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Abstract

We present a novel system for real-time tracking of facial ex-
pressions using egocentric views captured from a set of in-
frared cameras embedded in a virtual reality (VR) headset.
Our technology facilitates any user to accurately drive the
facial expressions of virtual characters in a non-intrusive
manner and without the need of a lengthy calibration step.
At the core of our system is a distillation based approach to
train a machine learning model on heterogeneous data and
labels coming form multiple sources, e.g. synthetic and real
images. As part of our dataset, we collected 18k diverse
subjects using a lightweight capture setup consisting of a
mobile phone and a custom VR headset with extra cameras.
To process this data, we developed a robust differentiable
rendering pipeline enabling us to automatically extract fa-
cial expression labels. Our system opens up new avenues
for communication and expression in virtual environments,
with applications in video conferencing, gaming, entertain-
ment, and remote collaboration.

1. Introduction

Virtual reality (VR) transports users into simulated envi-
ronments mimicking or enhancing real-world experiences.
To achieve this, a head mounted display (HMD) presents
three dimensional environments to users, along with other
sensory feedback such as sound. Through these immersive
experiences, users can interact with and explore computer-
generated environments in a realistic manner. For example,
users can tour a virtual museum, navigate through a digital
city, or play a video games in VR.

One particular important key feature in VR is the sense
of social presence, i.e. people feeling that they are meaning-
fully interacting with others. This ability of feeling present
with other people and form or deepen social connections
is what makes VR truly engaging. However, to facilitate

natural and intuitive social interactions, the development of
accurate motion tracking technologies reproducing users’
motions in real-time are required.

In particular, tracking facial motions is a key technol-
ogy for social presence. This is achieved by capturing real-
time video data of a person’s face using cameras and then
tracking specific features such as the mouth, nose, and eyes.
By monitoring the movements of these features over time,
face tracking detects and tracks facial expressions, such as
smiles, frowns, and eyebrow raises. This signal can then
be used to drive actions in a virtual environments, like 1⃝
the challenge posed by occlusion of the user’s face by the
HMD, which makes it difficult to obtain an unobstructed
capture of the face, 2⃝ the complexity and cost of adding
extra cameras to VR devices, and 3⃝ the compute restric-
tions inherent to mobile platforms.

Contributions. In this paper, we present an innova-
tive system enabling accurate tracking of a user’s facial ex-
pressions and movements using infrared (IR) cameras di-
rectly embedded within an HMD. Our contributions are
1⃝ the placement of IR cameras and LEDs on an HMD

through simulation, 2⃝ an automated ground-truth genera-
tion pipeline allowing the collection of a large dataset us-
ing a lightweight capture process, 3⃝ an iterative distilla-
tion framework allowing to train our machine learning (ML)
model with heterogeneous and noisy labels acquired from
different sources, and 4⃝ an end-to-end system with auto-
calibration and automated failure detection.

2. Related Work

The animation of digital characters through facial perfor-
mance capture is a widely used technique within the com-
puter graphics industry and has been a subject of ongoing
research for many years. Pioneer works like Active Ap-
pearance Models (AAMs) [8, 11, 32, 42] and 3D morphable
models (3DMM) [3, 4, 28] have been widely effective at
registering faces in images by optimizing low-dimensional
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coefficients of linear subspaces for both shape and appear-
ance.

While AAM and 3DMM techniques effectively capture
facial information within a linear model, the industry has
predominantly embraced blendshapes subspaces [29]. This
preference arises from the semantic nature of blendshapes,
enabling more meaningful and intuitive manipulation of fa-
cial expressions. This representation has been adopted with
success by a large number of recent face tracking techniques
[5, 39, 46], including consumer products such as Apple’s
ARKit and Meta Spark.

Beyond optimization based techniques, recent ap-
proaches [18, 23, 37, 41, 49] have leveraged deep learn-
ing techniques to regress low-dimensional coefficients from
facial images. These methods typically train a convolu-
tional neural network using large datasets to estimate the
face shape, such as blendshape weights, from the input im-
age.

The accuracy limitations inherent to low-dimensional
linear subspaces have led to the development of alternative
approaches that directly generate detailed face shape and
appearance as meshes and textures. To achieve high-quality
results, some methods rely on a multi-camera rig [10, 47]
for capturing face shape and appearance. Other works focus
on generating face shape and appearance from consumer
devices, such as from RGB images [13, 15, 17, 22, 40], and
from RGBD data [2, 6, 50].

Another related topic involves generating face images
from various inputs, such as text [7, 16], audio [9, 24, 35,
36], or another face image (namely deepfake or faceswap)
[34]. These techniques typically employ generative adver-
sarial networks (GANs) to synthesize facial images. Addi-
tionally, some recent approaches utilize methods like Neu-
ral Radiance Fields (NeRF) [1] or stable diffusion [26] for
face image generation. These advancements have paved
the way for generating face images from different modal-
ities, enabling applications in text-to-face, audio-to-face,
and image-to-face synthesis.

The most relevant work to ours is [31, 45] which
leverages an auto-encoder to drive avatars from cameras
mounted on a VR headset. This model is trained using
data captured from a large multi-camera rig, allowing for
high-fidelity social interaction in virtual reality. Instead of
training the model to decode both geometry and appearance,
our model only decodes the geometry in blendshape format.
This not only reduces computational costs but also allows
for driving avatars of different appearances or styles, which
means that 3rd party developers can use their own rigs with
our model. Furthermore, we simplify the multi-camera rig
used to train the model to a phone capture, which is avail-
able off the shelf. This enables us to collect a large and
diverse dataset and train a model that can generalize to a
broader population.

3. Overview
Our system utilizes 5 cameras that are integrated within a
HMD (see Sec. 4). These cameras capture infrared images
at a resolution of 400x400 and a frame rate of 30 Hz. Our
goal is accurately predict facial expressions from these cam-
era images in real-time using an ML model. As a represen-
tation for the facial expression we choose 3D blendshape
coeffcients which can be utilised to animate digital avatars.
These 3D blendshape models (see Sec. 5) are a compact
representation widely-used in previous work [3] and in the
industry. To train our ML model we rely on three hetero-
geneous sources of data: 1⃝ real, 2⃝ synthetic, and 3⃝ artist
driven, each providing unique benefits (see Sec. 6). To train
our on-device model using these datasets gathered from dif-
ferent domains we employ an iterative distillation process
(see Sec. 7). To make our system robust to in the wild us-
age, we implement other key features as part of our end-
to-end system design such as an online calibration step as
well as a failure detection mechanism. Finally, we provide
an extensive set of qualitative and quantitative evaluations
to showcase the effectiveness of our approach (see Sec. 8).

4. Hardware Design
We install 5 infrared cameras on our HMD, which are capa-
ble of capturing images at a resolution of 400 × 400 and a
frame rate of 30 Hz. As shown in Fig. 1, two cameras are
assigned to track eye and eyebrow movements, two are re-
sponsible for monitoring mouth movements, and the other
one camera is designated to capture images of the glabella
area, i.e., the region between the eyebrows. To cater to con-
sumer use, the sensors are integrated within the hardware
form factor, making it challenging to obtain a set of cameras
with a clear view of the face. To resolve this issue, we used
a PCA model generated from 800 facial scans of 30 expres-
sions [43], which enabled us to assess different configura-
tions for a wide range of facial structures and determine an
adequate camera placement. To measure the quality of the
different configurations, we measure the following metrics:

Visibility V: This metric quantifies the visibility of key
facial regions R. For a camera C, the visibility of a region
is determined by the cosine of the angle between the sur-
face normal n of the face region and the optical axis of the
camera o

VC = 1
|R|

∑
r∈R

nT
r oC . (1)

The weight ranges between 0 and 1, where a higher value
indicates better visibility.

Range of MotionM: This metric assesses the ease with
which a key set of facial expression E can be captured by the
camera C. It is determined by projecting the facial keypoints
K onto the 2D image space (denoted by P(·)) for both neu-
tral and another facial expression e ∈ E , calculating the ℓ2
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Eye Green Orange Red
Visibility V 0.508 0.494 0.473

Range of MotionM 5.184 3.782 4.203
Mouth Green Orange Red

Visibility V 0.213 0.133 0.104
Range of MotionM 12.906 7.349 7.349

Glabella Green Orange Red
Visibility V 0.268 0.351 0.361

Range of MotionM 9.201 8.143 6.274

Figure 1. Our HMD is equipped with five face cameras, two for
eye and eyebrow regions, two for mouth, and one for glabella.
Note that we mirror the left eye and left mouth images. A multi-
tude of camera configurations have been considered during the de-
sign of the HMD. Among these configurations, the one highlighted
in green has been implemented, which has better visibility and
range of motion metrics than the configurations highlighted in or-
ange or red (Orange or red configurations seems to have better visi-
bility in glabella, but they pose conflicts with users’ glasses frames
and the HMD’s Inter-pupil distance adjustment mechanism).

distance between these points, and then averaging across all
the expressions

MC = 1
|E|

∑
e∈E
∥P(Ke)− P(Kneutral)∥F . (2)

The units of measurement are pixels, and a higher value
indicates a greater range of motion, which is desirable.

We also introduced head pose variations when comput-
ing these metrics so as to make our camera placement robust
to donning preferences. By simulating and incorporating
these variations, we aimed to ensure that the sensors per-
form reliably and accurately regardless of how the headset
is donned by the user. Figure 1 shows a few considered
camera locations and their corresponding metrics.

5. 3D Face Representation
A central component of our system is a blendshape
model [3] that provides a low-dimensional representation
of the user’s expression space based on Ekman’s Facial Ac-
tion Coding System (FACS) [12]. Our blendshape model

Embedded cameras

Additional cameras for data collection

Figure 2. Our data collection HMD is equipped with additional
five cameras, offering better visibility of the face than the embed-
ded cameras. This camera setup allows us to improve the quality
of the generated pseudo ground truth.

Figure 3. Our expression fitting pipeline takes RGBD frames as in-
put and proceeds through a series of steps to generate a fitted mesh
as output. We use this process to fit a set of facial expressions,
from which we then create a subject-specific rig using example-
based facial rigging [30].

contains 53 bases, which correspond to 3D meshes that can
be combined linearly to produce new facial expressions. To
combine these bases, we use a weight vector of blendshape
coefficients b ∈ R53, where each entry falls within the
range of [0.0, 1.0]. A weight of 0.0 indicates an inactive ex-
pression, while a weight of 1.0 signifies full activation and is
the maximum movement a person can perform. Our model
also incorporates eye gaze vectors gl ∈ R2 and gr ∈ R2 for
the left and right eyes, respectively. These vectors are also
used to device an additional set of 8 eye following blend-
shapes. Additionally, the face’s rigid motion is parameter-
ized using a translation vector t ∈ R3 and a rotation matrix
R ∈ SO(3).
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6. Data Generation
To train our system we require a large dataset of camera
frames labeled with blendshape coefficients. We collect
a real-world dataset of 18k subjects providing 3 trillion
frames. To annotate this extremely large number of frames,
we develop an automated self-supervised approach based
on a differentiable renderer (see Sec. 6.1). Further, a set of
technical artists annotated a key set of frames manually to
provide semantic labels (see Sec. 6.2). Finally, we comple-
ment our real-world dataset using synthetic data providing
exact labels for challenging or long-tail cases (such as facial
hair, glasses, donning variation, etc., see Sec. 6.3).

6.1. Real Data

6.1.1 Capture Process

To collect a large dataset of a diverse set of subjects we de-
velop a lightweight capture setup based on a mobile phone
containing a depth sensor (iPhone 12) as well as a modi-
fied HMD. Capturing accurate views of the face presents
a fundamental challenge with our embedded camera setup,
primarily due to the close placement of the cameras, result-
ing in occlusions that obstruct the field of view. To alleviate
this issues, we developed a data collection HMD equipped
with an additional five ground truth cameras with better vis-
ibility including two boom cameras capturing the lower face
from a frontal angle, two eye ground truth cameras, and one
glabella ground truth camera (see Fig. 2). The inclusion of
these additional ground truth cameras, in conjunction to the
five embedded ones, offers alternative view angles signifi-
cantly enhancing the visibility of the face (see Fig. 2).
Mobile phone capture. We utilize the mobile phone to
gather a diverse set of 60 individual facial expression scans.
Subjects are instructed to hold specific facial expressions
while making slight head movements in front of the mobile
phone, enabling us to collect RGBD frames from multiple
angles.
HMD capture. Using our modified HMD, we request sub-
jects to engage in a series of facial motions. This allows us
to capture approximately 40 minutes of motion sequences
encompassing a diverse range of expressions and speech se-
quences.

6.1.2 Generating subject-specific blendshape rig from
mobile phone data

The process of generating facial blendshapes involves a
multi-step optimization problem, performed individually
for each subject. For each captured expressions, we first
predict 100 facial keypoints [33] per frame, and extract a
segmentation mask for the face [20]. We then align the
RGBD frames using rigid ICP [6] and merge the result us-
ing Poisson reconstruction [25], obtaining a reasonable in-

Figure 4. System diagram of estimating blendshape coefficients
from HMD images, based on the subject-specific blendshape rig.

tegrated mesh (see Fig. 3). In order to maintain topological
consistency across different subjects’ meshes, we employ a
PCA model [43] that is fitted in conjunction with head pose
estimation. This is followed by a refinement step using a
Laplacian non-rigid deformation technique [6]. Finally, we
compute the personalized blendshape rig using example-
based facial rigging [30].

6.1.3 Estimating blendshape coefficients from HMD
images

Given a subject-specific blendshape rig, we solve a “self-
supervised” learning problem per subject to establish corre-
spondences between input HMD images and output blend-
shape coefficients. We parameterize our problem with
a Convolutional Neural Network (CNN) Nθ : (I) →
(b,R, t,T), with the goal of predicting per frame blend-
shape coefficients b, head pose (R, t) and texture T from
the input images I, which has been proven beneficial [44].
By leveraging the blendshape coefficients and head pose in-
formation, we are able to reconstruct the mesh. This recon-
structed mesh, along with the corresponding texture, can
then be rasterized to reconstruct the input images. Our ras-
terizer is differentiable [44] and we optimize for the net-
work’s weights θ using Adam [27]. We use three losses, 1⃝
a keypoint ℓ2 reprojection error, 2⃝ the ℓ2 pixel differences
between the input and reconstructed views, and 3⃝ a ℓ1 spar-
sity regularization of the blendshape coefficients. See Fig. 4
for a detailed architecture of our approach.

The source of our blendshape bases are artist-provided
sculpted meshes, with each mesh corresponding to a FACS
shape [12]. These bases do not form a set of independent
vectors and in some cases the same mesh can be generated
using different blendshape coefficients. The ℓ1 sparsity reg-
ularization used during the network optimization helps to
regularize this problem but does not fully solve it. To further
improve, we add a set of semantic “rig constraints” during
the optimization.
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Figure 5. Example of a synthetic frame used to train our ML model

Figure 6. An example frame for the peak “Jaw Drop Max” expres-
sion. The left avatar is the pseudo ground truth generated based
on the method described in Sec. 6.1.3. The right avatar represents
the art priors. The histogram in the bottom right displays top-5
activated blendshapes for this frame. Note that the art priors are
sparse compared with the pseudo ground truth. While the art pri-
ors are not perfectly accurate, they can be semantically meaningful
for peak expression frames.

6.2. Art Priors

In our data collection, we include multiple segments where
participants begin from a neutral pose, performing straight-
forward expressions by following a reference photo/video
prompt that helps the person to mimic, and then revert to
the neutral position. For each of these peak expressions, we
ask FACS experts and skilled artists to define a set of ex-
pected blendshape coefficient activations, as demonstrated
in Fig. 6. While not perfectly accurate, these labels can
be considered as art priors, which are used later in training
(Sec. 7.2) and evaluating (Sec. 8) the on-device ML models.

6.3. Synthetic Data

We generate a large synthetic dataset of roughly 25 million
frames from 800 identities collected with a multi-view cap-
ture system and rigged with the methodology described in
Sec. 6.1.2 (see Fig. 5). We retarget animation sequences
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Figure 7. Architecture of the on-device ML model

generated by artists and sample ∼30000 frames per iden-
tity. We increase the variation of the artist generated anima-
tion sequences by also including segments that were rare in
our real dataset. To improve realism and increase diversity,
we augment the data with facial hair and glasses. The hair
generation process involved procedurally growing hair and
fitting it to the scalp of the rigged model. As for glasses,
we employed 3D assets created from a set of frontal scans
to generate a wide variety of glasses designs, which were
then fitted to the rigged model. Although a visual domain
gap persists between real and synthetic data, this synthetic
dataset offers perfect labels that can be effectively utilized
to improve the accuracy of our ML model.

7. On-Device ML Model
7.1. Architecture

Using the dataset described in Sec. 6, we train a CNN that
is specifically designed for efficient on-device inference.
As illustrated in Fig. 7, the model consists of a headset-
mounted camera (HMC) image feature encoder and a multi-
branch blendshape regressor.
HMC image feature encoder. We employ a ResNet-
like [19] CNN backbone to extract features from each of
the HMC images. We flip the images acquired from the
left eye and the left mouth cameras allowing us to share the
parameters between the left and right, eye and mouth back-
bone models, respectively. The input images are resized to
224×224. The 512-channel output feature maps are of res-
olution 7 × 7, which are then averaged-pool into a feature
vector of 512 dimensions for each image.
Multi-branch blendshape regressor. We estimate the final
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Figure 8. Visualize the ML model’s feature space (with
UMAP [38]) for real data (blue crosses) and synthetic data (green
dots). Left: model trained without domain adaption. Right: model
trained with domain adaptation. Domain adaptation better aligns
the features between the real and synthetic data domains.

blendshape coefficients by assembling the per-image fea-
tures from the different branches. The left eye features are
fed into a multi-layer perceptron (MLP) to estimate the left
eye blendshapes. Similarly for the right eye, which shares
the same MLP parameters as the left eye. Finally, features
from all the cameras are concatenated to estimate the blend-
shapes for the rest of the face. In our dataset the left and
right eyes are often open or closed simultaneously leading
the ML model to learn such predominant correlation if sim-
ply concatenating all the features and estimating all blend-
shape coefficients at once. Our network design enables to
better capture rare asymmetric upper face expressions (such
as winking) by explicitly breaking correlations in the net-
work architecture.

7.2. Training Framework

We train our ML model end-to-end with an ℓ1 loss be-
tween the estimated blendshapes and the labels using the
Adam optimizer [27]. However to efficiently use the syn-
thetic dataset we need to modify our training framework
to accommodate for the domain gaps between the different
modalities.
Domain Adaptation. As noted in Sec. 6.3, although the
synthetic data looks fairly close to the real data, a signif-
icant domain gap still exists. The distinction between real
and synthetic data becomes evident when observing the dis-
parity in feature distribution, as demonstrated in Fig. 8.

This existing domain gap poses a challenge for the ML
model to effectively leverage the knowledge present in both
the synthetic and real datasets. To address this challenge,
we follow the gradient reversal technique proposed in [14]
which performs feature-level domain adaptation during the
ML model training. Specifically, we first build a mini-
batch with equal numbers of real and synthetic data frames.
Then, we train an additional domain discriminator with bi-
nary cross entropy loss based on the image features. Finally,
the gradient from the discriminator is reversed before back-

propagating to the feature encoders. As demonstrated in
Fig. 8, this procedure better aligns the features between the
two domains, letting the ML model further benefit from the
samples additionally provided by the synthetic data.
Iterative Distillation. During our experiments, we discov-
ered that naively training the ML model on real data labels
resulted in expressions that appeared “muted”. For instance,
when a person fully raised their eyebrows, the avatar’s eye-
brows would only exhibit a slight movement. This discrep-
ancy arose because real data labels have been generated au-
tomatically on a per-subject basis using a self-supervised
learning technique (Sec. 6.1.3). As a consequence, these la-
bels contain inherent noise and outliers, which forces the
network to produce some amount of averaging to fit the
noisy distribution of blendshape coefficients.

Inspired by student-teacher approaches that have been
used to learn from noisy labels [21, 48], we propose an it-
erative training algorithm to address this challenge (see Al-
gorithm 1). As part of the iterative training process, we also
incorporate the Art Priors (Sec. 6.2) to refine and improve
the network’s ability to generate more accurate and mean-
ingful results.

Our process starts with the initial real data R0 and syn-
thetic data S. Then, we repeat the distillation process for T
iterations as follows:

ALGORITHM 1: Iterative distillation algorithm
Data: Initial pseudo-labeled real data R0, synthetic

data S
Result: Final on-device ML model m
for t← 1 to T do

Model Pool M ← Train(Rt−1, S)
M ←M∪ Train(PostProcess(Rt−1),
S)

Best Performed Models M∗ ← Select(M)
Rt ← EnsembleInference(M∗, Rt−1)

end
m← Train(PostProcess(RT), S)

In each iteration, we first train a set of models with
the pseudo-labeled real data and the synthetic data, with
different random seeds. Second, we post-process the
pseudo labels with Range-of-Motion calibration and tem-
poral smoothing, and train another set of models. Third, we
select several best performed models based on quantitative
metrics (Sec. 8.1). Last, we infer the best performed models
over the real data and ensemble the inference results to be
the new pseudo labels.

Empirically, the quantitative metrics often stop to im-
prove after 5 or 6 rounds. We thus train the final on-device
ML model with the last post-processed pseudo-labeled real
data and the synthetic data.
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This algorithm can be viewed as using the ML models to
iteratively refine the initial pseudo labels toward the “true”
ground truth. Since the true ground truth is unknown, the
quantitative metrics serve as a proxy to measure how close
we are.

8. Evaluation

To thoroughly and comprehensively evaluate the effect of
our face tracking solution to the end-user experience, we
propose and develop three tiers of evaluation approaches.
Quantitative Metrics. Automatically compute several
heuristic blendshape-based metrics that we found correlated
with the user experience.
Qualitative Evaluation (QE). Render the tracking results
as avatars alongside the corresponding camera images.
Send to human annotators to rate whether the tracking re-
sults match the expressions performed.
User Experience Research (UXR). Build VR Apps for 1-
on-1 conversation and small group meetings. Integrate our
face tracking solution to the Apps and allow it to be turned
on/off. Recruit a group of diverse users to try out the VR
Apps and thoroughly evaluate the experience through ques-
tionnaires.

Based on the quantitative metrics, we further analyze
how the iterative distillation (Sec. 8.2) and the training
dataset size impact on the accuracy of the ML model.
Lastly, we discuss the limitations of our system.

8.1. Quantitative Metrics

Conventional metrics, such as comparing the ℓ1/ℓ2 distance
between the estimated and ground truth (GT) blendshape
coefficients or mesh vertices, are less effective in our case.
Because 1) we only have the pseudo GT, not necessarily
the true GT, and 2) the conventional metrics do not corre-
late well with the end-user experience, e.g., when the user
is gently smiling, the tracking results of larger smiling and
gently frowning could lead to similar mesh errors, but they
mean very differently to the user.

To address the challenges, we propose a set of heuristic
metrics that are comprehensive and correlate with the end-
user experience:
• Semantic Accuracy. Measures if certain key blendshapes

are activated enough as expected for each peak expres-
sion. The expected blendshape activation for each peak
expression is predefined by artists (Sec. 6.2). This is the
most important metric reflecting the expressivity of the
tracker.

• Neutralness. Measures if the blendshape coefficients are
below certain thresholds when the user stays neutral.

• Smoothness. Measures if the blendshape activation
curves are smooth, by measuring the mean of the second
order derivatives.

Table 1. We evaluate the quantitative metrics for the pseudo
GT, the initial ML model trained only with the pseudo GT, and
the final ML model trained with the various strategies elaborated
in Sec. 7.2. While at a moderate trade-off on Neutralness and
Smoothness, the final model significantly improves on Semantic
Accuracy and Mouth Closure, which improves the overall end-user
experience in practice.

Semantic
Accuracy

Neutral-
ness

Smooth-
ness

Eye
Closure

Mouth
Closure

Pseudo GT 0.392 0.912 0.940 0.916 0.703
Init. Model 0.403 0.902 0.832 0.944 0.856
Final Model 0.700 0.774 0.868 0.936 0.905

• Eye Closure. Measures if the avatar’s eyes are fully closed
when the user fully closes their eyes, including winking.

• Mouth Closure. Measures if the avatar’s mouth is fully
closed when the user fully closes their mouth.
The metrics are first computed for each expression

recording, then averaged across all the expressions for each
subject, and finally averaged across all the subjects as the
dataset-level metrics. This three-level (recording / subject /
dataset) aggregation not only gives us an overall evaluation
of the system, but also allows us to effectively locate certain
problematic recordings or subjects to improve the system.

Note that the metrics do not rely on the pseudo ground
truth. In fact, we can use the metrics to evaluate both the
ML model and the pseudo ground truth, as shown in Tab. 1.
This is important to our proposed Iterative Distillation train-
ing strategy (see Sec. 7.2).

8.2. Impact of Iterative Distillation

As briefly illustrated in Tab. 1, the iterative distillation is
important for model accuracy, e.g., improving the Semantic
Accuracy from 0.4 to 0.7. Here we study its impact more
thoroughly from several aspects.
Iterations are necessary. We first validate that multiple
iterations of distillation are necessary to improve the model
accuracy before having marginal gains. As demonstrated in
Fig. 9, the Semantic Accuracy has large improvements in
the first two rounds and keeps increasing till Round 5.
Distillation as label denoising. The distillation process can
be viewed as denoising the pseudo labels. We validate this
by visualizing the ML model’s latent feature space along the
distillation iterations. As demonstrated in Fig. 10, there are
some outliers in the Round 1 model’s feature space which
correspond to wrong blendshape coefficient estimation. As
the distillation iteration goes, they gradually “move” into
the distribution of inliers, and eventually have correct blend-
shape coefficient estimation.
Model ensemble is important. Lastly, we validate that
model ensemble in the iterative distillation (Algorithm 1)
is important. We conduct an ablation study that only one
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Figure 9. Quantitative metrics of the model trained at the end of
each distillation iteration. The key metric, Semantic Accuracy,
keeps increasing till Round 5.

Figure 10. Iterative distillation can be viewed as denoising pseudo
labels. The first row shows the model’s latent feature space (with
UMAP [38]) at different iterations. Red dots indicate outlier data
points, among which we find an outlier sample and visualize its
blendshape estimation in the second row. The bottom two rows
show as reference the camera images of that outlier sample frame.

best performed model is selected in each distillation itera-
tion, i.e., we train an initial model, using it as a teacher to
train another model, and repeat. Tab. 2 shows the compar-
ison between using model ensemble or not, where we can
clearly see that using model ensemble performs much better
on most of the metrics.

Table 2. Comparison between model ensemble or not in iterative
distillation

Semantic
Accuracy

Neutral-
ness

Smooth-
ness

Eye
Closure

Mouth
Closure

w/o Ensemble 0.661 0.601 0.822 0.907 0.926
w/ Ensemble 0.700 0.774 0.868 0.936 0.905

8.3. Limitations

At times, the resolution and placement of our IR cameras
may restrict the level of detail that our system can capture.
This is especially noticeable for users with obstructed fa-
cial features, like lips covered by facial hair or eyebrows
hidden by thick glasses. Besides, although we aimed to
make our system easily adoptable by implementing a blend-
shape model, this representation has certain inherent limita-
tions. Since the blendshape bases are manually designed,
they might not be the most optimal for achieving a compact
representation and capturing subtle movements. Addition-
ally, since the bases can have linear dependencies, multiple
sets of blendshape weights can produce similar expressions
leading to semantic ambiguities.

9. Conclusion
We have demonstrated the feasibility of achieving high-
quality facial animation in real-time using a VR headset
without the need of manual assistance, such as user cali-
bration. Robust tracking is achieved by 1⃝ embedding a set
of IR cameras at strategic locations within the HMD, 2⃝ col-
lecting a rich and high-quality dataset of images and labels,
and 3⃝ developing a novel training framework to improve
the accuracy of our ML model. Enhancing our ML model
with audio and temporal information are future research ar-
eas that could help increase the realism even under extreme
occlusions due to facial hairs or other obstructions. We be-
lieve that our work will inspire further contributions in the
development of consumer-level VR face trackers and will
pave the way for new interaction metaphors and social pres-
ence experiences.
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