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Abstract

This article presents our results for the sixth Affective
Behavior Analysis in-the-wild (ABAW) competition. To im-
prove the trustworthiness of facial analysis, we study the
possibility of using pre-trained deep models that extract re-
liable emotional features without the need to fine-tune the
neural networks for a downstream task. In particular, we
introduce several lightweight models based on MobileViT,
MobileFaceNet, EfficientNet, and DDAMFN architectures
trained in multi-task scenarios to recognize facial expres-
sions, valence, and arousal on static photos. These neu-
ral networks extract frame-level features fed into a sim-
ple classifier, e.g., linear feed-forward neural network, to
predict emotion intensity, compound expressions, and va-
lence/arousal. Experimental results for three tasks from the
sixth ABAW challenge demonstrate that our approach lets
us significantly improve quality metrics on validation sets
compared to existing non-ensemble techniques. As a result,
our solutions took second place in the compound expression
recognition competition.

1. Introduction
The ability to accurately analyze human emotions is cru-
cial for developing human-centered technologies [6, 9, 52].
Contemporary research on affective behavior analysis in
unconstrained environments reached a high level of ma-
turity [54]. It is incredibly challenging for the in-the-
wild domain, where conventional approaches often strug-
gle due to variations in lighting, pose, and expression
intensity [17, 20]. Nowadays, researchers are focused
on 3D facial expression analysis [11, 30, 31, 56], multi-
modalities [25, 54, 55] and new datasets. One of the well-
known benchmarks for evaluating progress in this field is
the sequence of Affective Behavior Analysis in-the-wild

(ABAW) competitions [14, 18, 21, 23, 24, 29, 51].
One of the traditional tasks in the previous editions of

ABAW is the frame-level video-based prediction of va-
lence/arousal (VA). A simple fusion of Resnet50, Reg-
net, and EfficientNet backbones significantly improves the
baseline [46]. Very high quality was obtained by sev-
eral teams [31, 38, 40, 58] that used EfficientNet-based
model [41] pre-trained on the AffectNet dataset [33]. An
affine module was proposed [57] to align the features to the
same dimension in the audio-visual transformer. The fusion
of audio and video modalities using channel attention is ex-
amined in [53]. The top-performing team implemented the
facial processing with the fine-tuned masked autoencoder
(MAE) [54].

Another task introduced in the previous ABAW chal-
lenge is the Emotional Mimicry Intensity (EMI) estima-
tion [23], which is the multi-task regression problem that
should be solved for the entire video from the Hume-
Reaction dataset. The third place was obtained by the
above-mentioned MAE [54]. In the paper of the second
place winner [48], the spatial attention mechanism and the
Mel-Frequency Cepstral Coefficients were used to extract
visual and acoustic features, respectively. At the same
time, the temporal dynamics were modeled using TCN and
a transformer encoder. Finally, the top performance was
achieved by studying, analyzing, and combining diverse
models and tools to extract multimodal features [25]. How-
ever, the organizers of the current ABAW challenge [24]
decided to significantly reduce the training and validation
sets in this task to make it much more complicated.

The dataset has been significantly modified in the
2024 edition of the EMI competition. The USTC-AC
team proposed implementing the late fusion of the dual-
channel visual features from ResNet-18 and Wav2Vec2.0
audio features [50]. The pre-trained valence-arousal-
dominance module from the Wav2Vec 2.0 let the USTC-
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IAT-United team take the second place [10]. Finally, the
best-performing team is Netease Fuxi AI Lab with their
transformer-based multimodal fusion [55].

One major challenge in emotion understanding is the
need for extensive fine-tuning of deep neural networks for
specific tasks. For example, the winner of the previous
challenge led to excellent results by three times fine-tuning
the MAE encoder on the image frames from the Aff-wild2
dataset for each task individually [54]. This procedure leads
to obtaining state-of-the-art models for particular datasets
but can be computationally expensive and limit the general-
izability of models. Thus, the emotion analysis in-the-wild
primary goal is to construct single models [19] that are fair,
explainable, trustworthy, and privacy-conscious, achieving
high performance while enhancing generalization in real-
world scenarios.

To encourage the research of this final goal, the sixth
ABAW competition introduces the new task for unsuper-
vised Compound Expression (CE) recognition [15] with-
out the labeled training set, so the high-accurate pre-trained
models should be utilized in the domain adaptation/self-
supervised/zero-shot learning techniques. The audio-visual
dynamic model was trained on the concatenation of several
video datasets by the SUN CE team [36]. Promising re-
sults were obtained by the USTC-IAT-United team [49] who
implemented three expression classification models based
on convolutional networks, Vision Transformers, and mul-
tiscale local attention networks pre-trained on the union of
AffectNet and RAF-DB. Again, audio-visual transformers
with the MAE facial features from the Netease Fuxi AI Lab
team showed the top results [55].

To achieve the objectives mentioned above, we introduce
a novel methodology centered around lightweight mod-
els derived from architectures such as MobileViT (Mobile
Vision Transformer) [32], MobileFaceNet [4], Efficient-
Net [43], and DDAMFN (Dual-Direction Attention Mixed
Feature Network) [52]. These models are trained in a multi-
task scenario, enabling them to predict facial expressions,
valence, and arousal from static photographs. By extracting
frame-level features, we feed these neural networks into a
straightforward classifier, such as a linear feed-forward neu-
ral network. Our approach facilitates the prediction of emo-
tion intensity, compound expressions, and valence/arousal,
thereby offering a holistic analysis of affective behavior.
Our method aims to extract robust emotional features di-
rectly applicable to various tasks within the ABAW chal-
lenge.

2. Methodology

2.1. Multi-Task Learning of Emotional Descriptors

This paper uses the following approach to train neural net-
works that extract emotional embeddings [41, 54]. At

first, the neural network is pretrained on a face recogni-
tion task. In particular, we use the VGGFace2 dataset [3]
with 3,067,564 photos of 9131 persons while the valida-
tion set contains 243,722 remaining images. During ten
epochs, Adam optimized the conventional softmax cross-
entropy and sharpness-aware minimization [27]. In contrast
to studies of face identification [1], we use the cropped fa-
cial regions without any margins and alignment to concen-
trate on the central part of the face.

Next, we fine-tune the model to recognize emotions on
static images from the AffectNet dataset [33] withCExpr =
8 emotional classes corresponding to Anger, Contempt,
Disgust, Fear, Happiness, Neutral, Sadness and Surprise,
and values of Valence/Arousal from the range between -1
and 1. The official training set contains 287651 manually
labeled photos, while the validation set consists of 4000
images (500 per class). We leverage the multi-task (MT)
learning [12, 16, 22] and minimize the CCC (Concordance
Correlation Coefficient) for valence/arousal and weighted
cross-entropy for facial expressions to mitigate the class im-
balance in the training set [39]:

L (X, yExpr, yV , yA) = 1−

− log

(
softmax(zyExpr

) · max
y∈{1,...,CExpr}

Ny/NyExpr

)
−

− 0.5 (CCC(zV , yV ) + CCC(zA, yA)) , (1)

where X is the facial image, yV , yA and yExpr ∈
{1, ..., CExpr} are its valence, arousal and facial expression
label, respectively, Ny is the total number of training exam-
ples of the y-th expression, z is the logits at the output of
last fully connected layer.

Due to privacy issues, it is desirable to implement fa-
cial analysis on the edge/mobile device [6, 7, 13]. Thus, it
is important to use fast video recognition algorithms [37]
and lightweight architectures of neural networks, such as
MobileViT [32], MobileFaceNet [4], and DDAMFN [52].
The resulting models are called MT-EmotiMobileViT, MT-
EmotiMobileFaceNet, and MT-DDAMFN. We make the
weights publicly available. in the repository with our previ-
ous EmotiEffNet models [39, 41].

2.2. Video-based Valence-Arousal Estimation

The main idea of this paper is to study the usage of pre-
trained deep neural networks without fine-tuning them on
every downstream task (Fig. 1). Though such an ap-
proach cannot produce state-of-the-art results for a concrete
dataset, it reflects the practically essential requirement for
an emotion analysis model that can be used in unconstrained
environments. Hence, similar feed-forward neural networks
are used for the VA estimation task of the ABAW challenge
with the Aff-Wild2 dataset [16]. The models are trained
using all labeled frames from the training set.
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Figure 1. Proposed approach

It was experimentally found that valence and arousal
are more accurately predicted by the linear model without
hidden layers using the logits z at the output of the last
layer [40]. The Adam optimizer was leveraged in all exper-
iments. As our models typically deal with high-resolution
facial images, we processed the folder of cropped faces of-
ficially released by the organizer of the 6th ABAW compe-
tition. The tanh activations were added to the output layer,
and CCC loss was optimized for 20 epochs. The training set
contains 1,653,930 cropped faces from 356 videos, while
validation is performed on 376,332 other images from 76
videos [24].

As the decision is made in a frame-level manner, some
noise may be introduced in the outputs of trained feed-
forward neural networks. Thus, we smoothed the predic-
tions for each frame in a short window [40] using a box
filter, i.e., the arithmetic mean of predicted scores for 50
frames in a window.

2.3. Compound Expression Recognition

The new task of the 6th ABAW competition is the
frame-wise CE recognition on videos from the C-
EXPR database [15]. It is required to assign each
frame of 56 videos into one of 7 classes, namely,
Fearfully Surprised, Happily Surprised, Sadly Surprised,
Disgustedly Surprised, Angrily Surprised, Sadly Fearful,
Sadly Angry. It is the most complicated task as no labeled
validation set compares different solutions. To somehow
choose the candidate submissions, we measured the class
balance. The authors of the C-EXPR [15] presented the
number of frames for each compound class: 14445, 24915,
10780, 10637, 10535, 10112, and 8878. Hence, we choose
the Kullback-Leibler divergence between the frequencies of
each class at the output of our models and the frequencies
of classes computed from these number of frames. Such an
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Figure 2. Frame-level compound expression recognition

approach has at least two issues: a) it is a bit of a cheat,
in the sense of data leakage (these numbers also include
the test set); and b) C-EXPR-DB is way bigger and only
a small part was shared for the CE Challenge (thus using
the above numbers may have biased the model in the wrong
way). However, we decided to compare different models
with this imperfect metric.

The proposed pipeline is shown in Fig. 2. Here, the
faces from each frame were extracted with the RetinaFace
model [8]. If it cannot detect the face on a particular frame,
it feeds into the input of the face detector from the Me-
diapipe framework [28]. As a result, we obtained 22,641
frames with at least one video. Several faces may be de-
tected for a frame, so the total number of detected faces
equals 32,329. We analyze all of them with our emotional
models. Next, we predict CExpr = 8 AffectNet’s basic
expressions for every detected face, compute probabilities
from logits z, and summarize the probability scores for two
classes from the compound expressions. Predictions for
several faces inside one frame are aggregated with the arith-
metic mean. The final prediction is the compound class la-
bel corresponding to the maximal summary score.

In addition, we decided to use clustering of embeddings
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extracted from video and audio frames. Simple K-means
clustering with 7 clusters is utilized. To choose each clus-
ter’s label, we compute the average scores of compound
classes for all frames from each cluster. The scores are cal-
culated as described in the previous paragraph (Fig. 2).

2.4. Emotional Mimicry Intensity Estimation

The EMI estimation is a multi-output regression problem
with six categories (Admiration, Amusement, Determina-
tion, Empathic Pain, Excitement, and Joy. In contrast to pre-
vious tasks, one label per whole video is available. Hence, it
is necessary to obtain a single descriptor for an entire video,
given the facial features of every frame. The official training
set contains 8072 videos, while 4588 videos are available
for validation.

In this paper, we used simple STAT (statistical) fea-
tures that have previously shown excellent performance in
EmotiW (Emotion recognition in-the-Wild) challenges [2,
7]. In particular, we compute component-wise mean,
standard deviation, minimum, and maximum of log-
its/embeddings at the output of our model and concatenate
them into a single descriptor. The latter is fed into a lin-
ear classifier (feed-forward neural network without hidden
units) with six outputs and sigmoid activation functions.
The weighted Pearson Correlation Coefficient (PCC) ρ loss
is minimized for logits z by the Adam with 100 epochs. If
the embeddings of our models or wav2vec 2.0 features are
estimated, they are fed into a multi-layer perceptron with
one hidden layer and 128 units. The output scores of the
trained neural net without any post-processing are directly
used as the final predictions.

3. Experimental Results
3.1. Facial Emotion Analysis for Static Photos

In the first experiment, we demonstrate the efficiency of our
models for the official validation part of AffectNet [33]. Ta-
ble 1 contains the RMSE (Root Mean Square Error) and
CCC for predicted valence/arousal and accuracy for facial
expression recognition. In the latter case, we compute two
metrics traditionally used with this dataset, namely, 8-Acc
(Accuracy for all eight classes) and 7-Acc (Accuracy for
seven basic categories: Anger, Disgust, Fear, Happiness,
Neutral, Sadness and Surprise). Existing papers usually
train two different models with 8 and 7 outputs and re-
port the performance of each model separately. However,
our primary goal is to study the universality of our models.
Hence, we train only one model with eight emotional cate-
gories and remove the logits corresponding to Contempt to
obtain the outputs for seven basic classes.

As one can see, our models trained with the multi-task
loss (1) show very high performance. The state-of-the-art
DDAMFN [52] is only slightly more accurate when com-

pared to our MT-DDAMFN (and this difference is insignif-
icant [42]). However, our main objective was to obtain the
models that can serve as reliable feature extractors for mul-
tiple downstream tasks. Let us demonstrate their advantages
using data from the ABAW competition in the following
subsections.

3.2. VA Estimation

Table 2 shows the VA prediction task validation results. We
compare our results with the baselines of the challenge or-
ganizers [24] and several papers from the ABAW CVPR
2023 workshop.

First, we significantly improved the metrics compared to
the previous attempts with EfficientNet features [40]. MT-
DDAMFN achieves the top performance. It is important to
emphasize that it has 2$ greater mean CCC when compared
to the initial DDAMFN, thus showing the benefits of our
training procedure (Subsection 2.1). It is also remarkable
that the quality of the largest EmotiEffNet-B2 is the worst
among our models, though it also reaches very high accu-
racy on AffectNet (Table 1). This result highlights the need
to verify that the facial analysis model works in various do-
mains and cross-dataset environments.

In addition, we decided to demonstrate the quality of the
pre-trained models for VA prediction (Table 3) without us-
ing the training set. Here, the best quality of VA estima-
tion is obtained by the MT-MobileFaceNet model, which is
1.1% greater when compared to other models.

Finally, the test set results of the ABAW-6 competition
are shown in Table 4. Forty teams submitted their results,
out of which ten teams scored higher than the baseline. Our
solution has a much higher total score compared to the base-
line of the organizers (0.519 vs 0.201) by simple replace-
ment of ResNet-50 to our pre-trained models. As a result,
we took the sixth place in this competition.

3.3. CE Recognition

As mentioned in Subsection 2.3, the CE prediction task has
no baselines or direct metrics. Hence, we measure the indi-
rect metric of class balance. In addition to our initial mod-
els, we used the neural networks trained to predict facial
expressions using data from the EXPR (expression recogni-
tion) challenge (hereinafter, “(EXPR ft)”). We used either
maximal scores at the output of our models or performed
clustering of 1) scores from the final layer, 2) embeddings
from the penultimate layer, and 3) wav2vec 2.0 audio em-
beddings.

The Kullback-Leibler (KL) divergence between actual
and predicted class probabilities for all our models is shown
in Table 5. As one can notice, the KL divergence in several
cases is relatively high, caused by a significant class imbal-
ance of our predictions. It seems that MT-MobileFaceNet
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Facial expressions Valence Arousal
Model 8-Acc., % (↑) 7-Acc., % (↑) RMSE (↓) CCC (↑) RMSE (↓) CCC (↑)

AlexNet [33] 58.0 - 0.394 0.541 0.402 0.450
SSL inpanting-pl [34] 61.72 - - - - -

Distract Your Attention [47] 62.09 65.69 - - - -
ViT-base + MAE [26] 62.42 - - - - -
Static-to-Dynamic [5] 63.06 66.42 - - - -

DDAMFN [52] 64.25 67.03 - - - -
EmotiEffNet-B0 61.32 64.57 - - - -
MT-EmotiEffNet 61.93 64.97 0.434 0.594 0.387 0.549

MT-EmotiMobileFaceNet 62.32 65.17 0.447 0.577 0.387 0.547
MT-EmotiMobileViT 62.50 66.46 0.423 0.599 0.371 0.565
EmotiEffNet-B2 [41] 63.03 66.29 - - - -

EmotiEffNet-B2 63.13 66.51 - - - -
MT-DDAMFN 64.20 67.00 0.363 0.729 0.341 0.643

Table 1. Results for the AffectNet validation set (high Accuracy and CCC are better, low RMSE is better)

Method CCC V CCC A PV A

Baseline ResNet-50 [24] 0.24 0.20 0.22
EfficientNet-B0 [38] 0.449 0.535 0.492
Resnet50 + Regnet + Effi-
cientNet [46]

0.257 0.383 0.320

Audio/video Channel Atten-
tion Network [53]

0.423 0.670 0.547

Audio/video MAE [54] 0.476 0.644 0.560
Audio/video Trans-
former [57]

0.554 0.659 0.607

Audio/video TCN [58] 0.550 0.681 0.615
EmotiEffNet-B2 0.423 0.498 0.464
EmotiEffNet 0.443 0.519 0.482
EmotiEffNet, smoothing 0.490 0.596 0.543
DDAMFN 0.438 0.523 0.481
DDAMFN, smoothing 0.485 0.598 0.541
MT-EmotiEffNet 0.444 0.521 0.483
MT-EmotiEffNet, smoothing 0.490 0.604 0.547
MT-EmotiMobileViT 0.445 0.525 0.485
MT-EmotiMobileViT,
smoothing

0.493 0.612 0.552

MT-EmotiMobileFaceNet 0.439 0.532 0.486
MT-EmotiMobileFaceNet,
smoothing

0.483 0.610 0.547

MT-DDAMFN 0.468 0.537 0.502
MT-DDAMFN, smoothing 0.519 0.616 0.568

Table 2. Valence-Arousal Challenge Results on the Aff-Wild2’s
validation set.

achieves the best balance, though the results of the MT-
EmotiEffNet-B0 are also very low [39].

Model CCC V CCC A PV A

MT-DDAMFN 0.412 0.230 0.321
MT-EmotiMobileViT 0.403 0.244 0.324

MT-EmotiMobileFaceNet 0.413 0.266 0.339
MT-EmotiEffNet 0.404 0.248 0.326

Table 3. Results of pre-trained Valence-Arousal prediction models
on the Aff-Wild2’s validation set. The best result is marked in
bold.

Model CCC V CCC A PV A

Netease Fuxi AI Lab [55] 0.6873 0.6569 0.6721
DeepAVER [35] 0.5418 0.6196 0.5807

CtyunAI [59] 0.5223 0.6057 0.564
SUN CE [36] 0.5355 0.5861 0.5608

USTC-IAT-United [49] 0.5208 0.5748 0.5478
KBS-DGU 0.4836 0.5318 0.5077

HSE-NN-SberAILab [40] 0.4818 0.5279 0.5048
ETS-LIVIA [44] 0.4198 0.4669 0.4434
CAS-MAIS [44] 0.4245 0.3414 0.3830

Baseline ResNet-50 [24] 0.211 0.191 0.201
DDAMFN 0.4805 0.5373 0.5089

MT-EmotiMobileViT 0.4807 0.5375 0.5091
MT-EmotiMobileFaceNet 0.4961 0.5264 0.5113

MT-DDAMFN 0.4921 0.5481 0.5202

Table 4. Valence-Arousal Challenge Results on the Aff-Wild2’s
test set.

To better compare our predictions, we present Cohen’s
kappa coefficient, which typically measures the inter-rater
reliability (Fig. 3). The most consistent with other mod-
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Clustering
Model Scores Scores Embeddings Audio

DDAMFN 0.1847 0.1516 0.2362 0.1792
EmotiEffNet-B0 0.1186 0.8419 1.0230 0.1681

EmotiEffNet-B0 (EXPR ft) 0.5643 0.0489 1.1008 0.2105
EmotiEffNet-B2 0.4968 0.1674 0.1791 0.1849
MT-EmotiEffNet 0.0830 0.2161 0.5211 0.1681

MT-EmotiEffNet (EXPR ft) 0.1934 0.1715 0.3206 0.0368
MT-EmotiMobileFaceNet 0.0603 0.3316 0.5846 0.1394

MT-EmotiMobileViT 0.1689 0.1265 0.0975 0.1646
MT-DDAMFN 0.2687 0.2037 0.2408 0.1503

Table 5. The Kullback-Leibler divergence between real and pre-
dicted class probabilities for CE recognition.

Model F1-score

Netease Fuxi AI Lab [55] 0.5526
USTC-IAT-United [49] 0.2240

SUN CE [36] 0.2201
USTC-AC [45] 0.1845

Audio clustering + MT-EmotiMobileFaceNet 0.1232
Audio clustering + MT-EmotiEffNet (EXPR ft) 0.1468

EmotiEffNet-B0 (EXPR ft) 0.1719
EmotiEffNet-B2 0.1800

MT-EmotiMobileViT 0.2009
MT-DDAMFN 0.2077

MT-EmotiEffNet 0.2341
DDAMFN 0.2395

MT-EmotiEffNet (EXPR ft) 0.2580
EmotiEffNet-B0 0.2625

MT-EmotiMobileFaceNet 0.2708

Table 6. F1-score of CE recognition on the test set.

els are EmotiEffNet-B0, MT-EmotiEffNet-B0, and MT-
MobileFaceNet. Moreover, the clustering results seem in-
consistent with other models, so we do not expect this ap-
proach to be as accurate as other models.

Table 6 shows the test set’s results. Here, 17 Teams sub-
mitted their results, and 5 made valid submissions. We took
second place, and the gain over the third F1-score [49] is
5%. The difference with the leader [55] is too high. How-
ever, in contrast to the winner, the weights of our models
are publicly available, so the reproducibility of our results
should not be too complicated.

3.4. EMI Estimation

As the previous edition of EMI at the ABAW-5 [23] used
much more training data, our results are not directly com-
pared with participants of that challenge. We can only com-
pare with the audio/visual baselines obtained by ViT (Vi-
sual Transformer) and wav2vec 2.0 features. The results of
our ablation experiments for the EMI task are presented in
Table 7.

Here, our facial models are 6-8% more accurate than

Figure 3. Kappa Cohen scores for CE predictions

the ViT baseline. However, the audio features are classi-
fied much better. We used a more straightforward approach
for processing acoustic features, thus leading to 1% less
macro-averaged Pearson correlation ρ. However, our best
ensemble is 4% more accurate. Like most previous exper-
iments, multi-task learning loss (1) leads to a 0.5% better
MT-DDAMFN model. The 40-dimensional scores (logits)
from the final layer of our model are recognized as not
worse than high-dimensional embeddings from the penulti-
mate layer. Finally, STAT features are typically better than
the traditional average pooling of frame-level features.

The results of the test set are presented in Table 8. Fi-
nally, the test set results of the ABAW-6 competition are
shown in Table 4. Forty teams submitted their results, out
of which ten teams scored higher than the baseline. Our
solution has a much higher total score than the organizers’
baseline (0.52 vs. 0.20) by simple replacement of ResNet-
50 to our pre-trained MT-DDAMFN model. As a result, we
took the sixth place in this competition.

4. Conclusion

To conclude, we introduce several novel lightweight mod-
els trained in the multi-task framework (1) to simultane-
ously predict facial expression, valence, and arousal on a
static photo. The neural network weights and the training
source code to reproduce the experiments for the presented
approach are publicly available1.

1https://github.com/av-savchenko/face-emotion-
recognition/tree/main/src/ABAW/ABAW6
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Modality Model Features PCC ρ Admiration Amusement Determination Empathic
Pain

Excitement Joy

Faces Baseline ViT [24] Embeddings 0.09 - - - - - -
Audio Wav2Vec2 [24] Embeddings 0.24 - - - - - -

Audio+ ViT+ Embeddings 0.25 - - - - - -
Video Wav2Vec2 [24]
Faces MobileFaceNet Embeddings (mean) 0.0734 0.0235 0.0542 0.0645 0.0837 0.1053 0.1093

(VggFace2) Embeddings (STAT) 0.0972 0.0374 0.1008 0.0981 0.0972 0.1320 0.1175
Embeddings (mean) 0.1619 0.0139 0.2515 0.1211 0.0841 0.2373 0.2641

Faces DDAMFN Embeddings (STAT) 0.1603 0.0595 0.2169 0.1355 0.0687 0.2245 0.2565
Scores (mean) 0.1640 0.0174 0.2462 0.1257 0.0740 0.2438 0.2770
Scores (STAT) 0.1684 0.0354 0.2461 0.1304 0.0634 0.2426 0.2927

Embeddings (mean) 0.1647 0.0472 0.2387 0.1272 0.1017 0.2225 0.2508
Faces EmotiEffNet Embeddings (STAT) 0.1658 0.0596 0.2308 0.1318 0.0743 0.2373 0.2611

-B0 Scores (mean) 0.1597 0.0163 0.2342 0.1315 0.0708 0.2281 0.2765
Scores (STAT) 0.1645 0.0186 0.2477 0.1277 0.0787 0.2278 0.2863

MT- Embeddings (mean) 0.1632 0.0162 0.2336 0.1239 0.1001 0.2339 0.2715
Faces EmotiEffNet Embeddings (STAT) 0.1673 0.0349 0.2318 0.1379 0.0877 0.2428 0.2683

-B0 Scores (mean) 0.1584 0.0275 0.2115 0.1258 0.0805 0.2273 0.2776
Scores (STAT) 0.1590 0.0188 0.2335 0.1150 0.0729 0.2312 0.2828

MT- Embeddings (mean) 0.1644 0.0379 0.2314 0.1387 0.0781 0.2334 0.2672
Faces EmotiMobile- Embeddings (STAT) 0.1683 0.0433 0.2459 0.1347 0.0779 0.2382 0.2699

ViT Scores (mean) 0.1642 0.0321 0.2484 0.1490 0.0674 0.2399 0.2481
Scores (STAT) 0.1727 0.0621 0.2548 0.1430 0.0624 0.2398 0.2738

Embeddings (mean) 0.1628 0.0289 0.2385 0.1281 0.0761 0.2363 0.2689
Faces MT- Embeddings (STAT) 0.1723 0.0613 0.2319 0.1282 0.1064 0.2446 0.2610

DDAMFN Scores (mean) 0.1682 0.0408 0.2333 0.1387 0.0825 0.2429 0.2710
Scores (STAT) 0.1703 0.0289 0.2450 0.1298 0.0878 0.2410 0.2895

MT- Embeddings (mean) 0.1518 0.0215 0.2288 0.1140 0.0692 0.2299 0.2476
Faces Emoti- Embeddings (STAT) 0.1646 0.0557 0.2380 0.1303 0.0703 0.2325 0.2605

MobileFaceNet Scores (mean) 0.1667 0.0276 0.2367 0.1336 0.0807 0.2516 0.2699
Scores (STAT) 0.1732 0.0285 0.2498 0.1318 0.097 0.2543 0.2776

Audio wav2vec 2.0 Embeddings (mean) 0.1514 0.2153 0.11760 0.1834 0.1426 0.1275 0.1219
Embeddings (STAT) 0.2311 0.3006 0.1659 0.2559 0.3198 0.1844 0.1602

Audio + MT-DDAMFN 0.2767 0.2993 0.3079 0.2230 0.2672 0.3008 0.2546
Video wav2vec 2.0 + MT-EmotiMobileViT 0.2829 0.3011 0.2968 0.2595 0.3074 0.3171 0.2152

MT-EmotiMobileFaceNet 0.2898 0.3041 0.3004 0.2584 0.3148 0.3160 0.2452

Table 7. Pearson’s correlation for EMI Estimation on the Hume-Vidmimic2’s validation set.

Model F1-score

Netease Fuxi AI Lab [55] 0.7185
USTC-IAT-United [10] 0.5536
USTC-AC [50] 0.3594
wav2vec 2.0 + MT-EmotiMobileFaceNet (train) 0.3201
wav2vec 2.0 + MT-EmotiMobileFaceNet
(train+val)

0.3285

MT-EmotiMobileFaceNet (train+val) 0.1786
wav2vec 2.0 + MT-EmotiMobileViT (train+val) 0.3316
wav2vec 2.0 + MT-DDAMFN (train+val) 0.3139
Baseline [24] 0.25

Table 8. EMI Estimation Pearson’s correlation on the Hume-
Vidmimic2’s test set.

We experimentally demonstrated that our models reach
near state-of-the-art results on conventional AffectNet
benchmark (Table 1). Moreover, these models extract emo-

tional features that can be used in various downstream tasks.
We demonstrated the results for the five functions from the
sixth ABAW challenge [24], which are essentially better
when compared to baselines. For example, our best models
achieved the following quality on official validation sets:
CCC for VA estimation PV A = 0.568 (0.35 greater than
baseline VGGFACE, Table 2). In addition, the best facial
model for EMI estimation reaches macro-averaged Pearson
correlation ρ = 0.173 (0.08 better than baseline ViT, Ta-
ble 7). As a result, our solutions took second place at the
CE recognition competition, fourth place in the EMI con-
test, and sixth place in the VA estimation task.

It is important to emphasize that our approach does not
require to fine-tune the model on a new dataset, so only a
simple feed-forward neural network should be trained on
top of our features. Though this can lead to less accu-
rate models on concrete datasets, we believe that obtain-
ing the facial models that analyze affective behavior in un-
constrained environments for various datasets is essential.
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Moreover, it is essential to extend our techniques to 3D
video representations that go beyond 2D factors and pixel-
level consistency [11, 12, 29, 56].

Acknowledgements. The article was prepared within
the framework of the Basic Research Program at the Na-
tional Research University Higher School of Economics
(HSE).
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