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Abstract

In this paper we introduce CUE-Net, a novel architec-
ture designed for automated violence detection in video
surveillance. As surveillance systems become more preva-
lent due to technological advances and decreasing costs,
the challenge of efficiently monitoring vast amounts of
video data has intensified. CUE-Net addresses this chal-
lenge by combining spatial Cropping with an enhanced ver-
sion of the UniformerV2 architecture, integrating convo-
lutional and self-attention mechanisms alongside a novel
Modified Efficient Additive Attention mechanism (which re-
duces the quadratic time complexity of self-attention) to
effectively and efficiently identify violent activities. This
approach aims to overcome traditional challenges such
as capturing distant or partially obscured subjects within
video frames. By focusing on both local and global spatio-
temporal features, CUE-Net achieves state-of-the-art per-
formance on the RWF-2000 and RLVS datasets, surpassing
existing methods. The source code is available at 1.

1. Introduction
According to the World Bank, there has been an increase in
the worldwide crime rate in the last five years [18]. Surveil-
lance cameras are often deployed to help deter violence,
provide real-time monitoring and collect evidence of crim-
inal or violent activity. Thanks to advances in technology,
surveillance systems are becoming increasingly affordable
and easier to deploy. As the number of these deployed
surveillance cameras grows, it rapidly becomes expensive
and challenging for human operators to manually monitor
camera feeds [22, 31]. Therefore there is substantial need
for automated approaches to monitor surveillance cameras,
simplifying the process of Violence Detection (VD) in a
more accurate and an efficient manner [21, 31].

1https://github.com/damith92/CUENet

To respond to the challenge of efficient, automated vi-
olence detection from video, effective computer vision
methods are required. Deep learning techniques such
as Convolutional Neural Networks (CNNs) and more re-
cently Transformer-based architectures have shown a great
promise in solving computer vision related automated vio-
lence detection [21, 22, 31]. The success of violence detec-
tion is highly dependent on the objects and people present
in the captured videos [22, 31]. Detection is difficult when
the relevant features of the violent incidents are not cap-
tured properly, for example when the people involved in the
violent incident are far away and occupy only a small part
of the frame, as seen in one of the example videos from
the RWF-2000 dataset [4] in Fig. 2 (a). Although differ-
ent mechanisms have been explored for automated violence
detection, the opportunity for improvement remains due to
challenges such as tracking and extracting fast moving peo-
ple or objects involved in violence, low resolution scenarios
and occlusion-related issues [31].

Another research question relates to finding an effec-
tive and a robust processing architecture for violence de-
tection in videos. An ideal architecture would be simulta-
neously capable of capturing the locally and globally im-
portant features across the temporal and the spatial dimen-
sions. As discussed in [29, 30] CNN-based architectures
have shown to better capture locally important features but
not the globally important ones; whereas [14] argues that
the self-attention mechanism in the transformer architec-
ture seems to better capture globally important features tem-
porally. However, transformer architectures may struggle
with video data due to their quadratic computational com-
plexity [24]. Therefore, a novel solution which combines
the advantages of convolutions to capture local temporal
features and transformers to capture global features using
lightweight attention mechanisms is worthwhile exploring.

In this paper, we propose a novel architecture named
CUE-Net which amalgamates spatial Cropping, with an
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Figure 1. Sample violence detection videos. (a) is a set of frames from a challenging video from RWF-2000 where the people involved
in the violent incident are far away from the camera, occupying only a small part of the frame. (b) shows a typical violent video from the
RWF-2000 dataset correctly classified by CUE-Net. (c) is a video from the RWF-2000 dataset test split, where a man makes punching
actions but is not really engaging in a fight. CUE-Net incorrectly classifies this as a violent video. (d) is a video from the RLVS dataset
which CUE-Net correctly classifies as non-violent, but for which the ground-truth is mislabeled as violent.

enhanced version of the UniformerV2[16] architecture
which incorporates the benefits of both the convolution
and self-attention. In this architecture, we propose Mod-
ified Efficient Additive Attention (MEAA), a novel effi-
cient attention mechanism which reduces the quadratic time
complexity of self-attention to capture the important global
spatio-temporal features, to mitigate the above mentioned
bottlenecks. For the best of our knowledge, this is the first
time that such a model which incorporates convolution and
self-attention along with modified Efficient Additive Atten-
tion mechanism has been investigated in the context of vio-
lence detection in videos. Our contributions are as follows:

1. We propose CUE-Net, a novel architecture for violence
detection video analytics which incorporates a novel en-
hanced version of the UniformerV2 architecture along
with Modified Efficient Additive Attention (MEAA),
a novel attention mechanism to capture the important
global spatio-temporal features.

2. We incorporate a spatial cropping mechanism based on
the detected number of people in our algorithm before
the video is fed into the main learning algorithm, to fo-
cus the method on the area where violence is occurring
without losing the important surrounding information.

3. Our results set a new state-of-the-art on the RWF-2000
and RLVS datasets, outperforming the most recently
published methods.

2. Related Work
This section summarizes the current state-of-the-art meth-
ods for VD and categorizes different methods used in the
context of violence detection as an action recognition task
vs an anomaly detection task.

2.1. Deep Learning Architectures for Violence De-
tection using Anomaly Detection

In anomaly detection scenarios, violent events are consid-
ered as scarce abnormal events deviating from normal day-
to-day events. Algorithms learn to characterise the features
of normal events, and violence detection is based on detect-
ing events that do not lie in the normal distribution. How-
ever, in practice, the boundary between normal and anoma-
lous behaviors can be ambiguous. Under realistic situations,
similar behaviors may be normal or anomalous given dif-
ferent conditions, for example the the action of punching
will be normal for a friendly fist bump but anomalous for
a violent punch [21, 31]. The work of [27] proposes to
learn anomalies through a deep Multiple Instance Learning
(MIL) framework that treats a video as a bag with short seg-
ments/clips of each video as instances in a bag. However,
[28] argues that the recognition of the anomalous instances
is largely biased by the dominant normal (non-violent) in-
stances of the data, especially when the abnormal events are
subtle anomalies that exhibit only small differences com-
pared with normal events.
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When trying to frame the VD problem in an anomaly de-
tection context, violent (anomalous) events are identified by
focusing mainly on learning how a normal situation looks
like rather than focusing on the context of the violent be-
haviour. Often violence is dependent on context as well as
the actions happening in the scene. Models trained to detect
anomalies in this manner might not adequately understand
the context in which certain violent actions are taking place
and therefore may not be able to generalize well as their
main task is not to learn the context-specific features for vi-
olent events [3].

2.2. Deep Learning Architectures for Violence De-
tection in an Action Recognition Context

Work by [30] introduced one of the earliest uses of 3D-
CNNs along with a softmax classifier for violence detec-
tion. As a pre-processing step, first, frames where people
are present are identified, with the premise that the violent
actions will happen only when people are present. Then a
3D-CNN extracted spatio-temporal features out of the fil-
tered frames and a soft-max layer classified the results. In
another study, [26] introduced a novel approach for violence
detection in the space of action recognition by learning con-
textual relationships between people using human skeleton
points. Unlike the previous references, [26] formulated 3D
skeleton point clouds from human skeleton sequences ex-
tracted from videos and then performed interaction learning
on these 3D skeleton point clouds, considering them as non-
Euclidean graphs using Graph CNNs. [26] is one of the first
papers to evaluate performance on a real-world surveillance
violence detection data set (RWF-2000) [4] where all most
all the previous literature was evaluated on non-surveillance
based datasets such as the Hockey Fight dataset [2]. [8]
introduced a novel deep architecture comprising of two si-
multaneous pipelines, one to extract the skeletons of people
using a pose estimation model and the other to estimate the
dynamic temporal changes between frames where the out-
puts from the two pipelines were fused together using ad-
dition to transmit information even when one of the inputs
provides a zero-valued signal.

The current state-of-the-art approach for violence de-
tection on the RWF-2000 dataset relies on a Video Swin
Transformer [14]. This work applies a method to extract
keyframes from the videos based on frame colour, texture
and motion features using colour histograms, gray level co-
occurrence matrices and optical flow. Then, a Video Swin
Transformer [17] starts with processing small patches of the
videos and gradually merges them into deeper transformer
layers in spatio-temporal context, creating a hierarchical
representation. This approach has enabled the aggregation
of features from a local to a global context.

In summary, framing the violence detection problem us-
ing action recognition has advantages over anomaly detec-

tion. Recent literature has focused more on extracting rich
and representative features of violent actions and derive a
better contextual understanding in order to separate violent
actions from normal activities [31].

3. Proposed Method

In this section we first motivate our work and then discuss
our proposed CUE-Net method in detail.

Motivation: Our work takes inspiration from the action
recognition literature, as it provides an effective supervised
method for video action recognition. In the action recogni-
tion space, a novel deep architecture called Unified Trans-
former (UniFormer) [15] has been introduced which seam-
lessly integrates the merits of 3D convolution and spatio-
temporal self-attention in a concise format by implementing
modules of both convolution and self-attention together to
achieve a balance between computational complexity and
accuracy. Later, the Uniformer Version 2 (UniformerV2)
architecture [16] modified these modules of the previous
Uniformer architecture to implement them simultaneously
and fuse at the end of the pipeline to capture the relevant
spatio-temporal features. Also, UniformerV2 takes advan-
tage of pre-trained ViT embeddings to initialize segments of
the architecture to better make use of pretrained knowledge
from large image datasets.

However, self-attention has a quadratic computational
complexity with respect to the sequence length, making it
challenging to process long sequences of tokens such as
in videos [12, 24]. To alleviate this issue, [24] introduced
a redesigned attention mechanism named Efficient Addi-
tive Attention as seen in Fig. 1 (a). This proposed mech-
anism replaces the expensive matrix multiplication oper-
ations with element-wise multiplications and linear trans-
formations with the use of only the key-value interaction.
However, such methods have not yet been investigated for
the task of violence detection to the best of our knowledge.
This poses an opportunity to modify and enhance the con-
cepts discussed to create an improved, tailor-made solution
for the problem of violence detection.

3.1. CUE-Net Architecture

We introduce our novel architecture, the spatial Cropping,
enhanced UniformerV2 with Modified Efficient Additive
Attention network (CUE-Net) for violence detection in
videos as shown in Fig. 2. The architecture contains five
main components, namely: (a) Spatial Cropping Module;
(b) 3D Convolution Backbone; (c) Local UniBlock V2; (d)
Global UniBlock V3; and (e) Fusion Block, inspired by the
motivational factors discussed in the preceding paragraph.
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Figure 2. The overall CUE-Net architecture with its main components. (a) the Spatial Cropping Module uses the YOLO V8 algorithm
to detect people and crop the video spatially; (b) the 3D Convolutional Block which is used to encode and downsample the frames
spatio-temporally; (c) the Local UniBlock V2 which is mainly used to capture the important local dependencies with its main components
LT MHRA, GS MHRA and a feed forward network (FFN); (d) the Global UniBlock V3 which is mainly used to capture the important
global spatio-temporal dependencies, with its main components Dynamic Positional Embedding (DPE) unit, MEAA unit which implements
a novel efficient self-attention mechanism and a feed forward network (FFN); (e) the Fusion Block which is used to fuse the outputs of the
Local UniBlock V2 and Global UniBlock V3.

3.1.1 Spatial Cropping Module

The motivation for cropping the video spatially is based on
the observation that violence is normally carried out be-
tween two or more people. We opted to extract the peo-
ple and crop the video frames spatially with the maximum
bounding box for the area where people are found, so as
not to lose the information surrounding the people, but to
maximize the important area to focus by removing the parts
of the environment where the people are not present. We
opted not to perform temporal cropping to avoid any infor-
mation loss occurring from undetected people. When the
video X ∈ RT×H×W×c (T , H , W and c represent temporal
dimensions, height, width and colour channels of the video
frames respectively) is input to this spatial cropping mod-
ule, to detect people, we used the YOLO (You Only Look
Once) V8 algorithm [11] which classifies objects in a single
pass using a CNN-based architecture where a full image is
taken as the input. Algorithm 1 elaborates the spatial crop-
ping procedure for the maximum bounding box throughout
the video. If more than one person is detected, it outputs
X′ ∈ RT×H×W×c which is the spatially cropped video. If
only a single person or no people are detected, X′ will be
the initial video as a whole to make sure the method does
not miss out any information.

3.1.2 3D Convolution Backbone

The spatially cropped video frames from the previous mod-
ule X′ are then passed as input to the 3D Convolution Back-
bone, where a 3D convolution (i.e., 3×16×16) is used to
encode and project the input video as spatio-temporal to-
kens V0 ∈ RT×H×W×d, (T , H , W and d represent tem-

poral dimensions, height and width of the frames and hid-
den dimensions respectively). Afterwards, according to the
original ViT design [7], spatial downsampling by 16× is
performed and then a temporal downsampling by 2× is per-
formed to reduce spatio-temporal resolution. The encoded
hidden dimension d was maintained the same throughout
the architecture modules to facilitate residual connections.
At the end of this stage the processed input is sent to the
Local UniBlock V2.

3.1.3 Local UniBlock V2

The Local UniBlock V2, has been introduced specifically
to model the local dependencies in our CUE-Net architec-
ture. This was extracted from the UniformerV2 architec-
ture without modifications as a result of the ablation study
we performed. Here, two types of Multi-Head Relation
Aggregator (MHRA) units are used namely, Local Tempo-
ral MHRA (LT MHRA) and Global Spatial (GS MHRA)
along with a Feed Forward Network (FFN) module. The in-
put to this block is V0 ∈ RT×H×W×d which is the output
of the previous 3D Convolution Backbone and this block
outputs V3 ∈ RT×H×W×d at the end of the FFN. The pro-
cessing inside a Local UniBlock V2 can be represented as:

V1 = V0 + LT MHRA
(
LN

(
V0

))
, (1)

V2 = V1 +GS MHRA
(
LN

(
V1

))
, (2)

V3 = V2 + FFN
(
LN

(
V2

))
, (3)

where LN(·) represents layer normalization. A Multi-Head
Relation Aggregator (MHRA) unit concatenates multiple
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Algorithm 1 Spatial Cropping Mechanism with YOLO V8

Input: x ▷ Input Video
Output: x′ ▷ Cropped Video

▷ A crop box for a video is defined by the coordinates
(xmin, ymin) and (xmax, ymax)
(xmin, ymin)← (inf, inf)
(xmax, ymax)← (0, 0)
max people← 0 ▷ Max no of people

F ← Y OLO V 8(x) ▷ F is the list of frames of
the video where the ith entry fi is another list of people
bounding boxes P found in each frame, the jth bounding
box pj denoted as (xj

min, y
j
min), (x

j
max, y

j
max).

for each fi in F do
ni ← 0 ▷ no. of people in each frame
for each pj in fi do

xmin ← min(xmin, x
j
min)

ymin ← min(ymin, y
j
min)

xmax ← min(xmax, x
j
max)

ymax ← min(ymax, y
j
max)

people← people+ 1
end for
if ni > 0 then

max people← max(max people, ni)
end if

end for
if max people > 1 then

x′ ← crop video(xmin, ymin, xmax, ymax)
else

x′ ← x
end if

heads and can be described as:

Sn(V
i) = Bn · Ln(V

i), (4)

MHRA(Vi) = [S1(V
i); S2(V

i); · · · ; SN (Vi)] ·M, (5)

where the relational aggregator of the n-th head is repre-
sented by Sn(·) where Bn represents an affinity matrix that
characterizes the relationships between tokens and Bn is
changed accordingly in LT MHRA and in GB MHRA to
achieve their respective goals. A linear projection is rep-
resented by Ln(·). A fusion matrix M ∈ Rd×d which is
learnable is used to integrate N heads during concatena-
tion of the heads represented by [...] at the end of a general
MHRA unit.

LT MHRA: The Local Temporal MHRA (LT MHRA)
takes the input V0 from the 3D Convolution Backbone, im-
plements depth-wise convolution (DWConv) with the help
of the affinity matrix Bn described in the preceding para-
graph, as the goal of this unit is to reduce the local tem-
poral redundancy and to learn local representations form

the local spatio-temporal context. This unit outputs V1 ∈
RT×H×W×d.

GT MHRA: The Global Temporal MHRA
(GT MHRA) receives the output of the LT MHRA
unit V1 and implements multi-headed self-attention
(MHSA) from the ViT architecture [7] with the help of
the affinity matrix Bn described earlier as the goal of this
unit is to make use of the rich image pretraining of ViTs
learned from large image databases. To achieve this target,
the GT MHRA units are initialized with image-pretrained
ViT embeddings inflated along the temporal dimension and
the output of this unit is V2 ∈ RT×H×W×d.

FFN: The Feed Forward Network (FFN) module accepts
the output V2 of GT MHRA, and consists of two linear pro-
jections separated by a GeLU [10] activation function. FFN
is implemented at the end of the Local UniBlock V2 to out-
put V3 ∈ RT×H×W×d.

3.1.4 Global UniBlock V3

The Global UniBlock V3 has been introduced specifi-
cally to perform global long-range dependency modeling
on the spatio-temporal scale in our CUE-Net. This Global
UniBlock V3 consists of three basic units namely, Dy-
namic Positional Embedding (DPE) unit, Modified Efficient
Additive Attention (MEAA) unit, and finally a Feed For-
ward Network (FFN) module. The input to this block is
V3 ∈ RT×H×W×d which is the output of the previous
Local UniBlock V2 and the Global UniBlock V3 outputs
V6 ∈ R1×d at the end of the FFN unit. The processing in-
side this block where LN(·) represents layer normalization
can be represented as:

V4 = V3 +DPE
(
V3

)
, (6)

V5 = MEAA
(
LN (q) ,LN

(
V4

))
, (7)

V6 = V5 + FFN
(
Norm

(
V5

))
. (8)

DPE: The Dynamic Positional Embedding (DPE) unit re-
ceives the input V3 from the previous Local UniBlock V2,
and uses simple 3D depth-wise spatio-temporal convolution
with zero padding (DWConv) to encode spatio-temporal po-
sitional information for token representations, as the videos
vary both spatially and temporally. The output of the DPE
block is V4 ∈ RT×H×W×d.

Modified Efficient Additive Attention (MEAA): In
the Modified Efficient Additive Attention (MEAA) unit, a
learnable query q ∈ R1×d is converted into a video rep-
resentation, through modeling a relationship between this
query q and all the spatio-temporal tokens V4 received
from the DPE unit, with the help of this modified version of
Efficient Additive Attention. As depicted in Fig. 3 (b), the
learnable query vector q is projected into query (q∗) and V4

is projected into the key (K) using two linear layers where
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Figure 3. (a) illustrates the Efficient Additive Attention where
the expensive matrix multiplication operations have been replaced
with element-wise multiplications and linear transformations via
a query-key pair interaction. (b) represents the Modified Efficient
Additive Attention (MEAA) which only uses a query vector in-
stead of a whole query matrix when computing Efficient Addi-
tive Attention, reducing the computational complexity along with
memory usage.

n is the token length and d is the number of hidden dimen-
sions. Afterwards, another vector of learnable parameters
wa ∈ Rd is multiplied with the query q∗ with the intention
of learning the attention weights of the query. This results
in outputting α ∈ R1 which can be considered the global
attention query vector:

α =
(q∗ · wa√

d

)
(9)

The global query vector qg ∈ R1×d is afterwards derived
using the attention weight which was learned as:

qg = α⊙ q∗, (10)

where ⊙ represents element-wise multiplication.
Finally, element-wise multiplication is performed be-

tween the global query vector qg ∈ R1×d and the key ma-
trix K ∈ Rn×d in order to fuse these two entities, where
the end result has dimensions Rn×d. The above process
is inexpensive, with linear complexity in relation to to-
ken length, compared to obtaining self-attention which has
a quadratic complexity. A linear layer is then applied to
this element-wise multiplication with a residual connection
from q∗ along with a final linear layer to produce the output:

V5 = Mean
(
W2 · ((W1 · (qg ⊙K) + b1) + q∗) + b2

)
.

(11)

To obtain V5 ∈ R1×d as the output, the mean is calculated
along the n dimension to get an overall representation.

FFN: Similar to the FFN module in the previous Local
UniBlock v2, this Feed Forward Network (FFN) accepts the
output V5 of GT MHRA module and consists of two linear
projections separated by a GeLU [10] activation function, at
the end of the Global UniBlock V3 to output V6 ∈ R1×d.

3.1.5 Fusion Block

At the very end of the CUE-Net architecture, a fusion
block integrates the final token from the Global UniBlock
V6 ∈ R1×d with the final video class token V3′ ∈ R1×d

extracted from the final output V3 ∈ RT×H×W×d of the
Local UniBlock. These tokens V6 and V3′ are dynamically
fused to obtain Z as:

β′ = Sigmoid(β), (12)

Z = (1− β′)⊙V6 + β′ ⊙V3′ . (13)

using another learnable parameter β ∈ R1×d passed
through the Sigmoid function. Finally, the target class Pr is
obtained by passing Z through a fully connected projection
layer.

4. Experiments and Results
4.1. Datasets

The most challenging datasets so far in the VD domain are
the Real-World Fighting (RWF-2000) dataset [4] and the
Real Life Violence Situations (RLVS) dataset [25], that con-
tain video footage of fighting in real life scenarios. But of
these two datasets, only the RWF-2000 dataset contains ex-
clusive surveillance footage.

4.1.1 Real World Fighting (RWF-2000) Dataset

The Real World Fighting (RWF-2000) dataset [4] was intro-
duced in 2020 and is the most comprehensive dataset, con-
taining real world fighting scenarios sourced purely through
surveillance footage. A typical violent example can be seen
at Fig. 1 (b). RWF-2000 contains 2,000 trimmed video clips
captured by surveillance cameras from real-world scenes
collected from YouTube. Each video is trimmed to 5 sec-
onds where the fighting occurs. The dataset is balanced with
1000 violent videos and 1000 non-violent videos, with a
80%-20% predefined train-test split which has been thor-
oughly checked for data leakage between the splits.

4.1.2 Real Life Violence Situations (RLVS) Dataset

The Real Life Violence Situations (RLVS) dataset [25] con-
sists of 2000 video clips with 1000 violent and another 1000
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Method Model Type Accuracy (%)

ConvLSTM[4] CNN+LSTM 77.00

X3D[14] 3DCNN 84.75

I3D[9] 3DCNN 83.40

Flow Gated
Network[4]

Two Stream
Graph CNN 87.25

SPIL[26] Graph CNN 89.30

Structured
Keypoint

Pooling[9]
CNN 93.40

Video Swin
Transfor-
mer[17]

ViViT 91.25

ACTION-
VST[14] CNN + ViViT 93.59

CUE-Net
(Ours)

Enhanced
UniformerV2

+ MEAA
94.00

Table 1. Results comparison for the RWF-2000 Dataset.

non-violent videos collected from YouTube. These con-
tain many real street fight situations in several environments
and conditions with an average length of 5s from different
sources such as surveillance cameras, movies, video record-
ings, etc. Similar to RWF-2000, a 80%-20% train-test split
has been created for this dataset.

4.2. Implementation Details

Our algorithm was implemented in PyTorch using the
AdamW optimizer [20] with a cosine learning rate sched-
ule [19] starting with a learning rate of 1e-5 and Cross-
Entropy Loss, taking insights from training recipes of the
original UniformerV2 architecture [16]. To initialize the
Global MHRA units of the Local UniBlocks, pretrained em-
beddings from CLIP-ViT [23] model are used as [16] states
this yields the best results in their architecture due to the
well learned representations by vision-language contrastive
learning. All models were trained for 50 epochs where the
best validation model was saved after each epoch. We uti-
lized NVidia A100 GPUs with 40GB/80GB memory. For
data augmentation, RandAugment by [5] was used. Our
best performing CUE-Net architecture consisted of 354M
parameters where the number of frames selected (T ) to be
inputted was 64 with a resized frame height (H) and width
(W ) of 336 × 336 in RGB channels (c = 3).

Method Model Type Accuracy (%)

CNN-
LSTM[25] VGG16+LSTM 88.20

Temporal
Fusion CNN
+LSTM[6]

CNN+LSTM 91.02

DeVTr[1] ViViT 96.25

ACTION-
VST[14] CNN + ViViT 98.69

CUE-Net
(Ours)

Enhanced
UniformerV2

+ MEAA
99.50

Table 2. Results comparison for the RLVS Dataset.

4.3. Results

In this section we perform an in-depth analysis comparing
our CUE-Net architecture with other leading architectures
using the two different datasets, RWF-2000 and RLVS. Fol-
lowing the practice of other researchers [9, 14], we also use
classification accuracy as the metric to evaluate the perfor-
mance as both of the trained and tested upon datasets are
balanced. Tab. 1 and Tab. 2 present the results compar-
ison of our CUE-Net architecture with other state-of-the-
art methods on RWF-2000 and RLVS datasets respectively.
Our CUE-Net architecture outperforms all others in clas-
sification accuracy. On the RWF-2000 dataset, our CUE-
Net architecture reaches an accuracy of 94.00%, and on the
RLVS dataset, it records an accuracy of 99.50%, setting a
new state-of-the-art on both datasets.

4.3.1 Visual Analysis of Results

RWF-2000 Dataset: For the RWF-2000 test set, we per-
formed a visual evaluation of the misclassified instances.
As the accuracy was 94.00%, there were only 24 misclas-
sified instances where 15 non-violent videos were misclas-
sified as violent and 8 violent videos were misclassified as
non-violent. This gives the idea that our model is better able
to learn the specifics of the violent action markers. Support-
ing this proposition, we were able to identify a video shown
in Fig. 1 (c) where a man makes punching actions but is
not really engaging in a fight. Our method misclassifies this
non-violent video as a violent video.

RLVS Dataset: We also performed a visual evaluation
of the misclassified instances in RLVS test set. Since our
accuracy was 99.5%, there were only 2 misclassified videos
where 1 non-violent video was misclassified and vice versa.
When analysing the 2 misclassified videos, we noted the
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Spatial
Cropping

Local
UniBlock

Global
UniBlock

Accuracy
(%)

FLOPs
(Giga)

× Self-
Attention

Self-
Attention 92.00 6108

✓
Self-

Attention
Self-

Attention 92.50 6108

✓ MEAA Self-
Attention 50.00 5929

✓ MEAA MEAA 50.00 5749

✓
Self-

Attention MEAA 94.00 5826

Table 3. Ablation showing the effect of Spatial Cropping, Self-
Attention and MEAA in the Local UniBlock and Global UniBlock.

video shown in Fig. 1 (d) was labelled violent and was mis-
classified, but was a mislabeled instance of a non-violent
video where two players were playing tennis without any vi-
olence, thus increasing the true accuracy of our model with
this correction to 99.75%. This strongly shows CUE-Net
has learned the dynamics of violent actions.

4.4. Ablation Study

We performed a series of ablation studies to asses the effi-
cacy of the components of CUE-Net.

4.4.1 Ablation on Spatial Cropping, Self-Attention and
MEAA in Local UniBlock and Global UniBlock

Four ablation experiments were conducted to explore the
use of spatial cropping and the MEAA module as shown in
in Tab. 3. First, we remove the spatial cropping module,
and use Self-Attention both in the Local UniBlock and in
the Global UniBlock. In the second row of the table, we
add spatial cropping, which enhances the performance of
the model. In the last row, we replace the Self-Attention
with Modified Efficient Additive Attention (MEAA) in the
Global UniBlock, forming our full CUE-Net model. This
provides a considerable boost of 1.5% in accuracy. We
speculate traditional Self-Attention may have an informa-
tion overload especially while trying to capture represen-
tative features temporally. In contrast, with the simpler
MEAA, it may be easier for the Global UniBlock to learn
the discriminative features temporally when it comes to
identifying violent actions. The remaining rows in the table
explore the use of MEAA in the Local UniBlock. Here the
algorithm performance becomes random as shown by the
results in Tab. 3. In this setting, the local UniBlocks are not
initialized with pretrained ViT embeddings and underper-
form. Also, it is evident from Tab. 3 that the FLOPs count
reduces when MEAA is used in place of Self Attention de-
picting a reduction in computational complexity. Therefore
our proposed approach of using Self-Attention in the Local

Efficient Additive
Attention Variant

Accuracy
(%)

GPU
Memory
Usage

Original 93.00 47.33 GB

MEAA 94.00 35.04 GB

Table 4. Ablation showing the Original Efficient Additive Atten-
tion vs Modified Efficient Additive Attention (MEAA).

UniBlock and MEAA in the Global UniBlock has the best
performance along with a reduced FLOPs count.

4.4.2 Ablation on Original Efficient Additive Attention
vs Modified Efficient Additive Attention (MEAA)

We also experimented with the original Efficient Additive
Attention with a n-dimensional query matrix instead of a
1-dimensional query vector in the Global UniBlock in our
CUE-Net architecture, but it under-performed, with 1%
less accuracy compared to MEAA as seen in Tab. 4. We
also note the GPU memory consumption was considerably
higher (47 GB compared to 35 GB) when the original Effi-
cient Additive Attention was used. Therefore, we can state
that our MEAA gives a competitive edge over original Effi-
cient Additive Attention when it comes to memory usage.

5. Conclusion
This paper introduces CUE-Net, a novel framework for vi-
olence detection in videos which implements cropping with
an enhanced version of UniformerV2 architecture. CUE-
Net uses convolution-based mechanisms to capture the lo-
cal features and attention mechanisms to capture the global
spatio-temporal features fused with a novel attention mech-
anism named Modified Efficient Additive Attention. We in-
corporated video cropping spatially, based on the detected
number of people before the video is fed into the main pro-
cessing algorithm to focus the method on the areas where
violence takes place. We also proposed Modified Efficient
Additive Attention instead of Self-Attention in the Global
UniBlock V3 of the CUE-Net architecture, to capture the
important global spatio-temporal features, as it has shown
to be effective and efficient. Our proposed CUE-Net al-
gorithm has achieved new state-of-the-art performance on
the RWF-2000 and RLVS datasets, surpassing the results of
most recently published methods.
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