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Abstract

This paper examines the video-based facial expression
recognition and action unit detection tasks. We propose to
use pre-trained EmotiEffNet models for frame-level facial
feature extraction and feed them into the Temporal Con-
volutional Networks to take into account the dynamics of
facial expressions. In addition, we study the possibility of
combining facial processing with audio feature extraction
to improve the accuracy of audio-visual expression recogni-
tion. Experimental results for two tasks from the sixth Affec-
tive Behavior Analysis in-the-Wild challenge demonstrate
that our approach lets us significantly improve quality met-
rics on validation sets compared to existing non-ensemble
techniques. As a result, our approach took third place in
the action unit detection and fourth place in the expression
recognition.

1. Introduction
Emotion recognition has garnered substantial interest due to
its potential applications in various fields, including human-
computer interaction, virtual reality, mental health assess-
ment, and multimedia content analysis [5, 9, 56]. Conven-
tional machine learning techniques face challenges in ac-
curately categorizing human emotions, highlighting the ne-
cessity for advanced approaches to effectively interpret the
intricate and subtle nuances of human emotions conveyed
through audio-visual cues.

The rapid progress in deep learning and neural net-
work algorithms has created new opportunities to enhance

the accuracy and reliability of emotion recognition sys-
tems [21, 22]. Utilizing neural network models allows for
the automatic extraction of high-level representations from
raw audio and visual data, enabling more effective recogni-
tion of subtle emotional cues and expressions. Despite the
promising potential of deep learning, the research gaps and
contextual emotion recognition issues still exist.

Companies, research institutions, and developer teams
collaborate to create highly accurate emotion recognition
algorithms. For example, the recent studies have shown the
benefits of 3D representations [10, 28–30] and multi-modal
techniques [54, 57]. One of the most famous competitions
to compare the quality of these algorithms is the Affective
Behavior Analysis in-the-wild (ABAW) [15, 17, 19, 20, 23–
26, 55]. The main tasks in recent ABAW Challenges
were frame-level, video-based, facial expression recogni-
tion (EXPR) and action unit (AU) detection [16]. Using
a model based on EfficientNet [42], precise results were
achieved across all tasks [12, 38, 39, 61]. The team that pro-
posed an audio-visual fusion model combining transform-
ers and temporal convolutional networks (TCN) took third
place in the EXPR competition [61].

Notably, one of the most promising outcomes was
achieved using an ensemble of audio-visual transformer-
based models, incorporating fine-tuned masked autoen-
coder (MAE) technology [58]. However, most previously
proposed techniques are expensive in terms of both memory
and running time. Some researchers did not fully appreciate
the unique characteristics of transformers, specifically re-
garding the difficulty in accounting for the relationship be-
tween frames in frame-level classification [34], which leads
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to a decrease in generalization and the need for retraining.
In this paper, we describe a novel methodology to utilize

the lightweight models from the EmotiEffNet-family [44],
as well as the MobileViT [32], MobileFaceNet [4], and
DDAMFN [56]. We also discuss various architectures
and methodologies employed to address these challenges.
Additionally, we present a successful implementation of
a sequential classification method based on the Temporal
Convolutional Network (TCN). The training methodology
played a significant role. Specifically, applying weighting to
the loss function to avoid overfitting and accounting for con-
textual distortions due to box transformations (i.e., smooth-
ing of predictions) were essential considerations.

The remaining part of the paper is organized as follows.
In Section 2, we review the methodologies used by partic-
ipants in the Emotion Classification and Action Unit De-
tection Challenge, identifying common approaches and an-
alyzing their results. Section 3 describes our approach, de-
tailing the models used to extract features and the design
of methods employed to solve the given tasks. Addition-
ally, we address the nuances of learning and predicting out-
comes. Following this, we compare and analyze the exper-
imental results of our approach with existing competitors
in Section 4, concluding the evident advantages and limita-
tions of each technique in Section 5.

2. Related work

The trend towards using sequence processing techniques
(e.g., transformers and competitive neural networks) is
growing. Some teams are expanding their efforts by incor-
porating additional modalities, improving their methods by
applying new techniques, or increasing the depth of their
models. This indicates that, despite the availability of well-
established methods at present, there is still significant po-
tential for further performance improvement. Let us briefly
describe the details of two tasks from the sixth ABAW com-
petition: facial expression recognition and AU detection.

2.1. Facial Expression Recognition

This task is a multi-class classification problem, which aims
to accurately recognize one of eight emotions at a given mo-
ment (on a frame-by-frame basis). Kollias et al. [26] pro-
vided information on the number of instances in each class
(Table 1). Here, the disparity in class levels makes the task
very challenging.

Compared to the results from ABAW 2023 [16], the met-
ric’s performance has significantly [43] improved (F1 score:
0.4094→ 0.5005). The winners are Zhang et al. [59], who
use audio and video modalities. Their concept has been
maintained: the authors employ the MAE encoder that has
been fine-tuned on a large dataset to highlight visual fea-
tures and VGGish to extract audio-specific features. An

Table 1. Expression Classification Challenge: Number of Anno-
tated Images for each Expression

Expressions Number of frames

Neutral 468,069
Anger 36,627

Disgust 24,412
Fear 19,830

Happiness 245,031
Sadness 130,128
Surprise 68,077

Other 512,262

encoder transformer is also used to take contextual informa-
tion into account. The model is based on ensemble learning,
and a Gaussian filter has been used to reduce the impact of
outliers. Although this method is considered the most accu-
rate, it is still rather expensive.

Zhou et al. [62] achieved the top two positions in this
task. They followed a similar approach to last year, using
TCN. However, their methodology changed in visual sign
recognition, and inspired by the work of Zhang et al. [59],
the researchers decided to adapt MAE to identify visual
signs and enhance the metric indicator.

The distinctive features of TCNs include 1) employing
causal convolutions to prevent information leakage from fu-
ture to past and 2) enabling the processing of sequences
of varying lengths, akin to RNNs, while also emphasiz-
ing strategies for achieving extended effective history sizes
through the use of deep networks with residual layers and
dilated convolutions [3].

Jun et al. [53] proposed a slightly different method for
solving this problem. They used semi-supervised learning
[28] to do so. The key difference between this approach and
others lies in selecting data to ensure an even distribution of
examples and using data augmentation methods to enhance
robustness.

2.2. Action Unit Detection

The action unit detection task is a multi-label classification
problem. The main challenge lies not only in the balanc-
ing of the data but also in the rapidity of changes in facial
expressions. In total, there are 12 different classes, with a
specific distribution that is illustrated by the organizers of
this challenge [26] (Table 2).

The methods listed in Subsection 2.1 are also used to
solve this task. This indicates the variability and correla-
tion among approaches to emotion understanding. How-
ever, several papers have concentrated only on AU detec-
tion. For example, the fifth team in the ABAW-5 competi-
tion used the Regnet backbone, which was implemented in
the video Vision Transformer [46]. The local region percep-
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Table 2. Action Unit Detection Challenge: Distribution of AU
Annotations in Aff-Wild2

Action Unit # Action
Total Number

of Activated AUs

AU 1 inner brow raiser 301,102
AU 2 outer brow raiser 139,936
AU 4 brow lowerer 386,689
AU 6 cheek raiser 619,775
AU 7 lid tightener 964,312
AU 10 upper lip raiser 854,519
AU 12 lip corner puller 602,835
AU 15 lip corner depressor 63,230
AU 23 lip tightener 78,649
AU 24 lip pressor 61,500
AU 25 lips part 1,596,055
AU 26 jaw drop 206,535

tion was introduced in [52] based on a graph neural network
relational learning module and IResnet100 feature extractor
pre-trained on pre-trained on Glint360K. The high accuracy
was obtained by the spatio-temporal representation learn-
ing [50] with MAE and temporal graph embeddings [31].
Finally, an ensemble of six transformer-based models that
analyze various visual (IresNet-100, MobileNet, MAE, etc.)
and audio (wav2vec, fbank, etc.) features was presented
in [8]. Though such complex models may reach state-of-
the-art results, their practical usage is limited due to high
runtime and space complexity [37]. The following section
introduces an approach based on lightweight visual models.

3. Methodology
3.1. Overview

In this paper, the facial features are extracted from each
frame by using the lightweight neural networks from HSE-
motion library [7, 13], such as EmotiEffNet [39] and
several models pre-trained in multi-task (MT) fashion,
namely, MT-EmotiEffNet [40], MT-EmotiMobileFaceNet,
MT-DDAMFN and MT-EmotiMobileViT [41]. While this
method may not be the most advanced approach for a spe-
cific dataset, it highlights the critical need for a model capa-
ble of emotion analysis that can function in real-world un-
controlled environments. As a result, feed-forward neural
networks similar to those used in this study are employed
for facial expression recognition and AU detection in the
ABAW Challenge using the Aff-Wild2 dataset [18]. These
models are trained on all annotated frames from the compe-
tition training sets.

Another approach is based on the research conducted by
CtyunAI [61], which has been at the forefront of the field
for several years. This approach utilizes the TCN model for

continuous emotion recognition.
In this paper, we proposed to combine EmotoiEffNet fea-

tures and TCN. The complete model is presented in Fig. 1.
Here, we compute several audio features and combine them
with EmotiEffNet-based facial embeddings in several TCN
models. Their outputs are concatenated and fed into a multi-
layer perceptron (MLP) to predict facial expressions or ac-
tion units. Let us describe the details of our approach.

3.2. Audio features

We employ the wav2vec 2.0 model [2] to extract audio fea-
tures and utilize this embedding for our EmotiEffNet model.
The wav2vec 2.0 applies a mask to the speech input in latent
space and solves a contrastive learning task defined over the
quantized latent representations, which are learned jointly.

We also identify a range of additional acoustic fea-
tures by utilizing OpenL3 [1, 6], wav2vec2-hubert [51] and
wav2vec2-large-robust-emotion [47] models.

OpenL3 is an embedding trained through self-supervised
learning of audio-visual correspondence in videos instead
of other embeddings requiring labeled data. This frame-
work can potentially produce powerful out-of-the-box em-
beddings for downstream audio classification tasks. Still,
several unexplained design choices may impact the embed-
dings’ behavior [6]. It has several hyperparameters that can
be tuned to highlight specific features. One of these is the
version of the model. The version depends on the data the
model was trained on, specifically whether it was trained on
a music or environmental subset. The environmental subset,
selected for its inclusion of human sounds, animal sounds,
and other natural acoustic environments, provides a com-
prehensive representation for various applications such as
sound analysis and immersive experiences. The embedding
size is 512, and the input representation is a Mel spectro-
gram with 128 filters.

The base model for wav2vec2-hubert is hubert-base-
ls960 [11], which was trained for 960 hours using 16 kHz
sample speech audio. Wav2vec2-Hubert was trained on the
IEMOCAP dataset, which contains neutral, happy, sad, and
angry speech recordings.

The wav2vec2-large-robust-emotion [47] is a model
for dimensional speech emotion recognition based on the
wav2vec 2.0. The model was developed by fine-tuning a
pre-trained wav2vec2-large-robust model, trained initially
on the MAP-Podcast dataset. The authors reduced the num-
ber of transformer layers from 24 to 12 before fine-tuning
them to optimize the model’s performance.

3.3. Video features

In this paper, the models of the EmotiEffNet family were
utilized to highlight various visual attributes [39, 42]. In
particular, the EmotiEffNet-B0 [38] was employed to em-
phasize visual features for the TCN model (across cropped
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Figure 1. Proposed EmotiEffNet + TCN model

and aligned frames). This model was pre-trained to iden-
tify faces from the VGGFace2 dataset and later fine-tuned
to predict facial expressions from the AffectNet dataset.

In addition, we opted to employ a variety of widely rec-
ognized lightweight neural network architectures, including
MobileViT [32], MobileFaceNets [4], and DDAMFN [56].
Similarly to EmotiEffNet, these models have been pre-
trained to recognize faces. However, the MT training was
used to simultaneously predict facial expressions, valence,
and arousal from AffectNet. The resulting models are
MT-EmotiMobileViT, MT-EmotiMobileFaceNet, and MT-
DDAMFN [41]. Each labeled video frame [26] is fed into
these models, and the embeddings x are extracted at the out-
put of the penultimate layer of EmotiEffNet network [39].

3.4. Frame-level Facial Emotion Classification

To make a final decision for given embeddings x for both
EXPR and AU tasks, we employed an MLP with a single
hidden layer containing 128 units as our classifier. Addi-
tionally, we used the wav2vec 2.0 model to calculate em-
beddings from the audio corresponding to video data [2] in
conjunction with our models. Since the number of audio
and video frames differ, we aligned features of an acoustic
frame with the closest video frame [41].

For optimization, we utilized Adam across all scenarios,
given that our models typically deal with high-resolution fa-
cial images. We processed the directory containing cropped
faces provided officially by the organizers of the 6th ABAW
competition [26].

3.4.1 EXPR classification

For EXPR classification, we use softmax activations and
weighted categorical cross-entropy:

LEXPR(y, ẑ) = −wy · log(ẑy), (1)

where y is the ground-truth emotional category, ẑ is the vec-
tor at the output of the last softmax layer, ẑy is the y-th
component of vector ẑ, and the weights wy for each fa-
cial expression y are inversely proportional to the number
of frames of this class in the training set (Table 1).

The training dataset consists of 585,317 annotated im-
ages extracted from cropped facial regions within 248
videos supplied by the organizers. Validation testing was
conducted on 280,532 images from 70 of these videos, us-
ing a model that had been trained for ten iterations.

3.4.2 AU detection

Sigmoid activations and multi-class weighted binary cross-
entropy were utilized for AU detection:

LAU (y, ŷ) =

−
K∑

k=1

wk · (yk · log(ŷk) + (1− yk) · log(1− ŷk)), (2)

where K = 12 is the total number of AUs in this challenge,
y = [y1, ..., yK ] is the K-dimensional vector of 0-1 ground-
truth AU labels yk, ŷ = [ŷ1, ..., ŷK ] is the output of last K
sigmoid units, and weights wk are inverse proportional to
the number of k-th AU units with positive (yk = 1) and
negative (yk = 0) labels.

The training dataset comprises 1,356,694 labeled facial
images extracted from 295 video files. The validation
dataset contains 445,836 images derived from the remain-
ing 105 video files.

3.5. Temporal Convolutional Networks approach

Four vectors are accepted as input for both tasks, namely,
embeddings of EmotiEffNet-B0 as visual features and three
sets of audio features (OpenL3, wav2vec2-hubert, and
wav2vec2-large-robust-emotion). The TCN layers are ap-
plied to each of these sets of features to produce the final
output:
1. EmotiEffNet-B0 visual features:

R(b,1280,w) → R(b,512,w) → R(b,256,w) → R(b,128,w)

2. wav2vec2-large-robust-emotion:

R(b,1024,w) → R(b,512,w) → R(b,256,w) → R(b,128,w)
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3. OpenL3:

R(b,512,w) → R(b,256,w) → R(b,128,w)

4. wav2vec2-hubert audio features:

R(b,256,w) → R(b,128,w)

.
Here b is the batch size, and w is the TCN window size.

Since TCN analyzes the sequence, it is necessary to deter-
mine the window size w and shift hyperparameters. We
have chosen a window size of 300 and a change of 200.
This captures 100 values from each previous window, con-
sidering dependencies and increasing the training data set.

Then, these representations are fed into the transformer
encoder and MLP, after which a softmax function is ap-
plied to produce a probabilistic output. The exact losses
described in Section 3.4 were utilized (1) and (2) for EXPR
and AU, respectively. The Adam optimizer was used during
training for both tasks.

3.6. Final Predictions

We studied several post-processing techniques to make fi-
nal predictions with our pipeline. First, we used the pre-
trained EmotiEffNet that predicts seven basic facial expres-
sions from the AffectNet dataset. If the model is reliable,
i.e., the maximal score at the output of the softmax layer
is greater than a fixed threshold t ∈ [0.5, 1], the predicted
expression is used for the frame. Otherwise, the MLP with
a single hidden layer trained on the AffWild2 dataset from
ABAW-6 is applied. Second, in addition to MLP, we used
the LightAutoML library [45] to classify outputs of pre-
trained model [39].

Finally, creating model predictions generally involves
the steps described below. Due to the fact that decisions are
made frame by frame, noise can be introduced into the out-
puts of trained feed-forward neural networks. To address
this issue, a smoothing technique is applied to the predic-
tions for each frame within a short time window [39], us-
ing a box filter. It calculates the arithmetic mean of the
predicted values for all frames within the specified win-
dow. Given that action units (AU) representing facial mus-
cle movements can exhibit rapid variations, five frames (2
frames before and two frames after the current frame) are
used. On the contrary, facial expressions, which have a
longer duration, are more likely to be persistent. For our
investigation, we utilized windows comprising 50 frames.

4. Experimental Results
4.1. Evaluation metric

To gauge the model’s performance in each track, the ABAW
established distinct evaluation metrics for each challenge.
Let’s look at them.

w2v2-hub w2v2-large OpenL3 all

Accuracy 0.339 0.354 0.308 0.348
F1-score 0.235 0.249 0.26 0.276

Table 3. The results of applying the MLP model to the described
features

all classes w/o “Other”
Model F1-score Accuracy F1-score Accuracy

EmotiEffNet-B2 0.229 0.282 0.320 0.443
DDAMFN 0.244 0.315 0.362 0.502

MT-DDAMFN 0.245 0.340 0.366 0.547
MT-EmotiMobileViT 0.248 0.287 0.330 0.434

MT-EmotiMobileFaceNet 0.250 0.325 0.354 0.513
MT-EmotiEffNet 0.254 0.324 0.381 0.522
EmotiEffNet-B0 0.257 0.325 0.383 0.522

Table 4. Results of pre-trained facial expression recognition mod-
els on the Aff-Wild2’s validation set. The best result is marked in
bold.

EXPR Recognition For the evaluation of emotion recog-
nition, the macro F1 score metric is used:

PEXPR =
1

8

8∑
i=1

F1i. (3)

Here the F1-score F1i for each expression category i is
defined as follows

F1i =
2× Precisioni ×Recalli
Precisioni +Recalli

,

P recisioni =
TPi

TPi + FPi
,

Recalli =
TPi

TPi + FNi
,

(4)

where TPi, FPi, FNi and TNi are True Positives, False
Positives, False Negatives, and True Negatives statistics for
i-th emotional class, respectively.

AU Detection The evaluation of performance involves
computing the average F1-score across all 12 categories,
which is expressed as:

PAU =

∑12
i=1 F1i
12

, (5)

where F1i for each AU is defined similarly to Eq. 4.

4.2. Training Details

All experiments were conducted on two GPU NVIDIA
GeForce RTX 2080 Ti devices with 12 GB of memory. The
TensorFlow 2 framework was utilized to train the models,
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Method Modality F1-score PEXPR Accuracy

Baseline VGGFACE (MixAugment) [26] Faces 0.25 -
EfficientNet-B0 [38] Faces 0.402 -
Meta-Classifier [49] Faces 0.302 0.462

TCN [61] Audio/video 0.377 -
Transformer [60] Audio/video 0.406 -

MAE [58] Audio/video 0.495 -
TCN+MLP Audio 0.151 0.412
wav2vec 2.0 Audio 0.291 0.410

wav2vec 2.0, smoothing Audio 0.355 0.521
DDAMFN Faces 0.308 0.433

EmotiEffNet-B2 Faces 0.320 0.438
MT-EmotiMobileFaceNet Faces 0.327 0.462

MT-EmotiEffNet Faces 0.336 0.447
MT-DDAMFN Faces 0.351 0.469

MT-EmotiMobileViT Faces 0.356 0.461
EmotiEffNet Faces 0.384 0.495

EmotiEffNet, smoothing Faces 0.424 0.543
EmotiEffNet, pre-trained + MLP Faces 0.395 0.4977

EmotiEffNet, pre-trained + MLP, smoothing Faces 0.434 0.5463
wav2vec 2.0+EmotiEffNet Audio/video 0.403 0.520

wav2vec 2.0+EmotiEffNet, smoothing Audio/video 0.434 0.557
TCN (aligned frames) + MLP Audio/video 0.353 0.536
TCN (cropped frames) + MLP Faces 0.403 0.523

EmotiEffNet (aligned) + TCN + transformer Faces 0.338 0.51
EmotiEffNet (cropped) + TCN + transformer Audio/video 0.375 0.52
EmotiEffNet (aligned)+ TCN + transformer Audio/video 0.422 0.55

Table 5. Expression Challenge Results on the Aff-Wild2’s validation set.

while the visual features were extracted using PyTorch pre-
trained EmotiEffNet models.

The optimizer’s learning rate in the TCN approach was
set to 1e-4. The training process consisted of between 100
and 200 training epochs. The transformer encoder consisted
of four multi-attention heads and eight layers.

The Adam optimizer with a learning rate 1e-3 was used
to train MLP classifiers. The models were trained on ten
epochs for validation purposes, and the model from the top-
performing epoch on the validation set was analyzed. It was
experimentally found that the best EXPR MLP classifier is
obtained right after the first epoch, while the AU detector
typically needs five epochs. Hence, the test set predictions
are obtained by the model trained on concatenated training
and validation sets on 1 and 5 epochs for EXPR and AU
tasks, respectively.

4.3. EXPR Classification

4.3.1 Audio Features

The selected audio was divided into K segments of 90-
and 60-second durations to extract the features. For au-

dio clips of 90 seconds in length, features were identified
using pre-trained models wav2vec2-hubert and wav2vec2-
large-robust-emotion. For clips of 60 seconds, OpenL3 was
used. The choice is based on the frequency of fluctuating
emotions, which is approximately one minute or a half.

The results of applying an MLP to the selected audio
features are presented in Table 3. In practice, OpenL3 em-
beddings have proven to be more effective. Nevertheless,
all three feature sets were used for the TCN.

4.3.2 Visual Pre-trained Models

Initially, we assessed the performance of pre-trained mod-
els for emotion classification (Table 4) without utilizing the
training set. A significant challenge arises from differences
in class names: AffectNet includes the “Contempt” cate-
gory, whereas Aff-Wild2 contains numerous instances la-
beled as “Other”.

We investigated two approaches for matching classes:
assigning all “Contempt” predictions as “Other”, or ex-
cluding the “Contempt” class from predictions and “Other”
from the validation dataset. The EmotiEffNet-B0 model
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Model PEXPR

EmotiEffNet+TCN (train+val) 0.3043
EmotiEffNet, audio+vid 0.3137

EmotiEffNet+TCN+audio 0.3221
EmotiEffNet (train+val) 0.3200

EmotiEffNet+TCN 0.3207
EmotiEffNet+TCN 0.3221

EmotiEffNet+TCN, smoothing 0.3244
wav2vec 2.0+EmotiEffNet (train+val) 0.3301

EmotiEffNet, pre-trained + MLP (train+val) 0.3414

Table 6. Expression Challenge Results on the Aff-Wild2’s test set:
the diversity of our approaches.

produced the highest F1-score for emotion recognition
and outperformed the other models. Its embeddings
demonstrated outstanding classification performance (Ta-
ble 5). However, the MT-DDAMFN approach achieved
the best accuracy for seven classes, surpassing the initial
DDAMFN [56] result by 4%.

4.3.3 Audio-Visual Models

Table 5 provides the validation outcomes for traditional
tasks. We have compared our findings with the baseline
models supplied by the challenge organizers [26], as well as
several papers presented at the ABAW CVPR 2023 work-
shop. It has been noted that there are no significant im-
provements when using features from models that were
trained in a multi-task fashion. Interestingly, the wav2vec
2.0 embeddings technique demonstrated notable perfor-
mance within the EXPR challenge, achieving top perfor-
mance through the simple combination of predictions made
by leading visual (EmotiEffNet-B0) and audio models.

We have taken the cropped and aligned embeddings pre-
sented in the ABAW competitions for comparison purposes.
Table 5 presents such experimental results (noted in paren-
theses with cropped or aligned text).

The results in the overall leaderboard are shown in Ta-
ble 7. Here, our approach is much better than the baseline
but still worse than the top-performing team. As a result,
our solution took fourth place in the EXPR competition. All
or results in the test set are presented in Table 6.

The ablation study of our best model that utilizes pre-
trained EmotiEffNet scores is shown in Fig. 2. Here, we
demonstrate the dependence of the F1 score on the thresh-
old for blending pre-trained scores and the output of the
trained MLP classifier. As one can notice, the best results
are obtained for a threshold lower than 1.0, which means
the efficiency of pre-trained scores. We re-trained the MLP
classifier on the union of training and validation set after
the challenge and obtained the top F1 score of 0.3629. If

Model PEXPR

Netease Fuxi AI Lab [59] 0.5005
CtyunAI [62] 0.3625

USTC-IAT-United [54] 0.3534
Ours 0.3414

M2-Lab-Purdue [27] 0.3228
KBS-DGU [14] 0.3005
SUN CE [36] 0.2877
AIOBT[35] 0.2797

CAS-MAIS [48] 0.2650
IMLAB [33] 0.2296

Baseline VGGFACE [26] 0.2250

Table 7. Expression Challenge Results on the Aff-Wild2’s test set:
Leaderboard.
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Figure 2. Dependence of F1-score for blending of pre-trained
scores and output of MLP classifier on threshold, EXPR classi-
fication challenge

we succeeded in submitting the results for this model to the
official competition, we would take second place.

4.4. AU Detection

We have also explored the basic approaches to solving the
problem for this task. These approaches are presented in Ta-
ble 8. The RegNet, Masked Autoencoder, and Transformer
models achieved the best results.

Given that Transformers are one of the most widely used
and stable methods, we have incorporated them into our ap-
proaches. The results of these models are also presented in
Table 8. We have also compared the performance of our im-
plemented techniques with the baseline provided and some
of the outcomes from the ABAW 2023 CVPR workshop.

The best approach we have implemented regarding the
F1 Score on the validation set is using EmotiEffNet as a
visual representation for LightAutoML. The final F1 Score
on the validation dataset was 0.554, representing a 41% im-
provement over the baseline model.

Test values were obtained and are presented in Table 9.
As a result, our solutions based on LightAutoML and TCN
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Method Modality F1-score PAU

Baseline VGGFACE [26] Faces 0.39
IResnet100 [52] Faces 0.511
TCN [61] Audio/video 0.517
Transformer [60] Audio/video 0.530
Regnet/Video Vision
Transformer [46]

Faces 0.540

MAE graph representa-
tions [50]

Faces 0.543

MAE [58] Audio/video 0.567
Regnet [49] Faces 0.698
wav2vec 2.0 Audio 0.313
DDAMFN Faces 0.500
MT-EmotiMobileFaceNet Faces 0.512
MT-DDAMFN Faces 0.519
EmotiEffNet
(aligned)+TCN+transformer

Video 0.525

MT-EmotiEffNet Faces 0.525
EmotiEffNet
(aligned)+TCN+transformer

Audio/video 0.528

EmotiEffNet Faces 0.537
EmotiEffNet, smoothing Faces 0.545
EmotiEffNet + LightAu-
toML

Faces 0.542

EmotiEffNet + LightAu-
toML, smoothing

Faces 0.554

Table 8. Action Unit Challenge Results on the Aff-Wild2’s valida-
tion set.

Model PAU

EmotiEffNet 0.4726
MT-DDAMFN (train+val) 0.4763
TCN+EmotiEffNet+audio 0.4817

TCN+EmotiEffNet 0.4866
EmotiEffNet + LightAutoML 0.4878

Table 9. Action Unit Challenge Results on the Aff-Wild2’s test
set: the diversity of our approaches.

ranked among the top three in this competition (Table 10).

5. Conclusion
To conclude, we have introduced approaches for solving the
Expression Recognition and Action Unit Detection tasks
using TCN and EmotiEffNet (Fig. 1). Using the data from
the sixth ABAW competition [26], we explored these meth-
ods in terms of visual and audio modalities. Our results
notably outperformed the baseline results. For example, the
best-performing models achieved the following results on
the official validation sets: macro-averaged F1-score for fa-

Model PAU

Netease Fuxi AI Lab [59] 0.5601
CtyunAI [62] 0.4941

Ours 0.4878
USTC-IAT-United [54] 0.484

KBS-DGU 0.4652
M2-Lab-Purdue [27] 0.3832

Baseline VGGFACE [26] 0.365

Table 10. Action Unit Challenge Results on the Aff-Wild2’s test
set: Leaderboard.

cial expression recognition PEXPR = 0.434, representing
a 0.19 improvement over the baseline VGGFace model with
MixAugment, Table 5). AU detection also performed bet-
ter, achieving PAU = 0.545, exceeding the baseline value
by 0.15 points, Table 8). The code required for replicat-
ing these experiments is publicly available1. As a result,
we took third place in AU detection and fourth place in
EXPR classification challenges. Moreover, as we men-
tioned in Subsection 4.3.3, by using another MLP trained
on the union of train and validation set, we obtained the F1-
score that would make it possible to rank in top-2 of the
EXPR challenge, proving the potential of our approach.

However, our models have specific drawbacks. For in-
stance, in methods using transformers or transformer en-
coders, it has been observed that the models do not fully
consider the influence and interconnection between frames
within a video, as also mentioned by Zhou et al. [61] Re-
garding TCN, it should be noted that due to its use of a slid-
ing window, it can exhibit weaknesses in terms of accurately
detecting “fast” emotional states (e.g., surprise or fear) or is
unstable in terms of action unit detection, as people’s ex-
pressions can be pretty dynamic. Additionally, it has also
been observed that if an emotion is predominant in the audio
input (e.g., due to an external factor such as music or a film,
or if just one person within a frame is expressing a particular
emotion and the other is expressing the opposite emotion),
then the TCN model may overfit and classify a more intense
emotional state that is present in the audio segment. TCNs
are also sensitive to the length of input sequences, so select-
ing the window size and shifting carefully is essential. All
these disadvantages should be carefully taken into account
in the future.

Acknowledgements. The article was prepared within
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