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Abstract

Multimodal emotion recognition (MMER) systems typi-
cally outperform unimodal systems by leveraging the inter-
and intra-modal relationships between, e.g., visual, tex-
tual, physiological, and auditory modalities. This paper
proposes an MMER method that relies on a joint multi-
modal transformer (JMT) for fusion with key-based cross-
attention. This framework can exploit the complementary
nature of diverse modalities to improve predictive accu-
racy. Separate backbones capture intra-modal spatiotem-
poral dependencies within each modality over video se-
quences. Subsequently, our JMT fusion architecture inte-
grates the individual modality embeddings, allowing the
model to effectively capture inter- and intra-modal rela-
tionships. Extensive experiments on two challenging ex-
pression recognition tasks – (1) dimensional emotion recog-
nition on the Affwild2 dataset (with face and voice) and
(2) pain estimation on the Biovid dataset (with face and
biosensors) – indicate that our JMT fusion can provide a
cost-effective solution for MMER. Empirical results show
that MMER systems with our proposed fusion allow us to
outperform relevant baseline and state-of-the-art methods.
Code is available at: https://github.com/PoloWlg/Joint-
Multimodal-Transformer-6th-ABAW

1. Introduction

Human-computer interaction is applied in a wide range of
real-world scenarios, e.g., health care, the Internet of Things
(IoT), and autonomous driving. Researchers have classified
human emotions in different ways, most notably accord-
ing to discrete categories, ordinal intensity levels, and the
valence/arousal circumplex [1]. With the recent advance-
ments in deep learning and sensor technologies, research
in affective computing has evolved from lab-controlled to
real-world (in the wild) scenarios. In the latter, human emo-
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Figure 1. (Top) An illustration of the vanilla multimodal trans-
former fusion architecture in the case of two input sources, A and
B. (Bottom) Our proposed JMT fusion (in red) relies on joint mul-
timodal representations.

tions are usually expressed over a broader spectrum beyond
the six basic categorical expressions - anger, disgust, fear,
happy, sad, and surprise [2]. Therefore, there is much in-
terest in analyzing and modeling complex and subtle ex-
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pressions of emotions in real-world scenarios. For instance,
the spectrum of emotions can be formulated as dimensional
emotional recognition (ER), where complex human emo-
tions are represented along arousal (intensity) and valence
(positiveness) axes.

Multimodal fusion has been widely explored for the
problem of video-based ER in the literature [3, 4]. For in-
stance, audio and visual modalities may provide comple-
mentary and redundant information over a video sequence.
These relationships must be captured to model the intrica-
cies of human emotions effectively. Furthermore, effec-
tively capturing both the intra-modal temporal dependen-
cies within the audio and visual modalities and the inter-
modal association across the audio and visual modalities is
crucial in developing an effective AER system [5].

Several methods have been proposed for video-based
ER and recurrent networks have been employed to cap-
ture the intra-modal temporal dependencies from video se-
quences [3, 4, 6]. Recently, attention-based methods have
been introduced to extract features that are the most relevant
to downstream tasks. Cross-attention-based methods have
also been [7] employed to capture the inter-modal associa-
tion between the audio, visual, and other modalities. Lu et
al. [8] proposed ViLBERT, the seminal work in multimodal
co-attention. Since then, many transformer-based cross-
attention methods have been proposed [9, 10]. These meth-
ods, however, cannot effectively capture the intra-modal
temporal dynamics. Further, they specialize in capturing
the complementary information among the modalities but
do not include a mechanism to explicitly capture the redun-
dant information.

The proposed method introduces a third branch with the
joint representation of the multiple modalities, as shown in
Figure 1. By incorporating a joint representation branch,
the model can access additional contextual information that
may not be fully captured by cross-attention alone. Such
a joint representation branch can help improve the model’s
understanding of complex relationships between the input
sequences. Further, the proposed method becomes more ro-
bust to noise or irrelevant information present in individ-
ual sequences, which helps mitigate the sensitivity of cross-
attention to noisy inputs and improves the system’s overall
performance.
Our main contributions are summarized as follows.
(1) This paper proposes a joint multimodal transformer
(JMT) fusion architecture that leverages joint modality rep-
resentations. It captures inter- and intra-modal information
in videos using key-based cross-attention, and exploits the
redundant and complementary associations among modali-
ties. (2) An extensive set of experiments on two challenging
emotion recognition datasets (pain estimation on BioVid
and dimension valence-arousal assessment on Affwild2) in-
dicate that our proposed JMT fusion architecture can out-

perform relevant baseline and state-of-the-art methods.

2. Related Work in Emotion Recognition

2.1. Multimodal Methods

MMER refers to integrating multiple sources of informa-
tion (modalities) to improve the accuracy and robustness of
automated emotion recognition systems at the expense of
complexity. These modalities typically include visual, au-
dio, textual, and physiological. The seminal work in mul-
timodal deep learning was proposed by Ngiam et al. [11],
where the features from the audio and visual modalities
were extracted separately, and then autoencoders and Re-
stricted Boltzmann Machines were used to feature fusion.
Tzirakis et al. [12] proposed one of the early approaches for
A-V fusion for dimensional emotion recognition, in which
the visual features were extracted using a ResNet50 and
the audio features were obtained using a 1D convolutional
neural network (CNN). The modality-specific features were
concatenated and fed to a recurrent net for simultaneous
temporal modeling and modality fusion. An empirical study
was presented by Juan et al. [13], where the authors stud-
ied the impact of fine-tuning multiple layers in a pretrained
CNN for the visual modality.

A two-stream autoencoder with a long short-term mem-
ory (LSTM) network was proposed by Nguyen et al. [14]
to jointly learn and compact representative features from
the visual and audio modalities. A knowledge distillation-
based approach was investigated by Schonevald et al. [3] for
visual modality. For the audio modality, spectrograms were
obtained and fed to a CNN model, and the two modalities
were fused using a recurrent net. A novel self-distillation
scheme was put forward by Deng et al. [15] to overcome
the problem of noisy labels in a multitasking setting. A
two-stream aural visual (TSAV) network was proposed by
Kuhnke et al. [4], in which the audio features were extracted
using a ResNet18, and the visual features were extracted
using a 3D-CNN. The obtained embeddings were fed to a
specially designed TSAV network for information fusion.

Pain estimation is one of the primary problems in af-
fective computing. Researchers have proposed many mul-
timodal datasets for the pain estimation task. The facial
activity descriptors method for pain estimation was intro-
duced by Werner et al. [16]. Dragomir et al. [17] propose
a subject-independent method from facial images with a
residual learning technique. A Sparse LSTM-based method
was proposed by Zhi et al. [18] to solve the problem of van-
ishing gradients in temporal learning. Morabit et al. [19]
proposed a data-efficient image transformer. To process
multiscale electrodermal activity signals, a SE-Net-based
network was proposed by Lu et al. [20]. Multimodal so-
lutions to fuse the physiological and visual modalities were
proposed by Werner et al. [16], Kachele et al. [21], and Zhu
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et al. [18]. Physiological signals are more discriminative for
pain classification than the visual modality.

2.2. Attention-Based and Transformer Methods

Since its inception, attention models have shown extraor-
dinary performance in many applications. These models
have been extensively investigated for capturing the in-
ter and intra-modal associations between the audio and vi-
sual modalities for tasks like action localization [22], A-V
event localization [23], and multimodal emotion recogni-
tion [9]. An attention-based fusion mechanism was pro-
posed by Zhang et al. [24], 3D-CNNs and 2D-CNNs were
used to extract multi-features in the visual modality, and for
the audio modality, a 2D-CNN was used to learn representa-
tion from spectrograms. Specialized scoring functions were
used to re-weight the audio and visual features.

Recently, cross-modal attention has shown promising
results because of its ability to model inter-modal rela-
tionships. Srinivas et al. [9] explored a transformer net-
work with encoder layers, where cross-modal attention
is used to fuse audio and visual features for continuous
arousal/valence prediction in the wild. Tzirakis et al. [25]
explored the idea of cross-attention in conjunction with self-
attention. The authors proposed a transformer-based fusion
architecture. Although the methods mentioned above have
used cross-modal attention with transformers, they do not
have any explicit mechanism to capture semantic relevance
between the A-V features, particularly the intra-modal cor-
relations. Zhang et al. [26] proposed a method for A-V fu-
sion using leader-follower attentive fusion for continuous
arousal/valence prediction. Attention weights are combined
with the encoded visual and audio features. Cross attention
presented in Praveen et al. [7] has shown a substantial in-
crease in performance by using cross-correlation across the
individual features. In contrast, our proposed method uses
key-based cross-attention in multimodal transformers and
explores the idea of feeding the joint A-V feature vector. By
feeding the joint A-V feature representation, the proposed
method effectively captures the inter- and intra-modal rela-
tionships simultaneously by interacting across itself and the
other modalities.

Huang et al. [27] investigated the idea of multi-head at-
tention in transformer-based fusion architecture, which was
further combined with LSTM to capture the high-level rep-
resentations. Tran et al. [28] proposed a cross-modal trans-
former architecture that consisted of a multimodal cross-
modal attention block, where the Queries were generated
from one modality and the key values were generated from
the other modality. Le et al. [29] put forward an end-to-end
transformer-based fusion mechanism for multilabel multi-
modal emotion classification; the model consisted of three
parts: i) three backbone networks for visual, audio, and tex-
tual feature extractor, ii) a transformer network for informa-

tion fusion, and iii) classification network. Zhou et al. [30]
proposed a transformer-based fusion scheme along with the
temporal convolutional network (TCN); the audio and vi-
sual features were extracted using pretrained backbones fol-
lowed by a TCN, the output of TCN was concatenated and
fed to a transformer encoder block. A multilayer perceptron
(MLP) was then used for the final prediction.

All the aforementioned transformer-based fusion archi-
tectures primarily focus on intermodality correlation. In
contrast, in addition to modeling the intermodality rela-
tionships to capture the complementarity between modal-
ities, the proposed method explicitly feeds the joint (com-
bined) features to the multimodal transformer to introduce
redundancy. By incorporating this third joint representa-
tion branch, the proposed model can access enhanced con-
textual information that cross-attention might only partially
capture. Doing this improves the model’s understanding of
complex relationships between the input sequences. Fur-
ther, the proposed method becomes more robust to noise or
irrelevant information present in individual sequences. This
third joint representation allows the model to dynamically
focus on this newly introduced information in sequences
where both modalities are simultaneously noisy. This helps
mitigate the sensitivity of cross-attention to noisy inputs and
improves the system’s overall performance.

3. Proposed Approach

The proposed method is a hierarchical fusion mecha-
nism, where the intra-modality features are combined us-
ing transformer-based self-attention, and cross-modality
features are fused using transformer-based cross-attention.
Further, we feed a third joint representation to the joint
transformer module (JTM) to enhance robustness. The K
(key matrix), V (value matrix), and Q (query matrix) vec-
tors are shared among the six transformer blocks. In the
end, the output of these six blocks is again fed to a trans-
former self-attention block to weigh the most relevant rep-
resentations dynamically. The final prediction is made us-
ing fully connected (FC) layers.

3.1. Modality Specific Feature Extraction

In the first step, modality-specific features are extracted us-
ing backbones. The proposed method allows combining
multiple backbones for each modality to improve system ro-
bustness. The extracted feature vectors from each backbone
are fed to a transformer self-attention block. The combined
feature vector represents the particular modality. For exam-
ple, to capture information about a person’s emotional state,
we can use an R(2+1)D CNN pretrained on the Kinetics-400
dataset [31] to extract visual features. For the audio modal-
ity, we could extract features using a ResNet18 [32] CNN
with a GRU [33].
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Figure 2. An overview of the proposed joint multimodal transformer model for A-V fusion. The audio and visual modalities are cross-
attended using transformer blocks. The JMT block also takes in the joint representation (shown with red arrows). The output of the
cross-attended features is concatenated, and an FC layer is used for valence/arousal prediction.

3.2. Multi-transformer Attention Fusion

We define fA as the deep features extracted from backbone
A, and fB as the deep features extracted from the backbone
B in Figure 2. Given fB and fA, the joint feature repre-
sentation is obtained by concatenating fB and fA feature
vectors:

fJ = [fB;fA] , (1)

where [·; ·] denotes a concatenation operation. The concate-
nated features are then fed to an FC layer for dimensionality
reduction of the joint feature representation to yield fJ . We
now have three key sources of information: fB, fA and
fJ , which have the same dimensionality.

Each representation is then fed to a specific encoder.
Our model is composed of three different encoders, one for
each type of feature fB, fA, and fJ . Each encoder con-
sists of a multi-head-self-attention (Eq. 2) followed by a
fully connected feed-forward network. Residual connection
and layer normalization are performed around both of these
layers. The key is used to associate a sequence to a key
value, the value matrix holds information that is ultimately
used to compute the output of the attention mechanism, and
the query matrix represents a set of vectors used to query
the key-value pairs. The K, V , Q matrix are calculated
this way: K = XWK , Q = XWQ, V = XWV . X corre-
sponds to one of the sources of information and WK , WQ,
WV are the weights of the key, query, value matrices re-
spectively. The output values of the self-attention layers are
given by:

Attention(Q,K, V ) = softmax(KQT /dk)V (2)

With self-attention layers, each encoder focuses inde-
pendently on important cues related to its respective source
of information. Afterward, each encoder embedding is
combined by utilizing six cross-modal attention layers
where the query matrix Q is shared with the key K and
value V matrix of the other source of information. Shar-
ing this matrix between each source of information helps
the model add redundancy and complement the visual and
audio modalities, thus improving its performance. At the
output of each of the six cross-attention modules, the fea-
ture vector of dimension 512 is output. These six feature
vectors are then stacked to form a sequence, which is then
fed to a transformer self-attention block. This block dynam-
ically selects and weighs these feature vectors. The final
attended features are fed to an FC layer for final prediction.

The model aims to maximize the Concordance Correla-
tion Coefficient (CCC) [34], which is common in dimen-
sional emotion recognition. To achieve this, we minimize
the following loss:

Lc = 1− ρc = 1−
2ρ2xy

ρ2x + ρ2y + (µx − µy)2
(3)

where ρ2xy is the covariance between the predictions and the
ground truth, ρ2x and ρ2y the variance of the prediction and
the ground truth, µx and µy the mean of prediction and the
ground truth.
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4. Experimental Methodology
4.1. Datasets

Affwild2 was put forward by [35]. It is one of the largest
and most comprehensive datasets for affective computing
focused in-the-wild scenarios. The dataset is also a part of
the Affective Behavior Analysis in the Wild (ABAW) chal-
lenge [36–50]. The dataset comprises 564 videos that were
collected from YouTube. These videos are labeled for three
main affective computing tasks: i) categorical expression
recognition, ii) continuous valence arousal prediction, and
iii) action unit detection. The dataset comes with a train,
validation, and test split with 341, 71, and 152 videos, re-
spectively. The continuous valence/arousal annotation set is
used to validate the proposed method.

Biovid Heat Pain Database: The BioVid Heat Pain
Database [51] comprises 87 subjects where heat pain was
induced experimentally at the right arm with four different
intensities. The data comprises video and depth map video
from a Kinect camera, galvanic skin response (EDA), elec-
tromyograph (EMG) on trapezius muscle, and electrocar-
diogram (ECG). The Biovid dataset has various partitions
from Part A through E. These partitions differ in the modal-
ities, annotations, and tasks. We use Part A of the dataset
and utilize the video and raw EDA data to validate our pro-
posed method.

4.2. Implementation Details

Affwild2: In the visual modality, cropped and aligned fa-
cial images provided with the dataset are used [43]. Black
frames (zero pixels) replace missing frames in the visual
modality. These images are then fed to a 3D network that
takes the input size of 224×224. A clip length of 8 is used,
which makes up a sub-sequence of 64 frames. Each sub-
sequence contains eight clips. A dropout with a value of
0.8 was used in the linear layers for network regularization.
The network was optimized using the stochastic gradient
descent (SGD) iterative method with an initial learning rate
(LR) of 10−3. The batch size used for the visual modality
was 8. For further generalization, random cropping and ran-
dom horizontal flips were added as data augmentation. The
maximum number of epochs is 50, with early stopping for
model selection. In the audio modality, the audio from each
video is separated and resampled for 44 kHz. Following
the segmentation in the visual modality, small vocal seg-
ments are extracted corresponding to the length of the clip.
A ResNet18 is used to extract the features from the spec-
trograms. A Discrete Fourier transform with a length of
1024, a hop length of 10 msec, and a window length of 20
msec is used to obtain spectrograms of each vocal segment.
The spectrograms have a resolution of 64×107 pixels, cor-
responding to a single clip in the visual modality. Other

preprocessing of spectrograms include mean and variance
normalization, as well as conversion to log-power spectrum.
The first convolutional layer in the pretrained ResNet model
is adapted to take in the single-channel spectrograms. The
learning rate of 1 × 10−2 is used and Adam optimizer is
used to optimize the network. 64 batch size is set for the
audio modality.

The audio and visual backbones are frozen to train the
A-V fusion network and only train the whole transformer-
based fusion model. Each of these backbones outputs deep
feature vectors of dimension 512. These features are con-
catenated (to obtain the joint feature representation, a fea-
ture vector of dimension 1024) and then fed to an FC layer
to reduce dimensionality to 512. Each of these features is
fed to the fusion model, as we can see in Figure 2. At the
output of each of the six cross-attention modules, the fea-
ture vector of dimension 512 is outputted. These six feature
vectors are then stacked to form a sequence, which is then
fed to a transformer self-attention block. This block dynam-
ically selects and weighs these feature vectors. The final at-
tended features are fed to an FC layer for final prediction.
We perform a grid search to find the optimal learning rate
and batch size for our fusion network. Thus, we use a list
of learning rates: [8 × 10−4, 6 × 10−4, 3 × 10−4] and an
SGD optimizer to optimize the fusion network. We use a
batch size of 32, and the maximum number of epochs is 5,
with early stopping for fusion model selection. We select
the best model among the learning rates listed before.

Biovid: In the visual modality, the faces are cropped and
aligned using an MTCNN. We apply the frame retention
strategy for missing frames where the face is not visible,
and the MTCNN cannot capture any frame. Further, to en-
sure noise-free input to the visual model, we clip the first
2 seconds of the video and the last 0.5 seconds at the end
because the subjects show no signs of pain during this dura-
tion. The total number of frames is 75. The extracted faces
are fed to an R3D model for a visual feature extractor. The
batch size is set to 64. The network is separately optimized
using the SGD optimizer and the learning rate of 10−3.

For the physiological modality, the EDA is used. The
signal is clipped to correspond to the visual modality and
fed to a 1D CNN. The architecture of the custom 1D-CNN
is shown in Table 1. The CNN outputs a 512-dimensional
feature vector. The model is optimized using the SGD op-
timizer with a learning rate of 10−4. The batch size for the
physiological backbone is set to 1024.

For the modality fusion, the two feature vectors and the
joint representation are fed to the joint transformer block,
as shown in Figure 3. The FC layers are removed from both
backbones that were added in the backbone training phase.
512-dimensional feature vectors from visual and physiolog-
ical backbones are obtained and fed to the joint multimodal
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transformer module. The backbones are frozen, and the
joint transformer block is optimized using the ADAM opti-
mizer with a learning rate of 5× 10−6, and the batch size is
set to 128.

Table 1. Description of the architecture of the custom 1D-CNN
for the physiological backbone.

Layer No. of Size of
type Filters Kernel Stride Output

Input - - - 2816 × 1

1st Conv 32 5 2 1406 × 32

ReLU - - - 1406 × 32

Max Pooling - 2 - 703 × 32

2nd Conv 64 5 1 699 × 64

ReLU - - - 699 × 64

Max Pooling - 2 - 349 × 64

1st FC - - - 512

ReLU - - - 512

2nd FC - - - 2

Figure 3. Illustration of the proposed joint multimodal transformer
architecture used for the Biovid pain estimation task. The blue
branch shows the visual backbone, and the yellow branch is the
physiological backbone. The joint representation is shown with a
red block. The three feature vectors are fed into the joint trans-
former block.

5. Results and Discussion

5.1. Comparison with the State-of-the-Art

This section compares the proposed method with the
baseline and state-of-the-art on the Affwild2 and Biovid
datasets.

Table 2 presents the performance of our fusion model
on the Biovid Heat Pain Database. We performed 5-fold
cross-validation to pick up the best average fusion model.
It can be seen from the table that the proposed model can
achieve state-of-the-art performance with multimodal input
while using 5-fold cross-validation. We used 5-fold cross-
validation instead of LOSO validation method due to the
computational cost of processing video. The physiological
modality is stronger in the Biovid database. Many stud-
ies have validated the models on physiological modality.
Our empirical results show that the EDA-only accuracy is
77.2%, whereas the visual-only accuracy is 72.9%. The
proposed model can improve over unimodal performance
and achieves state-of-the-art performance on the Biovid
dataset. We also compare it with standard fusion tech-
niques like feature concatenation. For a fair comparison,
we keep all the parameters the same. The proposed model
improves 6% over simple feature concatenation and 1.3%
over a vanilla multimodal transformer i.e. without a joint
representation.

Figure 4 shows the visualization of the attention weights
generated by the joint transformer model. It can be seen
that the model gives more weightage to the physiological
modality.

Table 3 shows the valence and arousal CCC values on the
Affwild2 official validation set and custom-defined folds to
increase generalizability. On the official validation set, the
proposed method achieves a 0.666 average with 0.717 va-

Figure 4. Visualization of attention weights for visual and phys-
iological modalities on the Biovid heat pain database. The facial
frames are taken 1400 msec each.
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Table 2. A comparison of the proposed JMT and state-of-the-art fusion models for pain estimation on the Biovid Heat Pain Database. The
highest score is indicated in bold.

Method Modality XV Scheme Accuracy (%)
Werner et al. [51] ICPR 2014 EDA, ECG, EMG + Video 5-FOLD 80.6
Werner et al. [52] IEEE TAC 2016 Video LOSO 72.4
Kachele et al. [53] IEEE IJSTSP 2016 EDA, ECG, EMG LOSO 82.73
Lopez et al. [54] ACIIW 2017 EDA, ECG 10-FOLD 82.75
Lopez et al. [55] EMBC 2018 EDA LOSO 74.21
Thiam et al. [56] Sensors 2019 EDA LOSO 84.57
Wang et al. [57] EMBC 2020 EDA, ECG, EMG LOSO 83.3
Pouromran et al. [58] PLoS ONE 2021 EDA LOSO 83.3
Thiam et al. [59] Frontiers 2021 EDA, ECG, EMG LOSO 84.25
Phan et al. [60] IEEE Access 2023 EDA, ECG, EMG LOSO 84.8
Audio backbone: 1D CNN only EDA 5-FOLD 77.2
Visual backbone: R3D model only Video 5-FOLD 72.9
Fusion: feature concatenation EDA + Video 5-FOLD 83.5
Fusion: vanilla transformer EDA + Video 5-FOLD 87.8
Fusion: JMT (ours) EDA + Video 5-FOLD 89.1

lence and 0.614 arousal. In addition, we performed ensem-
bling by considering a dual modeling. We observed that
different training configurations lead to models that can be
best at once case: ’Valence’, or ’Arousal’. Therefore, we
used a dual model for prediction by taking the best at each
category. This lead to performance increase.

Table 3. CCC for valence and arousal of the fusion model trained
on different folds of the Affwild2 validation set. Highest scores
are indicated in bold.

Validation Set Valence Arousal Average

Official 0.717 0.614 0.666

fold-1 0.705 0.683 0.694

fold-2 0.741 0.623 0.682

fold-3 0.657 0.637 0.647

fold-4 0.760 0.666 0.713

fold-5 0.684 0.629 0.657

Ensembling 0.769 0.692 0.731

Table 4 compares the proposed JMT fusion method
against state-of-the-art fusion methods on the Affwild2 test
set. The proposed method can achieve 0.472 valence and
0.443 arousal. The average of valence and arousal is 0.458.
The proposed method significantly improves over the base-
line (provided by the challenge organizers). It is essential
to mention here that the other methods that achieve higher
performance are due to extensive pertaining, the use of addi-
tional modalities like text, and the use of more robust back-

bones. For a fair comparison, we use a similar setting to
Joint Cross Attention [61], which includes similar pretrain-
ing and identical backbones for audio and visual modali-
ties. They used joint cross-attention to fuse the two modal-
ities and achieve a 0.369 average. On the other hand, the
proposed model uses JMT fusion and can achieve a 0.443
average. The proposed method improves 7% over the joint
cross-attention-based method.

Table 4. CCC performance of the proposed JMT and state-of-the-
art methods for A-V fusion on the Affwild2 test set.

Method Valence Arousal Mean

Baseline 0.180 0.170 0.175
Joint Cross
Attention [61] 0.374 0.363 0.369

AU-NO [62] 0.418 0.407 0.413

HSE-NN [63] 0.417 0.454 0.436

PRL [64] 0.450 0.445 0.448
Joint Multimodal
Transformer (ours) 0.472 0.443 0.458

FlyingPigs [65] 0.520 0.602 0.561

Situ-RUCAIM3 [66] 0.606 0.596 0.601

5.2. Ablations

Table 5 shows that the proposed model improves perfor-
mance over the vanilla multimodal transformer by 1.8%
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Table 5. CCC performance of the backbones alone, and combined
using baselines and the proposed A-V fusion method on the Af-
fwild2 test set. Experiments are performed on the default training-
validation split. R2D1 (visual) and ResNet18 (audio) backbones
are used for all cases.

Fusion Model Valence Arousal Mean
R2D1 model only
(visual) 0.194 0.310 0.252

ResNet18 model only
(audio) 0.273 0.246 0.260

Concat + FC layers 0.320 0.327 0.323
Vanilla Transformer 0.376 0.334 0.355
JMT (ours) 0.366 0.379 0.373

Table 6. CCC performance of visual and audio backbones alone,
and their A-V fusion using the proposed and baseline methods
on the Affwild2 test set. Experiments are performed on the de-
fault training-validation split. I3D (visual) and ResNet18 (audio)
backbones are used for all cases. FC: fully connected layers for
feature-level fusion of backbones from the same modality. TR:
transformer for fusing features from backbones of the same modal-
ity.

Fusion Model Valence Arousal Mean
Joint Cross Attention [61] 0.374 0.363 0.369
I3D model only
(visual) 0.336 0.422 0.379

ResNet18 model only
(audio) 0.273 0.246 0.260

Concatenation + FC 0.387 0.453 0.420
Vanilla Transformer
- I3D (visual)
- ResNet18 (audio)

0.432 0.410 0.421

JMT (ours)
- I3D (visual)
- ResNet18 (audio)

0.425 0.450 0.438

JMT (ours)
- I3D+R2D1 (visual, FC)
- ResNet18 (audio)

0.472 0.443 0.458

JMT (ours)
- I3D+R2D1 (visual, TR)
- ResNet18 (audio)

0.458 0.445 0.452

with an R2D1 and ResNet18 backbone on the Affwild2
dataset. With an I3D and a ResNet18 backbone, results are
improved by 1.7%, as shown in Table 6. Notice that the re-
sults on the test set are different from Table 4 because we
used a different train/validation split. Additionally, results
show that feature-level fusion of 2 vision backbones (I3D
and R2D1) improves the performance compared to using a
single vision backbone.

Table 7 shows the results of the proposed method with

and without the joint representation. On the Biovid dataset,
the joint multimodal transformer improves by 1.3% over the
vanilla multimodal transformer.

Table 7. Performance of the proposed approach compared to the
vanilla multimodal transformer on test set. Valence and arousal
for the Affwild2 dataset and accuracy for the Biovid dataset. I3D
+ ResNet18 backbones are used for the Affwild2 dataset and
R3D + 1D CNN are used for the BioVid dataset. Default train-
ing/validation split is used in the Affwild2 dataset and 5-fold cross
validation is performed on the BioVid dataset.

Database Method Accuracy

Affwild2

Vanilla Multimodal
Transformer

V: 0.432
A: 0.410

Avg: 0.421

Joint Multimodal
Transformer

V: 0.425
A: 0.450

Avg: 0.438

Biovid

Vanilla Multimodal
Transformer 87.8

Joint Multimodal
Transformer 89.1

6. Conclusion
Multimodal emotion recognition systems outperform their
unimodal counterparts, especially in the wild environment.
The missing and noisy modality is a prevalent issue with
in-the-wild emotion recognition systems. Many attention-
based methods have been proposed in the literature to over-
come this problem. These methods aim to weigh the modal-
ities dynamically. This paper introduces a joint multimodal
transformer for emotional recognition. This transformer-
based architecture introduces a joint feature representation
to add more redundancy and complementary between au-
dio and visual data. The two modalities are first encoded
using separate backbones to extract intra-modal spatiotem-
poral dependencies. The feature vectors of the two modal-
ities are joint and the joint feature vector is also fed into
the Joint Multimodal Transformer module. This joint rep-
resentation provides more fine-grained information about
the inter-modal association between the two modalities.
The proposed model outperforms state-of-the-art methods
on the Biovid dataset and improves over the vanilla mul-
timodal transformer by 6% on the Affwild2 dataset. Our
future work includes introducing more modalities and so-
phisticated backbones for effective feature extraction.
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