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Abstract

Leveraging the synergy of both audio data and visual
data is essential for understanding human emotions and
behaviors, especially in in-the-wild setting. Traditional
methods for integrating such multimodal information of-
ten stumble, leading to less-than-ideal outcomes in the task
of facial action unit detection. Addressing these chal-
lenges, our study introduces a novel approach that synergis-
tically enhances audio-visual data processing. For audio,
we employ Mel Frequency Cepstral Coefficients (MFCC)
and Log-Mel spectrogram features, enriched through a pre-
trained VGGish network, significantly bolstering the audio
feature landscape. Concurrently, in the visual spectrum,
we enhance feature extraction using an iResNet model pre-
trained on facial datasets, thereby improving the robust-
ness and quality of the visual data representation. With this
augmented feature set, Temporal Convolutional Networks
(TCN) are applied to meticulously extract and analyze time-
series characteristics within each modality, fostering a nu-
anced understanding of temporal dynamics. The integra-
tion of cross-modal information is then achieved through
a fine-tuned pre-trained GPT-2 model, facilitating sophisti-
cated and context-aware fusion of the multimodal data. This
comprehensive approach not only enhances the accuracy of
AU detection but also paves the way for a nuanced compre-
hension of complex emotional and behavioral expressions
in real-world scenarios.

*Corresponding author

1. Introduction

The sixth Competition on Affective Behavior Analysis in-
the-wild (ABAW6) [10–21, 42] targets challenges in ana-
lyzing human emotions through facial expressions. Facial
Action Units (AUs), fundamental for expressing emotions,
are the focus of significant research due to their communica-
tive importance [10, 11]. Derived from the Facial Action
Coding System (FACS) [29], AUs are critical for a variety
of applications, from psychology to security. However, de-
tecting AUs accurately, especially in uncontrolled environ-
ments, is complex due to diverse expressions and the neces-
sity for multimodal data integration. Our work responds to
this challenge, aiming to refine AU detection methods and
explore novel multimodal fusion techniques for a deeper un-
derstanding of emotional expressions.

The analysis of facial action units (AUs), essential for
interpreting human emotions and expressions, relies on the
Facial Action Coding System (FACS) to associate specific
AUs with localized facial regions. Traditional methods
for detecting AUs utilized handcrafted features to represent
these regions[4, 5, 7, 25, 36], laying the groundwork for
this field of study. However, these methods were limited in
their adaptability to the wide range of facial expressions, of-
ten unable to accurately capture the nuances of facial move-
ments or adjust to facial posture changes. The introduction
of deep learning marked a new era for AU detection, with
deep neural networks offering more sophisticated means for
extracting and analyzing facial features. Techniques such
as employing face landmarks or segmenting aligned faces
into patches have been developed to more accurately lo-
cate facial areas related to AUs, yet these approaches of-
ten fixedly extracted facial features, limiting their effective-
ness. To address these limitations, recent innovations have
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introduced more flexible and adaptive strategies. For in-
stance, one method employed a three-stage training strat-
egy to enable encoders to adaptively extract features related
to facial local regions, although this necessitated additional
annotations for face landmarks and depended on multi-task
learning[33]. Furthermore, recognizing that the activation
of AUs is not isolated but interconnected, recent studies
have utilized graph neural networks to explore the relation-
ships between AUs, employing a two-stage training strategy
to capture multi-dimensional edge features that reflect the
complex web of AU interactions[26]. However, the com-
plexity of such training strategies has highlighted the need
for a more streamlined approach to AU detection.

This study initiates with the preprocessing of video
data to dissect audio and visual streams, whereupon Log-
Mel[27] spectrogram and Mel Frequency Cepstral Coef-
ficients (MFCC)[34] are extracted for audio. Subsequent
to this foundational step, we leverage pre-trained VGG[32]
and ResNet architectures[8] to distill intricate audio and vi-
sual features on a per-frame basis. To circumvent the chal-
lenges posed by the temporal continuity of video and the
homogeneity among audio frames, our methodology incor-
porates dilated convolutional layers[23], thereby augment-
ing the model’s capacity for temporal context capture and
enriching the extraction of temporal features across distinct
input branches. Following feature extraction, concatena-
tion and convolutional operations facilitate the integration
of these multimodal inputs. Crucially, the incorporation
of a pre-trained GPT-2[22] model, with its sophisticated
context-aware attention mechanism, marks a pivotal phase
in our approach, enhancing the discernment of nuanced fa-
cial expressions and their evolution throughout the video
sequence[45]. This rigorously structured framework, which
transitions from initial data preprocessing to the applica-
tion of advanced neural networks, provides a robust strat-
egy for interpreting complex emotional and behavioral cues
within video data, underscoring the transformative potential
of deep learning in the domain of affective computing. To
sum up, our contributions can be summarized as:

• We streamline AU detection by preprocessing video into
audio and visual streams, extracting Log-Mel and MFCC
features, and utilizing pre-trained VGG and ResNet for
advanced feature extraction.

• Our method incorporates dilated convolutional layers to
enhance temporal context capture, addressing video’s
temporal continuity and audio frame homogeneity.

• We employ a pre-trained GPT-2 model for its context-
aware attention mechanism, significantly improving the
detection and interpretation of nuanced facial expressions
throughout video sequences.

2. Related Work

Addressing the complexities of facial action unit (AU) de-
tection, the field confronts notable challenges, including the
limited identity variance in prevalent datasets and the ex-
traction of pertinent local features for each AU. Traditional
methods have shown substantial limitations [3, 9, 16], par-
ticularly those dependent on manual feature specification,
due to the intricate and nuanced nature of AU annotations.

To navigate these challenges, recent innovations have in-
corporated additional facial landmarks to delineate impor-
tant local features, and have harnessed the power of multi-
task learning to refine the efficacy of AU detection mod-
els. Notably, the SEV-Net [38] model introduces a mech-
anism to generate local region attention maps through tex-
tual descriptors, offering a fresh perspective to concentrate
on salient facial areas crucial for AU analysis. Similarly,
Tang et al. [33] advocate a three-stage training strategy that
capitalizes on facial landmark information in a multi-task
learning framework, thereby directing the model’s focus to-
ward pivotal facial regions.

However, these methods typically require supplementary
landmark annotations, and may not fully address the intri-
cate web of relationships among AUs. To bridge this gap,
Luo et al. [26] have developed a technique leveraging a
graph neural network, which employs a two-stage train-
ing approach to articulate the relational dynamics between
AUs, endeavoring to understand their interconnected behav-
ior. Despite this advancement, their method primarily relies
on simple fully connected layers to represent each AU node,
which sidesteps the need for additional landmark annota-
tions but necessitates a foundational training period for the
network to assimilate node-related information effectively.

Moreover, the quest for a more autonomous learning
mechanism that can intuitively grasp critical facial features
and their interrelations continues. The exploration extends
to devising methodologies that can deduce complex AU pat-
terns and configurations inherently present in facial expres-
sions, with minimal dependency on manual annotations or
predefined feature sets. This ongoing research trajectory
underscores the field’s ambition to craft more intelligent,
self-sufficient, and contextually aware AU detection sys-
tems, capable of decoding the nuanced spectrum of human
facial expressions in a more natural and intuitive manner.

3. Method

In this section, we will describe our proposed approach in
detail. As shown in Figure 1, Our methodology for fa-
cial action unit (AU) detection commences with prepro-
cessing video into audio and visual streams. For visual
features, images Iv ∈ RH×W×3 are input into a ResNet
model[6] pre-trained on Glint360K[1] , producing features
Fv ∈ RH′×W ′×Cv , where only the final layer is updated.
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Audio features are extracted from Log-Mel spectrograms
Ia ∈ RT×F through a pre-trained VGGish network, com-
bined with MFCC, resulting in Fa ∈ R1×Ca . Temporal dy-
namics are captured via TCN[2], yielding Tv ∈ R1×Ct for
visual and Ta ∈ R1×Ct for audio features. Fusion of these.
temporal features through a Transformer network generates
a comprehensive representation Ffusion ∈ R1×Cf , sub-
sequently processed by a multi-class classifier to predict
AU presence PAU . This streamlined approach leverages
deep learning to efficiently detect AUs, integrating complex
audio-visual data.

3.1. Data preprocess

In our data preprocessing pipeline, we meticulously pre-
pare both visual and auditory inputs to ensure that they
are optimally primed for feature extraction. For the visual
component, each frame of the video sequence is processed
through a ResNet network that has been pre-trained on a fa-
cial dataset. This pre-training allows the network to gener-
ate high-fidelity representations that are particularly attuned
to facial features, which are crucial for AU detection. Let
Iframe denote the input frame and FResNet represent the
output feature vector obtained from ResNet:

FResNet = ResNet(Iframe) ∈ RH′×W ′×Cv (1)

Here, H ′ and W ′ denote the height and width of the pro-
cessed feature maps, while Cv denotes the number of chan-
nels.

Moving on to the auditory aspect, we begin by extracting
two types of features: the Mel Frequency Cepstral Coeffi-
cients (MFCC) and Log-Mel spectrogram features. These
features are particularly effective in capturing the essence
of sound and are fundamental to a variety of audio process-
ing tasks. The Log-Mel features are then passed through
a VGGish network, which has been pre-trained to encode
these features into a robust auditory representation known
as VGGish features:

FV GGish = V GGish(LogMel(Iaudio)) ∈ RCa (2)

In this formula, LogMel(Iaudio) refers to the Log-
Mel spectrogram features of the audio input Iaudio, and
FV GGish denotes the encoded VGGish features with Ca

being the feature dimensionality. This pre-trained VGGish
model serves to effectively distill the audio information into
a format that is conducive to our subsequent multimodal
analysis, enabling a more comprehensive understanding of
the auditory signals associated with the video data.

This dual-faceted preprocessing approach sets a robust
foundation for the ensuing stages of our facial action unit
detection framework, ensuring that both the visual and au-
ditory modalities are represented with high granularity and
are well-suited for the deep learning tasks ahead.

3.2. TCN

In our methodological framework for temporal feature pro-
cessing, video sequences are segmented into clips each
comprising 200 consecutive frames to prepare for Temporal
Convolutional Network (TCN) application. The TCN lever-
ages dilated convolutions to process temporal sequences ef-
ficiently, enhancing the model’s ability to capture broader
contextual information without a commensurate increase in
computational demand.

Dilated convolutions enable the network to have an ex-
ponentially larger receptive field, which is crucial for incor-
porating long-range temporal dependencies. For an input
sequence X ∈ RL×Cin , where L = 200 is the sequence
length and Cin is the number of input channels, the TCN
applies a dilated convolution operation to produce an out-
put sequence Y ∈ RL×Cout , with Cout as the number of
output channels. The dilation factor d determines the spac-
ing between the kernel’s elements. The dilated convolution
operation in TCN, parameterized by weights θ, can be ex-
pressed as:

Y (t) = (X ∗d f)(t) =
k−1∑
s=0

f(s) ·X(t− d · s) (3)

where ∗d denotes the dilated convolution operation, f
represents the filter of size k, and t indexes the time step.
The dilation factor d allows the filter to cover a wider span
of the input sequence per time step, effectively enlarging the
receptive field and enabling the capture of temporal patterns
significant for AU detection.

3.3. Leveraging Pretrained Transformer GPT-2

In our study, we employ Temporal Convolutional Networks
(TCN) to extract temporal features from each modality, sub-
sequently fusing these into a unified feature vector through
concatenation and convolution operations. This process is
formalized as follows:

Fconcat = Concat(Tv, Ta, . . .) ∈ RBL×3C (4)

where Tv and Ta represent the temporal features de-
rived from visual and auditory modalities, respectively. The
concatenated feature vector Fconcat undergoes a convolu-
tional refinement process to ensure integrated multimodal
data processing:

Fconv = Conv(Fconcat) ∈ RBL×C′
(5)

This convolutional layer optimizes the integrated feature
vector Fconcat, producing Fconv , which then serves as input
to our GPT-2 based model. · Our framework leverages the
pre-trained GPT-2 model, renowned for its advanced feature
extraction capabilities. GPT-2’s architecture is pivotal, with
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Figure 1. The flowchart presents a multimodal approach for detecting facial action units, employing pre-trained iResnet50 networks for
initial feature extraction from video and audio, which are then refined through Temporal Convolutional Networks to capture the temporal
dynamics. These features are integrated via a fine-tuned GPT-2 model before being classified by an AU detection head. The detailed
submodules illustrate the internal workings of the TCN, emphasizing its dilated convolution blocks for expansive temporal feature capture,
and the GPT-2 model, highlighting the transformer mechanism and fine-tuning approach that enables contextual understanding of the
features.

multi-headed attention mechanisms, encoding schemes, and
position-wise feedforward networks:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (6)

MultiHead(Q,K, V ) = Concat(headi)WO (7)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

The feedforward network within GPT-2 is defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (9)

Fine-tuning of the GPT-2 model, especially its Layer
Normalization (LN) components, is tailored for our specific
task of AU detection, utilizing the refined feature vector
Fconv:

FGPT2 = GPT2LN-finetuned(Fconv) ∈ RBL×N (10)

The resultant feature representation, FGPT2, enriched by
the strategic fine-tuning of GPT-2’s modules, captures the
complex inter-token relationships and temporal dependen-
cies, vital for the nuanced detection of AUs.

3.4. Loss Function

To train our model for the task of facial action unit (AU)
detection, we employ the Binary Cross-Entropy (BCE) loss,
which for a single instance is defined as:

LCE = − 1

N

N∑
i=1

BCE(yi, ŷi,Waui) (11)

where N is the number of classes (action units), yi is the
binary label for the i-th AU (1 for presence and 0 for ab-
sence), ŷi is the predicted probability of the i-th AU being
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present, and Waui is the weight associated with the i-th AU
to address class imbalance.

3.5. Post-Process

Given the structure and composition of the Aff-Wild2
dataset [10, 11, 13–20, 42], it is important to note that the
presence of the meaningful label ”1” is sparse. This sparsity
indicates that such labels are infrequently assigned across
the dataset, which poses unique challenges for model train-
ing and evaluation. After obtaining the prediction confi-
dence levels for each category, we employ a thresholding
technique to segregate the results. The inherent label imbal-
ance in our dataset, predominantly skewed towards the ’0’
class, results in generally lower confidence scores, not uni-
formly distributed between 0 and 1. To counteract this and
enhance our model’s performance, we adjust the threshold
for classification. A lower threshold value was empirically
found to significantly improve the scoring metrics. Con-
sequently, we systematically explored a range of threshold
values on the validation set to identify the optimal solution,
thereby optimizing our model’s performance in the face of
label imbalance.

4. Experiment and Results
In this section, we will provide a detailed description of the
used datasets, the experiment setup, and the experimental
results.

4.1. Datasets

AU Datasets. The Aff-Wild2 dataset, a substantial exten-
sion of the original Aff-wild1 repository, stands at the fore-
front of affective behavior analysis, offering an unprece-
dented breadth of annotated data. Spanning 567 videos an-
notated for valence-arousal dynamics, and 548 videos each
for eight distinct expression categories, this dataset encom-
passes a comprehensive range of human emotions. Addi-
tionally, 547 videos meticulously annotated for 12 distinct
Action Units (AUs) enhance the dataset’s granularity. The
dataset is further bolstered by a collection of 172,360 im-
ages annotated across the valence-arousal spectrum, six ba-
sic expressions plus neutral and ’other’ states, and 12 AUs,
providing a multifaceted view of human affect.

The Action Unit Detection task, a critical component
of the dataset, is represented in 548 videos that capture
the six fundamental expressions, the neutral state, and an
’other’ category encapsulating affective states beyond the
basic emotions. With close to 2.6 million frames and con-
tributions from 431 diverse participants (265 males and 166
females), the dataset’s depth is unparalleled, annotated with
precision by a team of seven experts. Aff-Wild2 stands as
a testament to spontaneous human affect in naturalistic set-
tings, propelling affective computing closer to the complex-
ities of real-world scenarios.

4.2. Training details

In the training phase of our study, we utilized a pre-trained
iResNet network, which has been previously validated for
its efficacy in previous research[28, 30, 35, 37, 39, 40, 43,
43, 46]. The fine-tuning was confined to the network’s fi-
nal layer parameters, adjusted to a learning rate that is one-
tenth of the standard rate. The optimization process was
guided by the AdamW optimizer, spanning a duration of 50
epochs.In our training strategy, a crucial element is the op-
timization of the learning rate schedule. We adopt a linear
warmup strategy that begins with an initial rate and linearly
increases to reach a learning rate of 0.0001 within the span
of 2000 iterations. This gradual increment allows the model
to adjust to the complexity of the task, ensuring stable con-
vergence.If there is no improvement on the validation set for
five consecutive epochs, the learning rate is scaled down to a
tenth of its value. This approach aims to fine-tune the learn-
ing process adaptively based on the model’s performance.
Our model processed video segments with a length of 200
frames each, and we set the batch size to 4. Notably, dur-
ing the training phase, the 30th epoch marked a milestone
as we observed the best performance on the validation set
at this point. This methodical training regimen, marked by
strategic learning rate adjustments and careful monitoring
of validation performance, underscores our commitment to
achieving a robust model that reliably understands and clas-
sifies affective behaviors as manifested in the Aff-Wild2
dataset.

4.3. Metrics

In evaluating our model’s performance for facial action unit
(AU) detection, the F1 score is utilized as the primary met-
ric, capturing the balance between precision and recall. Pre-
cision (P ) and recall (R) are defined as follows:

P =
True Positives

True Positives + False Positives
, (12)

R =
True Positives

True Positives + False Negatives
. (13)

The F1 score is the harmonic mean of precision and re-
call, providing a single measure that combines the sensitiv-
ity and specificity of the model:

F1 = 2× P ×R

P +R
. (14)

For a comprehensive assessment, we calculate the mean
F1 score (F1mean) across all AU classes:

F1mean =
1

N

N∑
i=1

F1i, (15)

where N is the number of AU classes. This metric,
F1mean, effectively summarizes the overall performance of
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Table 1. Ablation study results on the official validation set, the highest score is indicated in bold.

Method Pretrained-ResNet Resnet-Finetune TCN GPT-2 Post-Process F1 Score (%)

baseline 36.5
pretrained ✓ 42.8

pretrained+finetune ✓ ✓ 44.5
TCN ✓ ✓ ✓ 42.6

GPT-2 ✓ ✓ ✓ 48.9
TCN+GPT-2 ✓ ✓ ✓ ✓ 51.4
TCN+GPT-2 ✓ ✓ ✓ ✓ ✓ 53.7

Table 2. The average F1 scores (in %) of different teams on the
official Aff-wild2 test set. Our results are indicated in bold.

Teams F1 Score (%)

Netease Fuxi Virtual Human [44] 56.01
CtyunAI [47] 49.41
HSEmotion [31] 48.78
USTC-IAT-United (Ours) [41] 48.4
KBS-DGU 46.52
M2-Lab-Purdue [24] 38.32
baseline [21] 36.5

the model, ensuring a robust evaluation of its ability to de-
tect and classify AUs accurately.

4.4. Results

Validation Set and Test Set Results. The average F1
scores (in %) of different teams on the official Aff-wild2
test set are shown in Table. 2. Our method achieves good
performance (48.4%) on the official test set, indicating to
some extent the good potential of our approach. In addition,
we also achieve 53.7% score on the official validation set,
more discussion of the validation set results can be found in
Sec. 4.5.

4.5. Ablation Study

Pre-trained iResNet: The foundational element in our
model’s capability to extract complex facial patterns is the
pre-trained iResNet. Removing this component led to a
marked reduction in performance, with accuracy dropping
from 42.8% to 36.5%, underscoring the vital role of iRes-
Net in discerning detailed features crucial for AU detection.

Temporal Feature Extraction with TCN: Temporal
dynamics play a pivotal role in facial expression analysis.
Implementing TCN for temporal feature extraction signifi-
cantly improved our model’s performance, boosting the ac-
curacy from 44.5% to 46.6%. This increment emphasizes
the value of capturing temporal patterns for effective AU
detection.

Fine-tuning of the Network’s Last Layer: The fine-
tuning of the network’s last layer to align with our specific
dataset nuances increased the performance, raising the ac-
curacy from 42.8% to 44.5%. This enhancement illustrates
the fine-tuning’s importance in leveraging the network’s
learned features for the nuanced tasks of AU detection.

Incorporating Pre-trained GPT-2: The integration of
a pre-trained GPT-2 model, renowned for its advanced NLP
capabilities, resulted in a substantial performance uplift,
with accuracy increasing from 44.5% to 48.9%. This im-
provement showcases the power of sophisticated NLP mod-
els in capturing the complex temporal and contextual nu-
ances of facial expressions.

Summary: Our ablation study clearly illustrates the in-
dividual and combined impact of key model components on
AU detection accuracy. The findings highlight the crucial
roles of pre-trained network elements, temporal feature ex-
traction, and model fine-tuning in navigating the intricacies
of facial expression analysis in real-world scenarios.

5. Conclusion

In our research, we’ve demonstrated the effectiveness of
integrating Temporal Convolutional Networks (TCN) with
pre-trained iResNet and GPT-2 models for the nuanced task
of facial action unit (AU) detection in ”in-the-wild” settings.
By leveraging TCN for dynamic feature extraction and en-
riching feature representation through pre-trained models,
we achieved notable improvements in AU detection accu-
racy. The results underscore the synergistic impact of com-
bining temporal analysis with advanced neural architectures
in enhancing affective computing applications.
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