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Abstract

Engagement analysis finds various applications in
healthcare, education, advertisement, services. Deep Neu-
ral Networks, used for analysis, possess complex architec-
ture and need large amounts of input data, computational
power, inference time. These constraints challenge embed-
ding systems into devices for real-time use. To address
these limitations, we present a novel two-stream feature
fusion “Tensor-Convolution and Convolution-Transformer
Network” (TCCT-Net) architecture. To better learn the
meaningful patterns in the temporal-spatial domain, we de-
sign a “CT” stream that integrates a hybrid convolutional-
transformer. In parallel, to efficiently extract rich patterns
from the temporal-frequency domain and boost processing
speed, we introduce a “TC” stream that uses Continuous
Wavelet Transform (CWT) to represent information in a 2D
tensor form. Evaluated on the EngageNet dataset, the pro-
posed method outperforms existing baselines, utilizing only
two behavioral features (head pose rotations) compared to
the 98 used in baseline models. Furthermore, comparative
analysis shows TCCT-Net’s architecture offers an order-
of-magnitude improvement in inference speed compared
to state-of-the-art image-based Recurrent Neural Network
(RNN) methods. The code will be released at https:
//github.com/vedernikovphoto/TCCT_Net.

1. Introduction
Real-time engagement analysis on resource-constrained
mobile and embedded devices is becoming essential in the
technology, education, retail, services [19, 42]. The imprac-
ticality of wired methods like electroencephalogram (EEG)
or electrocardiogram (ECG) for such devices makes the uti-
lization of facial expressions, eye gaze, head movements the
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Figure 1. We introduce TCCT-Net, a novel architecture that out-
performs the SOTA methods in accuracy and inference speed for
the task of engagement analysis, showcasing superior efficiency
and speed.

superior feasible option [7, 27, 31].
The state-of-the-art (SOTA) computer vision methods

for engagement analysis employ heavy image-based se-
quence architectures such as Recurrent Neural Networks
(RNNs), Long Short-Term Memory Networks (LSTMs)
[34], Temporal Convolutional Networks (TCNs) [1, 2], etc.
These methods demand large amount of input data (se-
quence of frames from videos), longer training time, sig-
nificant computing resources. Yet, mobile and embedded
devices require efficient algorithms for real-time engage-
ment analysis, enhancing usability and versatility without
excessive features [45].

Leveraging more compact signal-based input data, incor-
porating both temporal-spatial and frequency patterns, can
address challenges in image-based architectures. Research
in the affective computing field has previously utilized raw
signals (making the learning low-efficient and ineffective)
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[21] and RGB spectrograms processed with vision mod-
els (considered too heavy and cumbersome) [20, 46], while
insufficient attention has been paid to the utilization of
2D tensors for presenting frequency information [30, 35].
The latter balances computational demands while enrich-
ing temporal-spatial insights, enabling real-time engage-
ment analysis in mobile and embedded computing.

Reflecting on the prior observations, we propose a
lightweight yet efficient approach based on 2D tensor pre-
sentations, incorporating a two-stream network that har-
nesses the strengths of temporal-spatial and temporal-
frequency domains for engagement analysis (Fig. 1). The
contributions of this paper are summarized as follows:

1. We present a novel two-stream feature fusion ar-
chitecture, the “Tensor-Convolution and Convolution-
Transformer Network” (TCCT-Net). It integrates
temporal-spatial-frequency data obtained from behav-
ioral feature signals. The “TC” stream performs analy-
sis on temporal-frequency behavioral features, while the
“CT” stream focuses on their temporal-spatial analysis.
TCCT-Net facilitates powerful feature extraction with-
out complex network structures.

2. We propose a lighter alternative to conventional image-
based RNNs as well as traditional temporal-frequency
methods, which typically rely on raw signals and spec-
trograms. Specifically, we use 2D temporal-frequency
tensors, derived from behavioral feature signals through
Continuous Wavelet Transform (CWT).

3. The proposed method demonstrates superior data learn-
ing efficiency. It needs only two behavioral feature
signals as the input, unlike other methods that require
dozens of behavioral feature signals or analyze dozens
to hundreds of video frames.

4. The TCCT-Net, evaluated on the EngageNet dataset
for predicting user engagement, outperforms existing
benchmarks on both accuracy and speed while utilizing
significantly fewer features.

2. Related work
Automated engagement analysis. The systematic study of
automated engagement analysis by Whitehill et al. [43] in
2014 marked a pivotal milestone, showcasing the potential
of machine learning to estimate engagement with accuracy
comparable to human judgment. Over the past decade, this
field has expanded to incorporate various indicators of en-
gagement, including features associated with facial expres-
sions [13], eye gaze [8], body gestures [18], physiological
responses [36], textual analysis [3], reaction time [26], and
response accuracy [26]. Additionally, several studies have
explored multi-modal approaches to further enhance the un-
derstanding of engagement [11, 12]. However, not all cues
or modalities are suitable for real-time engagement analy-

sis. For example, textual analysis often involves examining
tweets retrospectively [15], while the use of EEG signals
[37] and electrodermal activity (EDA) [11] is limited by the
need for specialized equipment. Speech analysis may not
always be relevant, particularly when participants primarily
listen [14]. Given these constraints, the focus has shifted
to methods relying solely on visual cues for engagement
analysis. This eliminates the need for extra devices, stream-
lining the process for real-time use.

Vision-based engagement analysis. Traditional computer
vision techniques leverage facial expressions [24], body
gestures [28], head movements [17] to automatically as-
sess student engagement. Most SOTA computer vision ap-
proaches [1, 2, 32, 34] for engagement analysis employ
models that analyze frame sequences, which can range from
dozens to hundreds, extracted from facial videos. The
resource-intensive nature of these techniques poses chal-
lenges for real-time analysis on mobile and embedded de-
vices. Despite their prevalence in research, their computa-
tional demands limit practical implementation.

Signal-based emotion analysis. Signal-based methods of-
fer a promising alternative. The Fast Fourier Transform
(FFT), Common Spatial Pattern (CSP), Wavelet Transform
(WT), and Short-Time Fourier Transform (STFT) are signal
processing methods extracting frequency, spatial-frequency,
or temporal-frequency features, enhancing model perfor-
mance alongside temporal-spatial features [44]. The choice
of input method impacts the balance between complex-
ity and efficiency. Overall, the signal-based methods can
be categorized depending on the input data: (1) analyzing
temporal-spatial patterns through time-series signal input,
being too simple and ineffective, as it may not capture the
nuanced features necessary for thorough analysis [21]; (2)
converting signals into images like RGB spectrograms for
Convolutional Neural Network (CNN) architectures to ex-
plore temporal-frequency aspects [4, 16], noting that tri-
channel spectrograms might contain redundant informa-
tion, which could slow down inference without offering
clear benefits; and (3) emphasizing temporal-frequency fea-
tures by using 2D tensors over RGB spectrograms [30, 35].
Using a single channel instead of three enhances infer-
ence speed and cuts redundant data in RGB spectrograms,
yet still adding valuable temporal-frequency insights to the
temporal-spatial domain. Moreover, the simplicity of 2D
tensors allows for advanced on-the-fly augmentation tech-
niques in signal processing. Overall, signal-based meth-
ods in published studies target emotion recognition using
speech [4, 16], EEG/EDA [6], or behavioral data [38] within
the temporal-spatial domain. Yet, behavioral features are
unexplored in the temporal-spatial-frequency domain with
2D tensors, vital for real-time engagement analysis. De-
veloping fast and efficient algorithms is a key for resource-
constrained mobile and embedded devices.
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Figure 2. “Tensor-Convolution and Convolution-Transformer Network” (TCCT-Net) architecture diagram. TCCT-Net integrates temporal-
spatial-frequency data obtained from behavioral feature signals. “TC” stream performs analysis on temporal-frequency behavioral features,
while the “CT” stream focuses on their temporal-spatial analysis. The predictions from both streams are fused at the decision level.

3. Method
Fig. 2 depicts the proposed method’s framework. Ini-
tially, videos in their original RGB format undergo pre-
processing, which entails analyzing each frame to extract
behavioral features. Specifically, for each frame, we ex-
tract certain values corresponding to Action Units (AUs),
eye gaze, and head pose. After pre-processing all the frames
from the input RGB video, we obtain F behavioral feature
signals. Each of these signals represents a time series of
values for a specific extracted feature. Stacking these sig-
nals from a video forms a two-dimensional matrix, with
one dimension representing the behavioral features (F ) and
the other their temporal length. This matrix serves as the
input for TCCT-Net, which comprises three main compo-
nents: (1) temporal-spatial feature extraction, (2) tempo-
ral–frequency feature extraction, and (3) feature fusion and
classification. This pipeline design ensures rapid model
training, shorter development cycles, and achieves real-time
inference performance.

3.1. Temporal-spatial feature extraction stream

We select the Conformer architecture [39] as a backbone
of our temporal-spatial feature extraction stream due to its
proven efficiency in signal data applications. We lever-
age Conformer’s combination of convolutional layers for
local pattern detection and self-attention mechanisms for
understanding broad global dependencies [41]. Temporal-
spatial feature extraction stream begins by feeding the two-

dimensional matrices (obtained during pre-processing of
RGB videos) into the convolution module, where tempo-
ral and spatial convolutional layers are applied sequen-
tially. This extracts local features and then employs av-
erage pooling for noise reduction and generalization im-
provement. Subsequently, the resulting representation is
processed by the self-attention module, capturing long-term
temporal features through global correlation analysis. Fi-
nally, a classifier with two fully connected layers outputs
the decoding results for further decision-level fusion.

Convolution module. Building upon Schirrmeister et al.’s
[33] work, the convolution module utilizes a two-step pro-
cess. The first layer, with 40 filters of dimension 1× 25 and
stride 1 × 1, focuses on extracting temporal features. The
subsequent layer, with 40 filters sized based on the num-
ber of features and a stride of 1 × 1, further analyzes the
extracted information to identify interactions among behav-
ioral features. For improved robustness and training effi-
ciency, the model employs batch normalization followed by
the activation function, Exponential Linear Units (ELUs)
[9], to introduce non-linearity. The average pooling layer
(kernel size 1 × 75, stride 1 × 15) acts as a dimensionality
reduction technique, optimizing feature representation. Fur-
thermore, a dropout rate is utilized to mitigate overfitting.
Before self-attention, processed features undergo transfor-
mation. Through a convolutional layer and subsequent rear-
rangement, a projection operation achieves this by embed-
ding the data in a 40-dimensional space, aligning its struc-
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ture with the requirements of the following module.
Self-Attention module. Limited receptive fields in CNNs
hinder their ability to capture long-term temporal dependen-
cies [41]. This module employs a self-attention mechanism
to address this by learning global dependencies from behav-
ioral features, complementing the previous module’s limi-
tations. To enable the self-attention mechanism, input fea-
tures undergo linear transformations, generating three sets
(queries (Q), keys (K), and values (V)) of equal size. The
correlation between tokens is assessed through the dot prod-
uct of queries and keys. A scaling factor is then applied to
prevent vanishing gradients and stabilize training. Finally, a
softmax operation computes attention scores used to weight
the values (V) via another dot product with dk representing
the dimensionality of the key vectors [41]:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (1)

To enrich representation diversity further, the model
leverages a multi-head attention approach. This involves di-
viding the input tokens into h segments, with each segment
processed independently using a self-attention mechanism.
Each head l generates a distinct attention output based on
segmented inputs Ql,Kl, Vl, which are obtained by trans-
forming the divided tokens linearly. The resulting outputs
are then concatenated, enhancing the ability of the module
to capture diverse dependencies [41]:

MHA(Q,K, V ) = [head0; . . . ; headh−1],

headl = Attention(Ql,Kl, Vl) (2)

Dense module. Refinement of feature representations is
achieved through a dense module employed after the multi-
head self-attention stage. Linear transformations and the
ELU activation function are utilized within this module, en-
abling the identification of intricate patterns. Dropout regu-
larization is applied to prevent overfitting and enhance gen-
eralizability. The output of this stream, intended for clas-
sifying four distinct classes, is to be combined with the
temporal-frequency stream’s output via weighted decision-
level fusion.

3.2. Temporal-frequency feature extraction stream

By leveraging the CWT and CNN, the temporal-frequency
feature extraction stream is adept at uncovering and isolat-
ing features that encompass both the temporal and spectral
patterns of the behavioral signals. This enables the stream
to capture a more nuanced representation of engagement,
facilitating a comprehensive analysis of dynamic behaviors
and patterns within videos.

Temporal-frequency transformation module. A batch of
behavioral feature signals is fed into the temporal-frequency

transformation module. Each signal undergoes a transfor-
mation from the time domain to the frequency domain us-
ing the CWT. The CWT decomposes a signal into wavelets,
allowing for the examination of different frequency compo-
nents at varying scales, using the following equation [29]:

CWT (s, τ) =
1√
|s|

∫ ∞

−∞
x(t)ψ∗

(
t− τ

s

)
dt (3)

where CWT (s, τ) represents the wavelet coefficients at
scale s and shift τ , x(t) is the signal to be transformed,
ψ∗(t) denotes the complex conjugate of the mother wavelet
ψ(t) used in the transformation. The scale factor s stretches
or compresses the wavelet, and the translation parameter τ
shifts the wavelet in time. The variable t represents time,
and the integral runs over the entire time domain of the
signal, facilitating the analysis of the signal’s different fre-
quency components at various scales, thereby providing a
time-frequency representation of the signal. Next, Com-
plex Morlet wavelet [25], which is a complex sine wave
modulated by a Gaussian window, was chosen as a mother
wavelet function ψ(t) for its ability to provide a balance be-
tween time and frequency localization, and defined as:

ψ(t) =
1√
πB

exp

(
− t

2

B

)
exp (2πiCt) (4)

where B is the bandwidth parameter, C is the center fre-
quency, i represents the imaginary unit.

2D tensor presentation. The temporal-frequency trans-
formation module produces 2D tensors, depicting behav-
ioral features via wavelet coefficients. These coefficients
quantify frequency components’ magnitudes across prede-
termined scales, indicating the prominence of features at
different time-frequency points. The tensor’s horizontal
dimension corresponds to the feature signal duration (280
units), while its vertical dimension controls computational
efficiency. Larger tensors can hamper both training and in-
ference speed due to higher computational requirements. In
contrast to stitching RGB spectrograms on top of each other
(which also might become problematic when dealing with
dozens of features), stacking these 2D tensors offers a more
coherent structure for subsequent convolutional processing.
It allows for parallel, rather than sequential, processing of
the feature maps during the feature extraction phase. This
parallel processing approach facilitates more efficient data
handling and extraction of frequency-domain features, in-
tegral for the next stage in TCCT-Net’s temporal-frequency
feature extraction stream. Efficiently handling multidimen-
sional data and extracting key frequency features make this
approach valuable for real-time analysis.

Convolution module. Following the temporal-frequency
transformation, the extracted wavelet coefficients are fed
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into a CNN module to learn the patterns. This mod-
ule builds upon the previously described convolution mod-
ule (Section 3.1) but incorporates adjustments for time-
frequency data. The module starts with a simple network:
two convolutional layers with batch normalization, ELU ac-
tivation, and average pooling. The first CNN layer, using
kernel size (1 × 10), applies padding only in time. This
design extracts temporal features while preserving spatial
information. Further, focusing on spatial relationships, the
second convolutional layer (kernel size: 2× 1, no padding)
is applied. Global average pooling then captures global in-
formation by reducing spatial dimensions, followed by a
fully connected layer adjusting the output to the dense block
dimension.

Dense module. Sharing a structural similarity with the
dense module outlined in Section 3.1, this module incorpo-
rates adjustments specific to time-frequency data process-
ing. It outputs a vector sized by the number of classes
(four). These class features are then to be fused with the
temporal-spatial stream’s output.

3.3. Feature fusion and classification module

After extracting features, the model utilizes decision-level
fusion to combine temporal-spatial and temporal-frequency
information. This approach leverages their complemen-
tarity for improved classification. Module predictions are
merged using learnable weights optimized during train-
ing, allowing the model to adapt the combination strategy.
The final class probabilities are obtained by summing the
weighted outputs from both streams. This fusion mecha-
nism effectively combines the modalities’ strengths, result-
ing in more robust and accurate predictions.

A combined loss function is employed for performance
optimization during model training. This function incorpo-
rates cross-entropy loss (LCEL) to measure prediction-label
discrepancy and L2-norm regularization (LL2

) to penalize
model complexity, preventing overfitting. The total loss
function, L, is given by:

L = LCEL + LL2
=

= − 1

Nb

Nb∑
i=1

M∑
c=1

yic log(ŷic) +
λ

Nb
∥θ∥2

(5)

whereM is the number of classes,Nb is the number of sam-
ples in a batch, yic is a binary indicator (0 or 1) if class label
c is the correct classification for instance i, ŷic is the pre-
dicted probability that instance i belongs to class c, λ is the
regularization parameter controlling the penalty on model
complexity by influencing the weight magnitudes, and ∥θ∥2
represents the squared L2 norm of the weight vector.

4. Experiments
4.1. Dataset

We evaluate TCCT-Net on the EngageNet dataset [10, 38]
proposed at the Ninth Emotion Recognition in the Wild
Challenge (EmotiW) 2023. EngageNet is a large-scale
dataset containing over 11, 300 video clips of 127 par-
ticipants (18 − 37 years old) interacting with a web-
based platform in diverse environments. The partici-
pants were assigned to four different engagement lev-
els (‘Highly-Engaged’, ‘Engaged’, ‘Barely-Engaged’, and
‘Not-Engaged’) by multiple annotators. The dataset is split
into subject-independent sets: 90 participants for training,
11 for validation, and 26 for testing, resulting in 7, 983
training videos, 1, 071 validation videos, and 2, 257 test
videos.

4.2. Preprocessing

Most videos in EngageNet have a frame rate of 30 frame per
second (fps), while some with a higher or lower frame rate.
To ensure consistency, videos exceeding 30 fps were down-
sampled to 30 fps, while those with lower fps remained un-
changed as it led to inferior results by distorting the nat-
ural temporal dynamics of the behavioral feature signals,
as demonstrated by preliminary tests. Next, pre-processing
is conducted to extract behavioral features using the Open-
Face library [5]. Since most videos are 10 seconds long at
30 fps (resulting in 300 frames), OpenFace extracts 300-
element vectors (containing behavioral features for each
frame). To maintain coherence in data processing, signals
longer than 300 frames were trimmed to 280 elements. This
threshold was selected after evaluating that it strikes a bal-
ance between maximizing data utilization, while preserving
the authenticity of behavioral feature signals, especially for
videos in the prevalent length range. Videos with a mini-
mal number of frames were omitted, as duplicating them to
meet the 280-elements criterion would undermine the valid-
ity and reliability of the findings.

For evaluation, all 1, 071 validation set videos were
used. Training employed 6, 852 videos from the training
set. Videos with significantly lower fps, shorter duration, or
both, posed a challenge. In the validation set, these videos’
behavioral signals (if shorter than 280 elements from Open-
Face) were repeated until reaching 280 elements (with any
excess cut off). Similarly, some training set videos were
processed this way. However, very short videos or those
with very low fps in the training set were excluded from
further analysis.

4.3. Data augmentation

The potential for overfitting presents a significant challenge
when dealing with small signal-based datasets. Conven-
tional methods for augmenting signal data often involve
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Figure 3. Segmentation and Recombination (S&R) Augmenta-
tion. S&R tackles overfitting by segmenting behavioral feature
signal data and recombining these segments, preserving essential
features while introducing realistic variations.

simplistic approaches like adding Gaussian noise, apply-
ing time-shifting, or altering the amplitude, either obscuring
crucial features of the signal or failing to introduce mean-
ingful diversity [23]. These methods risk either degrading
the signal quality or not fully capturing the range of vari-
ations needed to robustly train the model. In contrast, the
Segmentation and Recombination (S&R) technique [22],
applied in the temporal domain, effectively augments signal
data by preserving its unique patterns (Fig. 3). By segment-
ing signals into meaningful parts and recombining them,
S&R upholds the signal’s integrity and dynamics. This ap-
proach diversifies the dataset in a realistic manner without
adding noise or distortions, enhancing model accuracy and
generalizability.

Throughout the training process, the behavioral feature
signals from the same engagement class are evenly divided
into S segments. These segments are then randomly con-
catenated. In every epoch, augmented data is generated,
matching the batch size in each iteration. Consequently, the
batch size utilized during training becomes 2N , where N
represents the batch size specified at the data loader stage.

4.4. Training settings

Computational tasks were conducted on a supercomputer,
utilizing 32 SMT-enabled CPU cores and 32 GB RAM,
complemented by an AMD MI250 GPU with 128GB of
memory. For model training, we employed the Adam op-
timizer, starting with an initial learning rate of 0.0005, and
set β1 = 0.6 and β2 = 0.999. A learning rate scheduler was
integrated to dynamically adjust the learning rate at certain
epochs, optimizing the training process. During training,
one batch consists of 72 samples, each paired with addi-
tional 72 augmented samples to enrich the dataset. To pre-

vent overfitting and ensure efficiency, we utilized an early
stopping technique, which terminated the training when fur-
ther improvements in the model’s performance plateaued.
The exact number of epochs varied according to the specific
behavioral features being utilized, as these significantly in-
fluenced the required training duration. When conducting
experiments with SOTA methods, we ensured consistency
by utilizing the identical computational environment.

5. Results
In this section, we report the results of experiments involv-
ing a varying number of behavioral features, denoted as F
(Sec. 3). Notably, F = 2, representing head pose rota-
tions around X and Y axes, yielded the highest performance.
Henceforth, “2 signals” will denote the use of these two be-
havioral feature signals. Our study also included Eye Gaze
(F = 2), Facial Action Units (F = 16) behavioral feature
signals, and their fusion scenarios (Sec. 5.2).

5.1. SOTA comparison

In this subsection, we highlight TCCT-Net’s performance
against three RNN-based SOTA methods for engagement
detection proposed by Abedi and Khan [1] using ResNet +
TCN, and by Selim et al. [34] employing EfficientNet B7 +
LSTM and EfficientNet B7 + Bi-LSTM (Tab. 1). Remark-
ably, TCCT-Net achieves a validation accuracy of 68.91%
by analyzing merely 2 signals, in contrast to RNN-based ap-
proaches, which process 50 and 60 frames, respectively, to
achieve lower accuracies of 54.72%, 57.57%, and 58.94%.
This focus on TCCT-Net’s efficiency through minimal in-
put signals highlights its superior performance and advance-
ments in engagement analysis for mobile and embedded de-
vices.

Method Input Validation
accuracy [%]

ResNet + TCN [1] 50 frames 54.72
EfficientNet B7 + LSTM [34] 60 frames 57.57
EfficientNet B7 + Bi-LSTM [34] 60 frames 58.94
TCCT-Net 2 signals 68.91

Table 1. Comparative analysis of RNN-based SOTA methods and
TCCT-Net accuracy.

5.2. EngageNet comparative analysis

The comparative analysis of TCCT-Net’s validation perfor-
mance against that of other publicly available models on
the EngageNet dataset, considering various combinations
of behavioral features, is detailed in Tab. 2. The authors of
the EngageNet dataset utilize features with dimensions of
16, 12, and 70 for Eye Gaze, Head Pose, and Facial Action
Units, respectively. In contrast, TCCT-Net operates with a
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EG + HP AUs HP EG EG + HP + AUs

Method Acc [%] Method Acc [%] Method Acc [%] Method Acc [%] Method Acc [%]

Transformer (28) 64.45 CNN-LSTM (70) 62.00 LSTM (12) 67.41 Transformer (16) 55.45 Transformer (98) 65.40
LSTM (28) 65.17 LSTM (70) 62.75 TCN (12) 67.51 CNN-LSTM (16) 60.78 LSTM (98) 66.67
TCCT-Net (4) 65.64 TCN (70) 64.24 CNN-LSTM (12) 67.88 LSTM (16) 61.34 CNN-LSTM (98) 67.13

TCCT-Net (16) 66.29 TCCT-Net (2) 68.91 TCN (16) 63.03 TCCT-Net (20) 67.13
TCCT-Net (2) 64.33 TCN (98) 68.72

Table 2. Comparison of validation accuracy across models and analysis of performance based on different combinations of behavioral
features using the EngageNet dataset. ‘EG’ stands for Eye Gaze, ‘HP’ for Head Pose, and ‘AUs’ for Facial Action Units. The number in
parentheses next to each method indicates the number of features used.

significantly reduced feature set, requiring only 2, 2, and 16
features for the same categories.

The substantial reduction in feature dimensions does
not compromise the effectiveness of TCCT-Net, as demon-
strated by its superior performance in validation accuracy
across different behavioral feature combinations. It under-
scores TCCT-Net’s capability to extract and leverage criti-
cal information from minimal data inputs, aligning with the
objectives of developing lightweight models for real-time
engagement analysis on resource-constrained mobile and
embedded devices. Particularly noteworthy is TCCT-Net’s
performance in the Eye Gaze and Head Pose (EG + HP)
and Facial Action Units (AUs) categories, where it achieves
validation accuracies of 65.64% and 66.29%, respectively.
These outcomes are notable due to the significant feature
reduction from baseline methods, yet maintaining high ac-
curacy with less computational demand.

Moreover, the performance of TCCT-Net in ana-
lyzing individual behavioral signals—Head Pose (HP)
with an accuracy of 68.91% and Eye Gaze (EG) with
64.33%—further validates the model’s robustness and flex-
ibility. This indicates that TCCT-Net is not only effective
in handling multi-signal input but also excels when ana-
lyzing single types of behavioral signals, making it a ver-
satile tool for engagement analysis. The model’s architec-
ture, which fuses temporal-spatial and temporal-frequency
features, plays a critical role in this achievement, enabling
it to capture nuanced patterns of engagement utilizing less
data. These results demonstrate that TCCT-Net offers a bal-
ance of performance and efficiency, meeting the demands
of resource-constrained mobile and embedded devices.

5.3. Speed performance

Evaluation of TCCT-Net involves comparing it with SOTA
methods (Tab. 3), with a focus on training and inference
speed for potential real-time use on mobile and embedded
devices. Firstly, the comparison highlights the computa-
tional efficiency of TCCT-Net utilizing 2D tensors. With
training times as low as 40.1 seconds per epoch and in-
ference times at 2.59 seconds for the entire validation set,
TCCT-Net demonstrates an order-of-magnitude improve-

ment over traditional RNN-based SOTA methods that rely
on more computationally intensive inputs of frames ex-
tracted from videos. This efficiency is not merely a func-
tion of reduced computational complexity but also reflects
an optimized balance between the quantity and quality of
input data. While models like EfficientNet B7 + LSTM/Bi-
LSTM [34] and ResNet + TCN [1] process larger quantities
of video frames, resulting in prolonged training and infer-
ence periods, TCCT-Net achieves competitive or superior
performance metrics with significantly less input data.

Method Input Train/Inference
time [s]

TCCT-Net via 2D tensors 2 signals 40.1 / 2.59
ResNet + TCN [1] 50 frames 730 / 61.4
TCCT-Net via RGB images 2 signals 952 / 129
EfficientNet B7 + LSTM [34] 60 frames 1030 / 79.6
EfficientNet B7 + Bi-LSTM [34] 60 frames 1210 / 97

Table 3. Comparative analysis of RNN-based SOTA methods and
TCCT-Net speed performance: epoch training and test set infer-
ence times. The aforementioned times do not include the time re-
quired for extracting behavioral features for TCCT-Net or frames
for SOTA methods.

The TCCT-Net model, utilizing 2D tensors from just
two signals, demonstrates improved efficiency in achiev-
ing rapid training and inference times without sacrificing
accuracy. This method contrasts with traditional RNN-
based SOTA approaches that depend on processing exten-
sive video frames, which demand high computational re-
sources and time. TCCT-Net’s streamlined approach not
only underscores the practicality of minimal input data for
real-time analysis but also highlights an optimized balance
between computational efficiency and the depth of analysis.
By integrating temporal-spatial and temporal-frequency do-
mains through a novel two-stream network, TCCT-Net sets
a new benchmark for engagement analysis. Its ability to de-
liver high performance with reduced computational demand
makes it particularly suited for mobile and embedded de-
vices, emphasizing scalability and deployment in real-world
applications where speed and efficiency are paramount.
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5.4. Ablation study

The ablation study (Tab. 4) examines the individual and
collective impact of the temporal-frequency stream, the
temporal-spatial stream, self-attention, and data augmen-
tation within the TCCT-Net framework, highlighting their
contributions to the model’s performance.

Method Validation accuracy [%]

Only temporal-frequency stream 57.80
TCCT-Net w/o self-attention 63.87
TCCT-Net w/o augmentation 66.20
Only temporal-spatial stream 67.13
TCCT-Net 68.91

Table 4. Ablation study. All the experiments used two behavioral
feature signals as the input.

Single temporal-frequency stream alone achieves a vali-
dation accuracy of 57.80%, which underscores the signif-
icance of capturing temporal-frequency patterns of behav-
ioral signals. As outlined in the manuscript, this stream
leverages the CWT to decompose signals into wavelets, en-
abling the examination of different frequency components
at varying scales. This method’s ability to offer a nuanced
time-frequency representation of engagement signals un-
derpins its standalone contribution to the overall architec-
ture. It demonstrates the critical role of frequency-domain
information in identifying engagement patterns, particularly
when the traditional temporal-spatial analysis might over-
look subtle yet informative frequency-based features.
Single temporal-spatial stream’s standalone performance,
with a validation accuracy of 67.13%, highlights its effi-
cacy in capturing the dynamic and spatial nuances of en-
gagement behaviors. This stream combines convolution and
self-attention mechanisms to extract both local and global
features from behavioral signals. The convolution layers ef-
fectively capture local temporal and spatial features, while
the self-attention mechanism extends the model’s capability
to understand long-term dependencies and global patterns
within the data. This dual approach ensures a comprehen-
sive analysis of temporal-spatial patterns, emphasizing the
stream’s substantial contribution to engagement analysis.
Self-attention. The diminished performance observed in
TCCT-Net without self-attention (63.87%) compared to the
full TCCT-Net architecture underscores the self-attention
mechanism’s importance. By enabling the model to capture
global dependencies and nuanced relationships within the
data that might escape localized convolutional processes,
self-attention enhances the model’s predictive accuracy and
depth of understanding. This is particularly vital in engage-
ment analysis, where the subtleties of behavioral signals in-
dicate profound differences in engagement levels.
Data augmentation’s role in boosting the model’s perfor-
mance is evident, with TCCT-Net without augmentation

achieving 66.20% accuracy compared to the full model’s
68.91%. The employment of the Segmentation and Recom-
bination technique enriches the training dataset, ensuring
robustness against overfitting and improving the general-
ization capabilities. This augmentation strategy further en-
hances the model’s accuracy and its ability to adapt to new,
unseen data.

The analysis of the independent contributions of the
temporal-frequency and temporal-spatial streams, along
with the vital roles of self-attention and data augmentation,
offers a comprehensive understanding of their importance in
the TCCT-Net framework. These components, individually
and collectively, contribute to the model’s superior perfor-
mance, showcasing the sophisticated balance between depth
of analysis and computational efficiency required for real-
time engagement analysis.

6. Conclusion

We introduce TCCT-Net designed for fast and efficient
engagement analysis, aimed for real-time application
on resource-constrained mobile and embedded devices.
This method leverages a two-stream network, integrating
temporal-spatial and temporal-frequency feature extraction.
TCCT-Net’s demonstrated superior performance in valida-
tion accuracy while significantly reducing the computa-
tional overhead and feature input dimensions compared to
the SOTA methods. This efficiency underscores the model’s
ability to maintain high levels of accuracy with fewer data
points, showcasing its potential for real-world applications
where resources are limited. Moreover, the model’s speed
in training and inference times further highlights its suit-
ability for deployment in real-time systems, offering a prac-
tical solution for engagement analysis across various sec-
tors. This work demonstrates the possibility of surpassing
the SOTA methods in accuracy and speed, while relying on
only two features. Future work will expand the model to
other contexts and datasets to ensure its robustness. To fur-
ther improve real-world applicability, we intend to incorpo-
rate remote photoplethysmography (rPPG), a technique es-
teemed for its emotion detection capabilities [40], thereby
leveraging the advantages of a multimodal architecture.
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