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Abstract

Affective Behavior Analysis aims to facilitate technol-
ogy emotionally smart, creating a world where devices
can understand and react to our emotions as humans do.
To comprehensively evaluate the authenticity and appli-
cability of emotional behavior analysis techniques in nat-
ural environments, the 6th competition on Affective Be-
havior Analysis in-the-wild (ABAW) utilizes the Aff-Wild2,
Hume-Vidmimic2, and C-EXPR-DB datasets to set up five
competitive tracks, i.e., Valence-Arousal (VA) Estimation,
Expression (EXPR) Recognition, Action Unit (AU) Detec-
tion, Compound Expression (CE) Recognition, and Emo-
tional Mimicry Intensity (EMI) Estimation. In this pa-
per, we present our method designs for VA estimation, ex-
pression recognition, and AU detection tracks. Specifi-
cally, our framework mainly includes three aspects: 1) To
achieve high-quality facial feature representations, we em-
ploy Masked-Auto Encoder as the visual features extraction
model and fine-tune it with our facial dataset. 2) Utilizing
a transformer-based feature fusion module to fully integrate
emotional information provided by audio signals, visual im-
ages, and transcripts, offering high-quality expression fea-
tures for the downstream tasks. 3) Considering the com-
plexity of the video collection scenes, we conduct a more
detailed dataset division based on scene characteristics and
train the classifier for each scene. Extensive experiments
demonstrate the superiority of our designs. Our work won
the championship in the AU, EXPR, and VA tracks at the
ABAW6 competition.

1. Introduction
Affective Behavior Analysis is dedicated to enhancing the
emotional intelligence of artificial intelligence systems by
analyzing and understanding human emotional behavior
[25, 27–34, 52, 58, 75, 84, 89]. It involves identifying
and interpreting the emotions and feelings people express
through facial expressions, voice, body language, etc. The

goal is to enable computers and robots to better under-
stand human emotional states for more natural and effec-
tive human-machine interactions, support mental monitor-
ing, and improve applications in education, entertainment,
and social interactions [14, 16, 56, 64, 65].

The 6th Affective Behavior Analysis competition
(ABAW6) has set up the following five tasks to ana-
lyze various aspects of human emotions and expressions.
Action Unit (AU) Detection aims to identify facial ac-
tion types from the Facia Action Coding System based
on facial muscle movements [2, 32, 41, 66]. Expression
Recognition (EXPR) identifies basic emotional expressions
like happiness, sadness, and anger [13, 39, 57, 69, 94].
Valence-arousal (VA) estimation determines people’s emo-
tional states on continuous emotional dimensions, where
“valence” refers to the positivity or negativity of the emo-
tion, and “arousal” refers to the level of emotional activation
[22, 26, 32, 44, 54]. Compound Expression (CE) Recogni-
tion requires recognizing complex expressions that combine
two or more basic expressions [9, 18, 61, 69]. Emotional
Mimicry Intensity (EMI) Estimation evaluates the intensity
of an individual’s emotional mimicry [15, 20, 36, 70]. This
work mainly focuses on the tasks of AU, EXPR, and VA.

ABAW6 assesses the method performance on Aff-Wild2
[24], C-EXPR-DB [23], and Hume-Vidmimic2 [34], in
which videos are captured in uncontrolled natural environ-
ments. The AU, EXPR, and VA tracks utilize the Aff-Wild2
dataset, which is a large-scale multi-modal video dataset
annotated with AU, basic expression categories, and VA.
Aff-Wild2 features individuals of diverse skin tones, ages,
and genders, captured in various lighting conditions, back-
grounds, and head poses, adding richness to its diversity and
complexity. This close resemblance to practical application
scenarios facilitates the development of human affective be-
havior analysis applications.

Based on the characteristics of the Aff-Wild2 dataset, our
objectives are to fully utilize the emotional information pro-
vided in multimodal data and improve the applicability of
our method in real-world scenarios. In this paper, we out-
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line our method designs in three aspects. Firstly, we inte-
grate a large-scale facial image dataset and utilize the self-
supervised model Masked Auto Encoder (MAE) [17, 89]
to learn deep feature representations from these emotional
data, enhancing the performance of downstream tasks. It
is worth noting that the amount of data used in the MAE
pre-training for this competition is nearly double that of the
previous ABAW5 [89], further boosting the representation
capacity of facial visual features encoded by MAE.

Secondly, we leverage a transformer-based model to fuse
the multi-modal information. This architecture facilitates
the interactions across modalities (i.e., audio and visual)
and provides scalable, efficient, and effective solutions for
integrating multimodal information [71]. Thirdly, we adopt
an ensemble learning strategy to enhance the robustness of
our method in various complex scenes. This involves di-
viding the entire dataset into multiple sub-datasets based on
distinct background characteristics and assigning them to
different classifiers. After that, we integrate the outputs of
these classifiers to obtain the final prediction results.

Experiments conducted on the three datasets demon-
strate the effectiveness of our design choices. Overall, our
contributions are three-fold:

• We integrate a large-scale facial expression dataset and
fine-tune MAE on it to obtain an effective facial ex-
pression feature extractor, enhancing the performance for
downstream tasks.

• We employ a transformer-based multi-modal integration
model to facilitate the interactions of multi-modalities,
enriching the expression features extracted from multi-
modal data.

• We adopt an ensemble learning strategy, which trains
multiple classifiers on sub-datasets with different scene
characteristics and ensemble the results of these classi-
fiers to attain the final results. This strategy enables our
method to generalize better in various environments.

2. Related Work

2.1. Action Unit Detection

Detecting Action Units (AU) in the wild is a challenging
yet crucial advancement task in facial expression analysis,
pushing the boundaries of applicability from controlled lab-
oratory settings to real-world environments [2, 41, 66, 78–
83]. This endeavor addresses the inherent variability in
lighting, pose, occlusion, and emotional context encoun-
tered in natural environments [32]. Recent works highlight
the effectiveness of multi-task frameworks in leveraging ex-
tra regularization, such as the extra label constraint, to en-
hance detection performance. Zhang et al. [85] introduce
a streaming model to concurrently execute AU detection,
expression, recognition, and Valence-Arousal (VA) regres-

sion based on the fine-grained expression embedding [86].
Some works [87, 88] also employ this expression embed-
ding to facilitate AU detection. Cui et al. [7] present a
biomechanics-guided AU detection approach to explicitly
incorporate facial biomechanics for AU detection. More-
over, to achieve robust and generalized AU detection, some
works take generic knowledge (i.e. static spatial muscle re-
lationships) into account [6], while others consider integrat-
ing multi-modal knowledge to obtain rich expression fea-
tures [92].

2.2. Expression Recognition

Expression Recognition has witnessed substantial growth,
driven by the integration of psychological insights and ad-
vanced deep learning techniques [39, 45, 57, 69]. Recently,
the adaptation of transformer-based models from natural
language processing (NLP) [68] to computer vision tasks
[10] has led to their application in extracting spatial and
temporal features from video sequences for emotion recog-
nition. Notably, Zhao et al. [93] introduce a transformer
model specifically for dynamic facial expression recogni-
tion, the Former-DFER, which includes CSFormer [73] and
T-Former [73] modules to learn spatial and temporal fea-
tures, respectively. Ma et al. [49] developed a Spatio-
Temporal Transformer (STT) that captures both spatial and
temporal information through a transformer-based encoder.
Additionally, Li et al. [38] proposed the NR-DFERNet,
designed to minimize the influence of noisy frames within
video sequences. While these advancements represent sig-
nificant progress in addressing the challenges of dynamic
facial expression recognition (DFER) with discrete labels,
they overlook the interference from the background in im-
ages. To address this, we incorporate ensemble learning
into our method.

2.3. Valence-arousal Estimation

Valence-arousal estimation focuses on mapping emotional
states onto a two-dimensional space, where valence repre-
sents the positivity or negativity of emotion, and arousal in-
dicates its intensity or activation level [22, 26, 32]. Conven-
tional approaches mainly relied on physiological signals,
such as heart rate or skin conductance, to estimate these di-
mensions [3, 35, 37]. However, with advancements in deep
learning, researchers shift towards leveraging visual and au-
ditory cues from facial expressions, voice tones, and body
language. Notably, convolutional neural networks and re-
current neural networks have been extensively applied to
capture the nuanced and dynamic aspects of emotions from
images, videos, and audio data [4, 50, 72].

Recent studies introduce transformer models to better
handle the sequential and contextual nature of emotional
expressions in multi-modal data [5, 21, 42, 43, 55, 62].
These improvements have not only improved the accu-
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Figure 1. The overview of our proposed framework. We first utilize the images in the facial image datasets to train the Image Encoder in a
self-supervised manner. thus obtaining the visual feature FI . We first utilize our self-trained Image Encoder to generate the visual feature
FV . Meanwhile, we leverage the pre-trained audio encoder to attain the audio feature FA. Then, we concat these features and feed them
into the Fusion Modules. Here, we train N Fusion Modules and predictors on sub-datasets divided based on background characteristics.
In the inference stage, we adopt a voting strategy to integrate the results predicted by all branches. Note that only the Fusion Modules and
Predictors are trainable in each task.

racy and efficiency of valence-arousal estimation but also
broadened its applicability in real-world scenarios, such as
human-computer interaction and mental health assessment
[12, 48, 63]. Despite progress, challenges remain in captur-
ing the complex and subjective nature of emotions, neces-
sitating further research into model interpretability and the
integration of diverse data sources.

3. Method
In this section, we describe our method for analyzing hu-
man affective behavior. The architecture flow is illustrated
in Fig. 1. The proposed approach addresses two critical
problems: 1) the emotional information in the multimodal
data is not fully explored and 2) the model has poor gener-
alization ability for videos recorded genuine emotional re-
sponses to various forms of media. For a clear exposition,
we first introduce how we utilize the encoders to extract fea-
tures from multi-modal data in Sec. 3.1. Then we detail
the transformer-based multi-modal feature fusion method
in Sec. 3.2. Finally, in Sec. 3.3, we present the ensem-
ble learning strategy that is leveraged to enhance the model
generalization ability.

3.1. Feature Extraction

Image Encoder. In this work, we employ MAE as the im-
age encoder since its self-supervised training manner en-
ables the extracted features more generalizable. To fur-
ther attain powerful and expressive features, we construct
a large-scale facial image dataset which consists of Affect-
Net [51], CASIA-WebFace [74], CelebA [46], IMDB-WIKI
[59], and WebFace260M [96]. After removing low-quality
images with unclear faces, we preserve nearly 4.5M high-
quality facial images, which is double the amount utilized

in the 5th competition [89]. Based on the integrated facial
dataset, we finetune MAE through facial image reconstruc-
tion. Specifically, in the pre-training phase, our method
adopts the “mask-then-reconstruct” strategy. Here, images
are dissected into multiple patches (measuring 16×16 pix-
els), with a random selection of 75% being obscured. These
masked images are then input into the encoder, while the de-
coder restores them to the corresponding original. We adopt
the pixel-wise L2 loss to optimize the model, ensuring the
reconstructed facial images closely mirror the originals.

After the pre-training, we modify the model for specific
downstream tasks by detaching the MAE decoder and incor-
porating a fully connected layer to the end of the encoder.
This alternation facilitates the model to better adapt to the
downstream tasks.
Audio Encoder. Considering that the tone and intonation of
the speech can also reflect certain emotional information,
we leverage different pre-trained audio feature extraction
models, e.g. Vggish [19], Hubert [67] and Wav2vec2 [1],
as our audio encoder to generate the audio representation.
Given that these models are trained on large-scale datasets
and with the ability to capture a wide range of audio fea-
tures, we directly utilize them as the feature extractor with-
out training on our dataset.

3.2. Transformer-based Multi-modal Fusion

We fuse features across different modalities to obtain more
reliable emotional features and utilize the fused feature for
downstream tasks. By combining information from visual
FV and audio FA, we achieve a more comprehensive and
accurate emotion representation.

To align the three modalities at the temporal dimension,
we trim each video into multiple clips with k frames. For

4763



each frame, we employ our image encoder to extract the vi-
sual feature fV . In this fashion, we attain the visual feature
FK×d
V for the whole clip. Here, d represents the feature

dimension. Meanwhile, we employ the audio to generate
the features for the whole clip, and the feature is expressed
by F 1×d

A . Subsequently, we concat these features and in-
put them into the Transformer Encoder. Specifically, our
transformer encoder consists of four encoder layers with
a dropout rate of 0.3. The output is then fed into a fully
connected layer to adjust the final output dimension accord-
ing to the task requirements. Note that, at the feature fused
stage, the image encoder and audio encoder are fixed, while
only the fusion modules as well as predictors (i.e., the fully
connected layers) are trainable.

3.3. Ensemble Learning

To improve the applicability of affective behavior analy-
sis methods, the 6th ABAW leverages the datasets that
record human real-emotion reactions as the official test
data. We observe that a significant proportion of the Aff-
Wild2 dataset consists of “reaction videos”, capturing gen-
uine emotional responses to various forms of media. These
videos often display similar emotional expressions, with
surprise and happiness being prevalent. Therefore, we train
separate fusion modules and predictors for the reaction
videos and the entire training dataset.

In the inference stage, we manually pick out the reaction
videos from the test set and utilize the corresponding model
to predict their emotional labels. For the remaining test
videos, we leverage the model trained on the entire training
set to obtain their labels. Moreover, we train multiple mod-
els on the five-fold random split sub-datasets and the whole
dataset. In this fashion, we collect the results from these
models and devise a vote ensemble strategy to integrate the
final result. Notably, we choose the predicted label with the
highest number of votes as the final classification result for
AU and EXPR tasks. As for the VA task, we calculate the
average value predicted by the different models. Our voting
method effectively minimizes errors due to biases in classi-
fiers from individual subsets, thereby improving the overall
classification performance.

3.4. Training Objectives

Objectives for Image Encoder. To enhance the adaptabil-
ity of the Image Encoder across various tasks, we fine-tune
it for each downstream task. Specifically, when dealing with
AU and EXPR, we optimize the model via cross-entropy
loss LAU CE and LEXPR−CE , respectively. They are de-
fined as follows:

LAU−CE = − 1

12

12∑
j=1

Wauj
[yj log ŷj + (1− yj) log (1− ŷj)] ,

(1)

LEXPR−CE = −1

8

8∑
j=1

Wexp−jzj log ẑj , (2)

where ŷ and ẑ represent the predicted results for the action
unit and expression category respectively, whereas y and z
denote the ground truth values for the action unit and ex-
pression category.

In the VA task, to better capture the correlation between
valence and arousal and thus improve the accuracy of emo-
tion recognition, we leverage the consistency correlation co-
efficient as the model optimization function, defined as:

CCC(X , X̂ ) =
2ρXX̂ δX δX̂

δ2X + δ2
X̂
+
(
µX − µX̂

)2 , (3)

LVA CCC = 1− CCC(v̂batchi
, vbatchi

)

+1− CCC(âbatchi
, abatchi

).
(4)

Here, v̂ and â represent the predicted valence and arousal
value. δX and δX̂ indicate the ground-truth sample set and
the predicted sample set. ρXX̂ is the Pearson correlation
coefficient between X and X̂ , δX and δX̂ are the standard
deviations of X and X̂ , and µX , µX̂ are the corresponding
means. The numerator 2ρXX̂ δX δX̂ represents the covari-
ance between the δX and δX̂ sample sets.
Objectives for Transformer-based Multi-modal Fusion
Model. In the training stage for Transformer-based Multi-
modal Fusion Model (TMF), we first convert image data
into sequence data by combining fixed-length adjacent
frames. The related audio features are also aligned frame by
frame with the temporal order of the image sequence. Then
the sequence multi-modal data is sent to TMF and outputs
the predictions for the sequence. When computing loss, we
expand the sequence to each frame and calculate the frame-
wise function as Equ. 1,2,3.
Post processing. In the inference stage, we leverage a
Gaussian filter to refine the likelihood estimations for AU,
EXPR, as well as VA. It is formulated as:

Lsmooth =

∫ ∞

−∞

y −
√
2 · f(x) · e−

(x−µ)2

2σ2

2
√
πσ

2

dx, (5)

where y represents the predicted value of the downstream
tasks, f(x) is the predicted likelihood estimation before ap-
plying the Gaussian filter, and e is the base of the natural
logarithm. x and µ represent the input value and the mean
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of the distribution, respectively. σ indicates the standard
deviation of the distribution, determining the width of the
Gaussian curve. The Gaussian filter’s sigma parameter is
tuned specifically for each task.

4. Experiment
In this section, we will first introduce the evaluation met-
rics datasets as well as the implementation details. Then we
evaluate our model on the ABAW6 competition metrics.

4.1. Evaluation Metrics

To assess the model performance on each track, ABAW set
a specific evaluation metric for each track.
Valence-Arousal Estimation. The performance measure
(P) is the mean Concordance Correlation Coefficient (CCC)
of valence and arousal, as follows:

P =
CCCarousal +CCCvalence

2
(6)

Here, the calculation of CCC is defined in Eq. 3.
Expression Recognition. The performance assessment is
conducted by averaging F1 score across all 8 categories, de-
fined as: 

F1 =
2× Precision×Recall

Precision+Recall
;

Precision =
TP

TP + FP
;

Recall =
TP

TP + FN
,

(7)

P =

∑8
c=1 F1c
8

. (8)

Here, c represents the category ID, TP represents True Pos-
itives, FP represents False Positives, and FN represents
False Negatives.
Action Unit Detection. The performance is evaluated by
averaging the F1 score across all 12 categories, formulated
as:

P =

∑12
c=1 F1c
12

(9)

Here, the calculation way of F1 is the same as the Eq. 7.

4.2. Datasets

The first tracks of ABAW6 are based on Aff-wild2 which
contains around 600 videos annotated with AU, base ex-
pression category, and VA. The AU detection track utilizes
547 videos of around 2.7M frames that are annotated in
terms of 12 action units, namely AU1, AU2, AU4, AU6,
AU7, AU10, AU12, AU15, AU23, AU24, AU25, AU26.
The performance measure is the average F1 Score across all
12 categories. The expression recognition track utilizes 548

videos of around 2.7M frames that are annotated in terms of
the 6 basic expressions (i.e., anger, disgust, fear, happiness,
sadness, surprise), plus the neutral state, plus a category
‘other’ that denotes expressions/affective states other than
the 6 basic ones. The performance measure is the average
F1 Score across all 8 categories. The VA estimation track
utilizes 594 videos of around 3M frames of 584 subjects an-
notated in terms of valence and arousal. The performance
measure is the mean Concordance Correlation Coefficient
(CCC) of valence and arousal.

In addition to the official datasets mentioned above,
we also used some additional data from the open-source
and private datasets. In the pre-training for MAE self-
supervised, we collect large number of facial images from
the available public datasets (i.e. AffectNet [51], CASIA-
WebFace [74], CelebA [46], IMDB-WIKI [59], and Web-
Face260M [96]) and private facial image datasets that from
the Internet. Our private images are mainly from film and
television works, and public video platforms. This data re-
lies on Netease Fuxi Youling Crowdsourcing1 platform for
data cleaning and management. For the AU detection track,
we use the extra dataset BP4D [91] to supplement some of
the limited AU categories in Aff-wild2. For the expression
recognition track, we use the extra dataset RAF-DB [40]
and AffectNet [51] to supplement the Anger, Disgust, and
Fear data.

4.3. Implementatal Setting

We utilize retinaface [8] to detect faces for each frame and
normalize them to a size of 224 × 224 pixels. We pre-train
an MAE on a large facial images dataset that consists of sev-
eral open-source face images datasets (i.e., AffectNet [51],
CASIA-WebFace [74], CelebA [46] and IMDB-WIKI [59],
Webface260M [96]). We use this MAE as the basic feature
extractor to capture the visual information for facial images
in each track. The pre-training process is trained for 800
epochs with a batch size of 4096 on 8 NVIDIA A30 GPUs,
using the AdamW optimizer [47]. For the tasks of AU de-
tection, expression recognition, and VA estimation, we in-
corporate the temporal, audio, and other information to fur-
ther improve the performance. At this stage, the training
data consists of continuous video clips of 100 frames. The
learning rate is set as 0.0001 using the AdamW optimizer.
To reduce the gap caused by data division, we conduct five-
fold cross-validation for all the tracks.

4.4. Evaluation on the Validation Dataset

Results for AU Detection. Tab. 1 presents the results of our
method on the official validation set and the five-fold cross-
validation in the AU detection track. As the average F1
scores suggested, the results of the five-fold cross-validation

1https://fuxi.163.com/solution/data
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Table 1. The AU F1 scores (in %) of models that are trained and tested on different folds (including the original training/validation set of
Aff-Wild2 dataset).

Val Set AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU15 AU23 AU24 AU25 AU26 Avg.

Official 55.29 51.40 65.81 68.61 76.08 75.00 75.24 37.65 18.89 30.89 83.41 44.98 56.94
fold-1 62.61 46.20 71.22 77.71 67.44 69.69 74.62 36.32 29.43 21.75 81.56 40.73 56.61
fold-2 64.23 54.35 73.85 77.33 77.49 76.70 80.74 29.05 28.96 18.47 87.71 43.63 59.37
fold-3 58.55 48.37 60.05 71.22 72.43 74.29 75.43 29.81 19.52 32.86 83.37 47.63 56.13
fold-4 53.34 39.34 66.26 70.67 66.51 69.39 71.76 39.49 25.17 32.40 82.27 40.05 54.72
fold-5 53.50 44.68 63.45 72.02 69.72 74.00 78.24 38.81 23.67 7.56 81.24 43.67 54.22

Table 2. The expression F1 scores (in %) of models that are trained and tested on different folds (including the original training/validation
set of Aff-Wild2 dataset).

Val Set Neutral Anger Disgust Fear Happiness Sadness Surprise Other Avg.

Official 70.21 73.93 50.34 21.83 59.05 66.41 36.51 66.11 55.55
fold-1 70.06 37.21 32.12 22.71 61.77 77.61 45.62 51.58 49.83
fold-2 67.36 44.45 21.21 42.50 62.22 78.24 36.67 70.00 52.83
fold-3 73.64 71.60 45.01 23.25 47.67 77.05 46.81 65.56 56.32
fold-4 65.41 71.00 53.70 23.27 61.62 61.79 27.76 72.68 54.65
fold-5 64.03 31.23 35.66 67.64 67.97 69.75 52.12 55.64 55.51

Table 3. The VA CCC scores of models that are trained and tested
on different folds (including the original training/validation set of
Aff-Wild2 dataset).

Val Set Valence Arousal Avg.

Official 0.5523 0.6531 0.6027
fold-1 0.6408 0.6195 0.6302
fold-2 0.6033 0.6758 0.6395
fold-3 0.6773 0.6961 0.6867
fold-4 0.6752 0.6486 0.6619
fold-5 0.6591 0.7019 0.6801

are consistent with the results obtained on the official vali-
dation set (56.94% on the F1 score). This demonstrates the
superior generalization capability of our method.

Based on the detection results from each category, our
method achieves comparatively high F1 scores on AU1,
AU2, AU4, AU6, AU7, AU10, AU12, and AU25, all of
which exceed 50% on the official validation dataset. Par-
ticularly, our method attains 83.41% on AU25. Conversely,
the F1 score for AU15 (lip tightening), AU23 (lip pucker-
ing), and AU24 (lip pressing) are relatively low, especially
with AU23 scoring only 18.89%. We speculate that the
challenges in detecting the three categories may stem from
the nuanced nature of the human face when displaying these
three expressions. The subtle variations in these expressions
pose challenges in capturing distinct features compared to

Table 4. Final result comparisons with other participating teams.
Our team (i.e. NetEase Fuxi AI Lab) attains the highest results
on the three competitive tracks. We color code the best results.
Average CCC indicates the average CCC scores of Valence and
Arousal.

Tracks Teams Average CCC CCC-V CCC-A F1 (%)

VA

Baseline [34] 0.2010 0.2110 0.1910
SUN CE [11] 0.5608 0.5355 0.5861
CtyunAI [95] 0.5640 0.564 0.6057
DeepAVER [53] 0.5807 0.5418 0.6196
Ours [90] 0.6721 0.6873 0.6569

EXPR

Baseline [34] 22.50
HSEmotion [60] 34.14
USTC-IAT-United [76] 35.34
CtyunAI [95] 36.25
Ours [90] 50.05

AU

Baseline [34] 36.50
USTC-IAT-United [77] 48.40
HSEmotion [60] 48.78
CtyunAI [95] 49.41
Ours [90] 56.01

other AUs, thus diminishing the detection accuracy.
Results for Expression Recognition. The results on the of-
ficial validation dataset and the five-fold datasets are shown
in Tab. 2. Our method achieves similar results to the official
validation set in four of the folds, with the results in fold-1
being 5.72% lower compared to the official validation set.
This indicates that our method performs well in the ma-
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jority of data distributions and demonstrates a certain level
of generalization capability. Additionally, the “Fear” and
“Surprise” categories show relatively low results in the of-
ficial validation set, with F1 scores of 21.83% and 36.51%,
respectively, while achieving relatively higher results in cer-
tain folds. This implies that our method may not fully learn
the features of the two categories during the training pro-
cess, resulting in lower performance for these categories.

Results for VA Estimation. Tab. 3 shows the VA CCC
scores on the official validation dataset and our five-fold
validation sets. As the average scores indicated, the re-
sults of the five-fold cross-validation experiments are con-
sistently higher than those on the official validation dataset
(with an average VA CCC score of 0.6027). This demon-
strates that our method performs more robustly and reliably
across the entire dataset. Moreover, the CCC score of our
method for predicting Arousal is higher than that for pre-
dicting Valence, e.g., the Arousal CCC score is about 0.1
higher than the Valence score on the official validation set.
This proves that our model performs better at predicting
emotional arousal (Arousal) than predicting emotional va-
lence (Valence) on the Aff-Wild2 dataset.

4.5. Evaluation on the Test Dataset

We display the competition final evaluation results of com-
petitive teams and ours on the three tracks in Tab. 4. Note
that, the final evaluation is conducted on an unseen test set.
Our method demonstrates significant superiority over all
competing teams, achieving first place in all three tracks.
Specifically, in the VA estimation task, our method outper-
forms the second-place team by 15.7% in terms of average
CCC. While DeepAVER [53] focuses more on leveraging
complementary information across different modalities, our
approach extensively explores the information between var-
ious modalities and emphasizes enhancing the robustness of
the model to complex shooting environments.

In the expression recognition task, CtyunAI [95] attains
second place with the F1 score of 0.3625, while our method
attains 0.5005. CtyunAI and our method adopt a similar
feature extraction process, i.e., employing the MAE as the
visual feature extractor and leveraging a Transformer-based
structure for multimodal feature fusion. The difference is
that our method divides the dataset based on the character-
istics of backgrounds and trains the model in an ensemble
learning strategy. In the AU detection task, the F1 score of
CtyunAI [95] in the second place is 0.4941, which is 0.066
lower than our score. We still categorize the main factor in-
fluencing the final results of the two teams is whether they
focus on the impact of complex background on the detec-
tion accuracy.

Table 5. The ablation experiments on the official validation set
to evaluate the effectiveness of our new MAE, Transformer-based
Multi-modal Fusion (TMF) and the scene data division (SDD).

Tracks MAE ABAW5 [89] MAE ABAW6 TMF SDD avg CCC F1 (%)

VA

✓ ✕ ✕ ✕ 0.5483
✕ ✓ ✕ ✕ 0.5647
✓ ✕ ✓ ✕ 0.5525
✕ ✓ ✓ ✕ 0.5786
✕ ✓ ✓ ✓ 0.6027

EXPR

✓ ✕ ✕ ✕ 46.79
✕ ✓ ✕ ✕ 49.28
✓ ✕ ✓ ✕ 48.93
✕ ✓ ✓ ✕ 52.59
✕ ✓ ✓ ✓ 55.55

AU

✓ ✕ ✕ ✕ 54.83
✕ ✓ ✕ ✕ 55.69
✓ ✕ ✓ ✕ 55.86
✕ ✓ ✓ ✕ 56.94
✕ ✓ ✓ ✓ 56.63

4.6. Ablation Study

To demonstrate the effectiveness of our designs, we present
the results of the ablation studies in Tab. 5 and Tab. 6.
Enhaned MAE pre-training. From Tab. 5, it can be ob-
served that the use of new MAE in ABAW6 enhances the
performance of the three tasks, not only in static image
training but also when TMF is added. The difference be-
tween MAE ABAW5 and MAE ABAW6 is the amount of
the self-supervised training data. MAE ABAW6 expands
the data by almost double that of MAE ABAW5. The ex-
periment results prove the effectiveness of the new MAE
and facial data augmentation.
Transformer-based Multi-modal Fusion (TMF). In the
three tasks, the use of temporal multi-modal information
further improves the model performance. Specifically, the
average CCC of VA increases from 0.5647 to 0.5786 by
adding the TMF. This improvement also occurs in the
AU (0.5569→0.5694) and EXPR tracks (0.4928→0.5259).
This illustrates that multi-modal information plays an im-
portant role in analyzing human facial expressions.
Scene Data Division (SDD). In the aff-wild2 dataset, a
common scenario involves ”reaction videos,” where indi-
viduals record their reactions to another video or content,
often providing real-time commentary, facial expressions,
and opinions. This type of data constitutes a large portion
of the dataset. And a large portion of them exhibit similar
emotional expressions. Therefore, we specifically train this
subset of reaction video data separately and then merge the
prediction results with those of the entire dataset, which we
refer to as SDD. From the Tab. 5, SDD effectively improve
the CCC in VA track and F1 score in EXPR track. However,
SDD does not show a significant effect in the AU track. This
may be because these reaction videos exhibit similar expres-
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Table 6. The ablation experiments on the official validation set to evaluate the impact of different visual and audio features combination.
The metrics for VA, EXPR, and AU are average CCC, F1 score (%), and F1 score (%), separately. Each individual track experiment has
already defaulted to using the corresponding uni-task visual features pre-trained on the aff-wild2 dataset. The pre-trained model defaults
to using the MAE architecture.

Visual Audio Tracks

affnV A affnEXPR rafEXPR BP4DAU Hubert wav2vec vggish VA EXPR AU

✓ ✓ ✕ ✕ ✓ ✕ ✕ 0.5698 50.04 55.82

✓ ✓ ✓ ✕ ✓ ✕ ✕ 0.5721 50.96 56.37

✓ ✓ ✓ ✕ ✕ ✕ ✕ 0.5685 49.71 56.94
✓ ✓ ✓ ✓ ✓ ✕ ✕ 0.5751 51.15 54.73

✓ ✓ ✓ ✓ ✓ ✓ ✕ 0.5741 51.98 54.89

✓ ✓ ✓ ✓ ✓ ✕ ✓ 0.5786 52.59 55.71

sions in emotion categories and VA intensity, but there are
significant differences in the distribution of AU.
Feature selection in TMF. In the stage of TMF, we
also use several combinations of features from differ-
ent pre-trained models. In the visual modality, we uti-
lize the uni-task model of the MAE fine-tuned on Aff-
wild2 (aff2AU ,aff2V A,aff2EXPR). In addition, we
also fine-tuned the MAE model on multiple tasks, includ-
ing AU, EXPR, and VA tasks in different datasets such as
BP4D (BP4DAU ), AffectNet (affnEXPR and affnV A),
and RAF-DB (RAFEXPR). The features from these mod-
els are also combined in the TMF training. In the audio
modality, we try the features of Hubert [67], wav2vec2 [1]
and vggish [19] from the open-source pre-trained models.
Tab. 6 shows the results of different feature combinations in
the three tracks. In TMF, each single track defaults to using
a uni-task model as one kind of visual feature. This is not
separately listed in Tab. 6. It can be observed that the visual
features from extra datasets facilitate EXPR and VA tracks.
However, adding the visual features based on BP4D and
audio features harms the performance of the AU metrics.
This may be due to the differences in the scenes and anno-
tation rules of the BP4D dataset, leading to a gap between
the datasets. Aff-wild2, AffectNet, and RAF-DB are all in-
the-wild datasets. But BP4D is an in-the-lab dataset. Also,
the combination of Hubert and Vggish features is most ben-
eficial for the EXPR and VA tasks.

5. Conclusion
In summary, our study contributes to advancing Affec-
tive Behavior Analysis, aiming to make technology emo-
tionally intelligent. Through a comprehensive evaluation
of the ABAW competition, we address five competitive
tracks. Our method designs integrate emotional cues from
multi-modal data, ensuring robust expression features. We
achieve significant performance across all tracks, indicating
the effectiveness of our approach. These results highlight
the potential of our method in enhancing human-machine
interactions and technological advancements toward de-

vices understanding and responding to human emotions.
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Schäfer, Tobias Müller, and Daniel Lundqvist. It is in your
face—alexithymia impairs facial mimicry. Emotion, 21(7):
1537, 2021. 1

[16] Riccardo Gervasi, Federico Barravecchia, Luca Mastrogia-
como, and Fiorenzo Franceschini. Applications of affective
computing in human-robot interaction: State-of-art and chal-
lenges for manufacturing. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Man-
ufacture, 237(6-7):815–832, 2023. 1

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 2

[18] Shuangjiang He, Huijuan Zhao, Li Yu, Jinqiao Xiang, Con-
gju Du, and Juan Jing. Compound facial expression recogni-
tion with multi-domain fusion expression based on adversar-
ial learning. In 2022 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), pages 688–693. IEEE,
2022. 1

[19] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F
Gemmeke, Aren Jansen, R Channing Moore, Manoj Plakal,
Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn archi-

tectures for large-scale audio classification. In 2017 ieee in-
ternational conference on acoustics, speech and signal pro-
cessing (icassp), pages 131–135. IEEE, 2017. 3, 8

[20] Alison C Holland, Garret O’Connell, and Isabel Dziobek.
Facial mimicry, empathy, and emotion recognition: a meta-
analysis of correlations. Cognition and Emotion, 35(1):150–
168, 2021. 1

[21] Xincheng Ju, Dong Zhang, Junhui Li, and Guodong Zhou.
Transformer-based label set generation for multi-modal
multi-label emotion detection. In Proceedings of the 28th
ACM international conference on multimedia, pages 512–
520, 2020. 2

[22] Dimitrios Kollias. Abaw: Valence-arousal estimation, ex-
pression recognition, action unit detection & multi-task
learning challenges. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2328–2336, 2022. 1, 2

[23] Dimitrios Kollias. Multi-label compound expression recog-
nition: C-expr database & network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5589–5598, 2023. 1

[24] Dimitrios Kollias and Stefanos Zafeiriou. Aff-wild2: Ex-
tending the aff-wild database for affect recognition. arXiv
preprint arXiv:1811.07770, 2018. 1

[25] Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect,
action unit recognition: Aff-wild2, multi-task learning and
arcface. arXiv preprint arXiv:1910.04855, 2019. 1

[26] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis
in-the-wild: Valence-arousal, expressions, action units and a
unified framework. arXiv preprint arXiv:2103.15792, 2021.
1, 2

[27] Dimitrios Kollias and Stefanos Zafeiriou. Analysing affec-
tive behavior in the second abaw2 competition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3652–3660, 2021. 1

[28] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Face behavior a la carte: Expressions, af-
fect and action units in a single network. arXiv preprint
arXiv:1910.11111, 2019.

[29] Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A Nicolaou,
Athanasios Papaioannou, Guoying Zhao, Björn Schuller,
Irene Kotsia, and Stefanos Zafeiriou. Deep affect prediction
in-the-wild: Aff-wild database and challenge, deep architec-
tures, and beyond. International Journal of Computer Vision,
pages 1–23, 2019.

[30] Dimitrios Kollias, Attila Schulc, Elnar Hajiyev, and Stefanos
Zafeiriou. Analysing affective behavior in the first abaw
2020 competition. In 2020 15th IEEE International Confer-
ence on Automatic Face and Gesture Recognition (FG 2020),
pages 637–643. IEEE, 2020.

[31] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Distribution matching for heterogeneous multi-
task learning: a large-scale face study. arXiv preprint
arXiv:2105.03790, 2021.

[32] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal esti-
mation, expression recognition, action unit detection & emo-

4769



tional reaction intensity estimation challenges. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5888–5897, 2023. 1, 2

[33] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal esti-
mation, expression recognition, action unit detection & emo-
tional reaction intensity estimation challenges. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5888–5897, 2023.

[34] Dimitrios Kollias, Panagiotis Tzirakis, Alan Cowen, Ste-
fanos Zafeiriou, Chunchang Shao, and Guanyu Hu. The 6th
affective behavior analysis in-the-wild (abaw) competition.
arXiv preprint arXiv:2402.19344, 2024. 1, 6
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