmimic2, which are shown in Table 1. For the vi-
sual modality, it can be observed that the EmoViT perfor-
mance, which we pre-trained on a large-scale face dataset,
significantly surpasses the official ViT features, achiev-
ing a ρ of 0.1685. Subsequently, we attempted to fuse
the ViT and EmoViT features, but this resulted in a de-
crease in performance. For the audio modality, the official
Wav2Vec2 features significantly outperform the HuBERT
features, achieving a ρ of 0.2576. However, the fusion of
the two also resulted in a decrease in performance.

In addition to audio and visual modalities, we also uti-
lized text features for estimating emotion intensity. Specifi-
cally, we employed ChatGLM3 [16, 83] to extract text fea-
tures, which is a generation of pre-trained dialogue mod-
els jointly released by Zhipu AI and Tsinghua KEG. We
attempted to use different layers of hidden states in Chat-
GLM3 and found that the 21st layer produced the best re-
sults. We also tried fusing features from the 21st and 28th
layers, which led to a slight improvement, with the ρ in-
dex reaching 0.4879. Furthermore, inspired by previous

Table 4. Final competition results of the Emotional Mimicry In-
tensity Estimation Challenge. The ρ is evaluated on the test set of
the Hume-Vidmimic2 test set.

Rank Teams ρ

#1 Netease Fuxi AI Lab 0.7185
#2 HCAI-VIS [61] 0.5536
#3 USTC-IAT-United [75] 0.3594
#4 HSEmotion [60] 0.3316
- baseline [43] 0.48

work [74], we attempt to first finetune ChatGLM3 on this
task and then extract features for training. However, we
find that performance slightly decreased.

Finally, we select the EmoViT feature, HuBERT fea-
ture, and the 21st and 28th layers of ChatGLM3 as uni-
modal features for training a multimodal network, achiev-
ing a ρ of 0.4931. We find that in this challenge, the text
modality’s features are dominant, outperforming the other
two modalities significantly. Even with the fusion of mul-
timodal features, performance was only slightly better than
that of the single text modality. We believe this is related
to the data collection method of Hume-Vidmimic2, which
requires subjects to imitate a seed video. Often, subjects
cannot accurately replicate the facial expressions and tone
of voice from the seed video, but they can generally repro-
duce the spoken words quite well. Therefore, in this task,
the importance of the text modality far exceeds the other
two modalities.

4.4.2 Comparison of different settings.

As can be seen in Table 2, we also conduct extensive ex-
periments with different settings to further investigate the
effectiveness of our used components, including Temporal
Augment, EMA, Triplet Loss and different fusion strategy.
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4.4.3 Validation results

To further enhance the generalization ability and test the
models’ performance, we use 5-fold cross-validation to
train multiple models and then ensemble them. We com-
bine the training and validation set of the Hume-Vidmimic2
dataset. Then we split them into 5 folds randomly train the
model on 4 folds of them and take the rest on as the valida-
tion set. The results can be found in Table 3.

4.4.4 Competition results

For Emotional Mimicry Intensity (EMI) Estimation Chal-
lenge, we need to predict the intensity of 6 predefined emo-
tions of the videos from the test set of Hume-Vidmimic2.
The results can be seen in Table 4. Our method achieves
a average ρ of 0.7185 and wins the first place in the EMI
Estimation Challenge.

5. Conclusion
In this work, we propose a multi-modal framework for emo-
tional mimicry intensity estimation. We explore multiple
effective features for different modalities and incorporate
temporal augment module to improve the model’s general-
ization ability. Additionally, we find that text features are
the most important for this task across different modalities.
Therefore, we introduced contrastive learning to refine the
extracted multimodal features. Our method shows supe-
rior performance and win the first place in the Emotional
Mimicry Intensity (EMI) Estimation Challenge of ABAW6.

6. Acknowledgments
The experiments and the data management and stor-
age are supported by NetEase Fuxi Youling platform,
based on Fuxi Agent-Oriented Programming (AOP)
system that is carefully designed to facilitate task mod-
eling. This work is also supported by the National
Key R&D Program of China (No. 2022YFF09022303).

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli. wav2vec 2.0: A framework for self-supervised
learning of speech representations. Advances in neural infor-
mation processing systems, 33:12449–12460, 2020. 1, 2, 4

[4] Janet B Bavelas, Alex Black, Charles R Lemery, and Jen-
nifer Mullett. ” i show how you feel”: Motor mimicry as a
communicative act. Journal of personality and social psy-
chology, 50(2):322, 1986. 2

[5] Sylvie Blairy, Pedro Herrera, and Ursula Hess. Mimicry
and the judgment of emotional facial expressions. Journal
of Nonverbal behavior, 23:5–41, 1999. 2

[6] P Bourgeois and U Hess. Emotional reactions to political
leaders facial displays: a replication. In Psychophysiology,
pages S36–S36. CAMBRIDGE UNIV PRESS 40 WEST
20TH STREET, NEW YORK, NY 10011-4211 USA, 1999.
2

[7] Jean-Pierre Briot and François Pachet. Deep learning for mu-
sic generation: challenges and directions. Neural Computing
and Applications, 32(4):981–993, 2020. 2

[8] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pa-
chet. Deep learning techniques for music generation–a sur-
vey. arXiv preprint arXiv:1709.01620, 2017. 2

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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sors and artificial intelligence methods and algorithms for
human–computer intelligent interaction: A systematic map-
ping study. Sensors, 22(1):20, 2021. 1
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