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Abstract

Human emotion recognition plays a pivotal role in fa-
cilitating seamless interactions between humans and com-
puters. This paper delineates our methodology in tackling
the Valence-Arousal (VA) Estimation Challenge, Expres-
sion (Expr) Recognition Challenge, and Action Unit (AU)
Detection Challenge within the ambit of the 6th Workshop
and Competition on Affective Behavior Analysis in-the-wild
(ABAW). Our study advocates a novel approach aimed at
refining continuous emotion recognition. We achieve this
by first pre-training with Masked Autoencoders (MAE) on
facial datasets and then fine-tuning the model on the aff-
wild2 dataset, which is annotated with expression (Expr)
labels. The pre-trained model serves as an adept visual fea-
ture extractor, thereby enhancing the model’s robustness.
Furthermore, we bolster the performance of continuous
emotion recognition by integrating Temporal Convolutional
Network (TCN) modules and Transformer Encoder mod-
ules into our framework. Our model excels beyond base-
line performance, securing a commendable 3rd place in the
Valence-Arousal Estimation Challenge, while also achiev-
ing an impressive 2nd place in both the Expression Recog-
nition Challenge and the Action Unit Detection Challenge.

1. Introduction

Facial Expression Recognition (FER) holds immense po-
tential across a spectrum of applications, ranging from dis-
cerning emotions in videos to bolstering security through
facial recognition systems, and even enriching virtual real-
ity experiences. While significant strides have been made in
various facial-related tasks, such as face and attribute recog-
nition, the nuanced realm of emotional comprehension re-
mains a challenge.

The intricacies of emotional expressions often present
subtle differentiations that can introduce ambiguity or un-
certainty in accurately perceiving emotions. Consequently,

this complexity poses hurdles in effectively assessing an in-
dividual’s emotional state. One of the primary obstacles
lies in the inadequacy of existing FER datasets to encapsu-
late the breadth and depth of human emotional expressions,
hindering the development of robust models. Efforts to ex-
pand and diversify these datasets are imperative to enhance
the efficacy and reliability of FER systems.

The appearance of AffWild and AffWild2 datasets and
the corresponding challenges [3–9,11–14,20] boost the de-
velopment of the affective recognition study. The Aff-
Wild2 dataset contains about 600 videos with around 3M
frames. The dataset is annotated with three different affect
attributes: a) dimensional affect with valence and arousal;
b) six basic categorical affect; c) action units of facial mus-
cles. To facilitate the utilization of the Aff-Wild2 dataset,
the 6th ABAW [10] competition was organized for affective
behavior analysis in the wild.

Due to the significant success achieved by pre-training
models like MAE. In the past, we attempt to utilize the
MAE pre-training method as a visual feature extractor on
a facial expression dataset. Subsequently, we employ TCN
and Transformer for continuous emotion recognition. Our
approach results in a significant improvement in the evalu-
ation accuracy of Valence-Arousal Estimation, Action Unit
Detection, and Expression Recognition.

The remaining parts of the paper are presented as fol-
lows: Sec 2 describe the study of facial emotion recogni-
tion. Sec 3 describes our methodology; Sec 4 describes the
experiment details and the result; Sec 5 is the conclusion of
the paper.

2. Related Work

Previous studies have proposed some useful networks on
the Aff-wild2 dataset. Kuhnke et al. [15] combined vi-
sion and audio information in the video and constructed
a two-stream network for emotion recognition, achieving
high performance. Yue Jin et al. [2] proposed a transformer-
based model to merge audio and visual features.

NetEase [21] utilized the visual information from a
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Masked Autoencoder (MAE) model that had been pre-
trained on a large-scale face image dataset in a self-
supervised manner. Next, the MAE encoder was fine-tuned
on the image frames from the Aff-wild2 for AU, Expr, and
VA tasks, which could be regarded as static and uni-modal
training. Additionally, multi-modal and temporal informa-
tion from the videos were leveraged, and a transformer-
based framework was implemented to fuse the multi-modal
features.

SituTech [17] utilized multi-modal feature combinations
extracted by several different pre-trained models, which
were applied to capture more effective emotional informa-
tion.

Temporal Convolutional Network (TCN) was proposed
by Colin Lea et al. [16], which hierarchically captured rela-
tionships at low-, intermediate-, and high-level time scales.
Jin Fan et al. [1] proposed a model with a spatial-temporal
attention mechanism to catch dynamic internal correlations
with stacked TCN backbones to extract features from dif-
ferent window sizes.

The Transformer mechanism proposed by Vaswani et al.
[19] has achieved high performance in many tasks, so many
researchers exploited the Transformer for affective behavior
studies. Zhao et al. [22] proposed a model with spatial and
temporal Transformers for facial expression analysis. Ja-
cob et al. [18] proposed a network to learn the relationship
between action units with a transformer correlation module.

Inspired by the previous work, in this paper, we propose
to use MAE as a feature extractor and design a model con-
sisting of TCN and Transformer to enhance emotion recog-
nition performance.

3. Methodology

In this section, we describe in detail our proposed
method for tackling the three challenging tasks of affective
behavior analysis in the wild that the 6th ABAW Compe-
tition addresses: Valence-Arousal Estimation, Expr Recog-
nition, and AU Detection. We explain how we design our
model architecture, data processing, and training strategy
for each task. The methodology framework mentioned in
this paper is illustrated in Figure1.

3.1. MAE Pre-training

Inspired by Netease, we conduct pre-training of our
MAE on a facial image dataset. To this end, we also cu-
rate a large-scale dataset of facial expressions to learn fa-
cial features, consisting of AffectNet, RAF-DB, FER2013,
and FER+. Subsequently, the MAE model is pre-trained
on this dataset in a self-supervised manner. Specifically,
our MAE consists of a ViT-Base encoder and a ViT de-
coder. The pre-training process of MAE follows a masked-
reconstruction method, where images are first divided into

a series of patches (16x16), with 75% of these patches ran-
domly masked. These masked images are then fed into the
MAE encoder, while the MAE decoder is tasked with recon-
structing the complete image. The loss function for MAE
pre-training is pixel-level L2 loss, aiming to minimize the
difference between the reconstructed image and the target
image.

3.2. Fine-tuning

Once self-supervised learning is completed, the MAE
decoder is removed and replaced with fully connected lay-
ers connected to the MAE encoder. Subsequently, Expr la-
bels are fine-tuned to obtain a feature extractor more aligned
with the distribution of aff-wild2 data.

3.3. Temporal Convolutional Network

Videos are first split into segments with a window
size w and stride s. Given the segment window w
and stride s, a video with n frames would be split into
[n/s] + 1 segments, where the i-th segment contains
frames

{
F(i−1)∗s+1, . . . , F(i−1)∗s+w

}
.

In other words, videos are cut into some overlapping
chunks, each with a fixed number of frames. The purpose
of doing this is to break down the video into smaller parts
that are easier to process and analyze. Each chunk has some
degree of overlap with the previous and next ones so that no
information in the video is missed.

We denote visual features as fi corresponding to the i-th
segment extracted by pre-trained and fine-tuned ViT-Base
encoder.

Visual feature is fed into a dedicated Temporal Convolu-
tional Network (TCN) for temporal encoding, which can be
formulated as follows:

gi = TCN (fi)

This means that we use a special type of neural network
that can capture the temporal patterns and dependencies of
the features over time. The TCN takes the input feature vec-
tor and applies a series of convolutional layers with different
kernel sizes and dilation rates to produce an output feature
vector. The output feature vector has the same length as the
input feature vector but contains more information about the
temporal context. For example, the TCN can learn how the
image changes over time in each segment of the video.

3.4. Temporal Encoder

We utilize a transformer encoder to model the temporal
information in the video segment as well, which can be for-
mulated as follows:

hi = TransformerEncoder (gi) .
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Figure 1. The architecture of our proposed model is as follows. 1. we employ a VIT model, which includes an Encoder and a Decoder, and
utilize the Masked Autoencoders method for pre-training on facial expression datasets.2. We then use the pre-trained Encoder and augment
it with a fully connected layer, fine-tuning it with Expr labels.3. Finally, we connect the fine-tuned Encoder with Temporal Blocks, a
Transformer Encoder, and an MLP for sequence task learning.

The Transformer encoder only models the context within
a single segment, thereby ignoring the dependencies be-
tween frames across segments. To account for the context
of different frames, overlapping between consecutive seg-
ments can be employed, thus enabling the capture of the de-
pendencies between frames across segments, which means
s ≤ w.

We use another type of neural network that can learn
the relationships and interactions among the features within
each segment. The transformer encoder takes the input
feature vector and applies a series of self-attention layers
and feed-forward layers to produce an output feature vec-
tor. The output feature vector has more semantic meaning
and representation power than the input feature vector. For
example, the transformer encoder can learn how different
parts of the image relate to each other in each segment of
the video. However, the transformer encoder does not con-
sider how different segments of the video are connected or
influenced by each other. To solve this problem, we can
make some segments overlap with each other so that some
frames are shared by two or more segments. This way, we
can capture some information about how different segments
affect each other. The degree of overlap is controlled by two
parameters: s is the length of a segment and w is the sliding
window size. If s is smaller than or equal to w, then there
will be some overlap between consecutive segments.

3.4.1 Prediction

After the temporal encoder, the features hi are finally fed
into MLP for regression, which can be formulated as fol-
lows:

yi = MLP(hi)

where yi are the predictions of i-th segment. For VA chal-
lenge, yi ∈ Rl×2. For Expr challenge, yi ∈ Rl×8. For AU
challenge, yi ∈ Rl×12 .

The prediction vector contains the values we want to es-
timate for each segment. The MLP consists of several lay-
ers of neurons that can learn non-linear transformations of
the input. The MLP can be trained to minimize the error
between the prediction vector and the ground truth vector.
The ground truth vector is the values we want to predict for
each segment. Depending on what kind of challenge we
are solving, we have different types of ground truth vectors
and prediction vectors. For the VA challenge, we want to
predict two values: valence and arousal. Valence measures
how positive or negative an emotion is. Arousal measures
how active or passive an emotion is. For the Expr challenge,
we want to predict eight values: one for each basic expres-
sion (anger, disgust, fear, happiness, sadness, and surprise)
plus neutral and other expressions. For the AU challenge,
we want to predict twelve values: one for each action unit
(AU1, AU2, AU4, AU6, AU7, AU10, AU12, AU15, AU23,
AU24, AU25, AU26).

3.5. Loss Functions

VA challenge: We use the Concordance Correlation Co-
efficient (CCC) between the predictions and the ground
truth labels as the measure, which is defined as in Eq 1.
It measures the correlation between two sequences x and y
and ranges between -1 and 1, where -1 means perfect anti-
correlation, 0 means no correlation, and 1 means perfect
correlation. The loss is calculated as Eq 2.
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Task Evaluation Metric Partition Method Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Valence

CCC

Validation Ours 0.5385 0.6404 0.4926 0.5863 0.5403
Baseline 0.24 - - - -

Test Ours 0.5223 0.5272 0.4554 0.5031 0.5375
Baseline 0.211 - - - -

Arousal
Validation Ours 0.6224 0.5651 0.6015 0.6812 0.6342

Baseline 0.20 - - - -

Test Ours 0.6057 0.533 0.5759 0.5977 0.578
Baseline 0.191 - - - -

Expr F1-score
Validation Ours 0.4561 0.4478 0.4463 0.4583 0.4506

Baseline 0.23 - - - -

Test Ours 0.3496 0.3562 0.3625 0.3603 0.3510
Baseline 0.2050 - - - -

AU F1-score
Validation Ours 0.5762 0.5566 0.5018 0.5556 0.5819

Baseline 0.39 - - - -

Test Ours 0.4705 0.4669 0.4762 0.4941 0.4828
Baseline 0.365 - - - -

Table 1. Results for the five folds of three tasks

CCC(x, y) =
2 ∗ cov(x, y)

σ2
x + σ2

y + (µx − µy)
2

where cov(x, y) =
∑

(x− µx) ∗ (y − µy)

(1)

LVA = 1− CCC (2)

Expr challenge: We use the cross-entropy loss as the loss
function, which is defined as in Eq 3.

LExpr = − 1

N

∑
i

M∑
c=1

yic log(pic) (3)

where yic is a binary indicator (0 or 1) if class c is the
correct classification for observation i. pic is the predicted
probability of observation i being in class c, M is the num-
ber of classes. The multiclass cross entropy loss function
measures how well a model predicts the true probabilities
of each class for a given observation. It penalizes wrong
predictions by taking the logarithm of the predicted proba-
bilities. The lower the loss, the better the model.

AU challenge: We employ BCEWithLogitsLoss as the
loss function, which integrates a sigmoid layer and binary
cross-entropy, which is defined as in Eq 4.

LAU = − 1

N

∑
i

[yi · log(σ(xi))+(1−yi) · log(1−σ(xi))]

(4)
where N is the number of samples, yi is the target label for
sample i, xi is the input logits for sample i, σ is the sig-
moid function The advantage of using BCEWithLogitsLoss

over BCELoss with sigmoid is that it can avoid numerical
instability and improve performance.

4. Experiments and Results
4.1. Experiments Settings

All models were trained on two Nvidia GeForce GTX
3090 GPUs with each having 24GB of memory.

4.1.1 MAE Pre-training and Fine Turning

We conducted an extensive pre-training of the MAE model
on large-scale facial image datasets over 500 epochs, em-
ploying the AdamW optimizer. During this phase, we main-
tained a batch size of 1024 and set the learning rate to
0.0005. Subsequently, in the fine-tuning stage of MAE, we
adjusted the batch size to 256 and lowered the learning rate
to 0.0001, still leveraging the AdamW optimizer.

4.1.2 Task Training

We used the AdamW optimizer and cosine learning rate
schedule with the first epoch warmup. The learning rate
was set to 3e − 5, the weight decay to 1e − 5, the dropout
probability to 0.3, and the batch size to 32.

Videos were split using a segment window of w = 300
and a stride of s = 200 for all three challenges. This meant
we divided each video into segments of 300 frames with an
overlap of 100 frames between consecutive segments. This
approach helped capture the temporal dynamics of facial
expressions and emotions.
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Teams Total Score CCC-V CCC-A

Netease Fuxi 0.6721 0.6873 0.6569
DeepAVER 0.5807 0.5418 0.6196
Ours 0.564 0.5223 0.6057
SUN CE 0.5608 0.5355 0.5861
USTC-IAT-United 0.5478 0.5208 0.5748
HSEmotion 0.5193 0.4925 0.5461
KBS-DGU 0.5077 0.4836 0.5318
ETS-LIVIA 0.4434 0.4198 0.4669
CAS-MAIS 0.3830 0.4245 0.3414
IMLAB 0.2684 0.2912 0.2456
baseline 0.201 0.211 0.191

Table 2. The overall test results on VA challenge. The bold fonts
indicate the best results.

Teams F1

Netease Fuxi 0.5005
Ours 0.3625
USTC-IAT-United 0.3534
HSEmotion 0.3414
M2-Lab-Purdue 0.3228
KBS-DGU 0.3005
SUNCE 0.2877
AIOBT 0.2797
CAS-MAIS 0.265
IMLAB 0.2296
baseline 0.2250

Table 3. The overall test results on Expr challenge. The bold fonts
indicate the best results.

Teams F1

Netease Fuxi 0.5601
Ours 0.4941
HSEmotion 0.4878
USTC-IAT-United 0.484
KBS-DGU 0.4652
M2-Lab-Purdue 0.3832
baseline 0.365

Table 4. The overall test results on AU challenge. The bold fonts
indicate the best results.

4.2. Overall Results

Table 1 displays the experimental results of our proposed
method on the validation set and test set of the VA, Expr,
and AU Challenge, where the Concordance Correlation Co-
efficient (CCC) is utilized as the evaluation metric for both
valence and arousal prediction, and F1-score is used to eval-

Method VA Expr AU

baseline 0.220 0.230 0.390
w/o. Fine-tuning 0.5038 0.4014 0.5194
w/o. TCN 0.5675 0.4372 0.5519
w/o. Temporal Encoder 0.5734 0.4428 0.5612
ours 0.5805 0.4561 0.5762

Table 5. Ablation studies that discuss the significance of MAE
fine-tuning, Temporal Convolutional Network(TCN), and Tempo-
ral Encoder.

uate the result of Expr and AU challenge. As demonstrated
in the table, our proposed method outperforms the base-
line significantly. These results show that our proposed ap-
proach using TCN and a Transformer-based model effec-
tively integrates visual and audio information for improved
accuracy in recognizing emotions on this dataset.

Tables 2, 3, and 4 present the comprehensive test re-
sults across the three challenges. Notably, Netease Fuxi
secured first-place scores in all three challenges, substan-
tially outperforming other teams, and showcasing their ex-
ceptional proficiency. Our team clinched third place in the
VA challenge, and second place in both the Expr and AU
challenges. These results underscore our team’s competi-
tive prowess, marked by significant accomplishments across
the VA, Expr, and AU challenges.

4.3. Ablation Studies

In this section, we conducted several experiments to
discuss the importance of each module in our approach,
including MAE fine-tuning, Temporal Convolutional Net-
work(TCN), and Temporal Encoder. All experiments were
carried out on the official training and validation sets. The
results are shown in table 5.

MAE fine-tuning. To demonstrate the effectiveness of
MAE fine-tuning, we removed the fine-tuning step and di-
rectly used the Encoder from MAE pretraining to extract
features. It can be observed that the accuracy of various
tasks has significantly decreased. The average CCC of VA
decreased from 0.5805 to 0.5038, the average F1 for Expr
decreased from 0.4561 to 0.4014, and the average F1 score
for AU decreased from 0.5762 to 0.5194. This indicates that
MAE fine-tuning can effectively utilize the static visual fea-
tures in a single image, providing valuable prior knowledge
for learning temporal visual features.

Temporal Convolutional Network. We removed the
Temporal Convolutional Network to explore its significance
and found that there was a certain degree of decline in the
metrics for each task. The average CCC of VA decreased
from 0.5805 to 0.5675, the average F1 for Expr decreased
from 0.4561 to 0.4372, and the average F1 score for AU
decreased from 0.5762 to 0.5519. The results indicate the
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effectiveness of the Temporal Convolutional Network in se-
quence modeling.

Temporal Encoder. We also attempted to remove the
Transformer Encoder. The average CCC of VA decreased
from 0.5805 to 0.5734, the average F1 for Expr decreased
from 0.4561 to 0.4428, and the average F1 score for AU
decreased from 0.5762 to 0.5612. This demonstrates its ef-
fectiveness.

5. Conclusion

In summary, our study on human emotion recognition,
presented at the 6th Workshop and Competition on Affec-
tive Behavior Analysis in-the-wild (ABAW), introduces a
novel approach combining pre-training with Masked Au-
toencoders (MAE) and fine-tuning on aff-wild2 datasets.
By integrating Temporal Convolutional Network (TCN) and
Transformer Encoder modules, our model surpasses base-
line performance, securing 3rd place in Valence-Arousal
Estimation and 2nd place in both Expression Recognition
and Action Unit Detection Challenges. These results high-
light the effectiveness of our methodology in advancing
continuous emotion recognition and its potential for im-
proving human-computer interaction.

References
[1] Jin Fan, Ke Zhang, Yipan Huang, Yifei Zhu, and Baiping

Chen. Parallel spatio-temporal attention-based tcn for multi-
variate time series prediction. Neural Computing and Appli-
cations, pages 1–10, 2021. 2

[2] Yue Jin, Tianqing Zheng, Chao Gao, and Guoqiang Xu.
A multi-modal and multi-task learning method for ac-
tion unit and expression recognition. arXiv preprint
arXiv:2107.04187, 2021. 1

[3] Dimitrios Kollias. Abaw: Learning from synthetic
data & multi-task learning challenges. arXiv preprint
arXiv:2207.01138, 2022. 1

[4] Dimitrios Kollias. Multi-label compound expression recog-
nition: C-expr database & network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5589–5598, 2023. 1

[5] D Kollias, A Schulc, E Hajiyev, and S Zafeiriou. Analysing
affective behavior in the first abaw 2020 competition. In
2020 15th IEEE International Conference on Automatic
Face and Gesture Recognition (FG 2020)(FG), pages 794–
800, 2020. 1

[6] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Face behavior a la carte: Expressions, af-
fect and action units in a single network. arXiv preprint
arXiv:1910.11111, 2019. 1

[7] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos
Zafeiriou. Distribution matching for heterogeneous multi-
task learning: a large-scale face study. arXiv preprint
arXiv:2105.03790, 2021. 1

[8] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal esti-
mation, expression recognition, action unit detection & emo-
tional reaction intensity estimation challenges. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5888–5897, 2023. 1

[9] Dimitrios Kollias, Panagiotis Tzirakis, Alice Baird, Alan
Cowen, and Stefanos Zafeiriou. Abaw: Valence-arousal esti-
mation, expression recognition, action unit detection & emo-
tional reaction intensity estimation challenges, 2023. 1

[10] Dimitrios Kollias, Panagiotis Tzirakis, Alan Cowen, Ste-
fanos Zafeiriou, Chunchang Shao, and Guanyu Hu. The 6th
affective behavior analysis in-the-wild (abaw) competition.
arXiv preprint arXiv:2402.19344, 2024. 1

[11] Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A Nicolaou,
Athanasios Papaioannou, Guoying Zhao, Björn Schuller,
Irene Kotsia, and Stefanos Zafeiriou. Deep affect prediction
in-the-wild: Aff-wild database and challenge, deep architec-
tures, and beyond. International Journal of Computer Vision,
pages 1–23, 2019. 1

[12] Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect,
action unit recognition: Aff-wild2, multi-task learning and
arcface. arXiv preprint arXiv:1910.04855, 2019. 1

[13] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis
in-the-wild: Valence-arousal, expressions, action units and a
unified framework. arXiv preprint arXiv:2103.15792, 2021.
1

[14] Dimitrios Kollias and Stefanos Zafeiriou. Analysing affec-
tive behavior in the second abaw2 competition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3652–3660, 2021. 1

[15] Felix Kuhnke, Lars Rumberg, and Jörn Ostermann. Two-
stream aural-visual affect analysis in the wild. In 2020 15th
IEEE International Conference on Automatic Face and Ges-
ture Recognition (FG 2020), pages 600–605. IEEE, 2020. 1

[16] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager.
Temporal convolutional networks: A unified approach to ac-
tion segmentation. In Computer Vision–ECCV 2016 Work-
shops: Amsterdam, The Netherlands, October 8-10 and 15-
16, 2016, Proceedings, Part III 14, pages 47–54. Springer,
2016. 2

[17] Chuanhe Liu, Xinjie Zhang, Xiaolong Liu, Tenggan Zhang,
Liyu Meng, Yuchen Liu, Yuanyuan Deng, and Wenqiang
Jiang. Multi-modal expression recognition with ensemble
method. arXiv preprint arXiv:2303.10033, 2023. 2

[18] Geethu Miriam Jacob and Björn Stenger. Facial action unit
detection with transformers. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
7676–7685, 2021. 2

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[20] Stefanos Zafeiriou, Dimitrios Kollias, Mihalis A Nicolaou,
Athanasios Papaioannou, Guoying Zhao, and Irene Kot-
sia. Aff-wild: Valence and arousal ‘in-the-wild’challenge.
In Computer Vision and Pattern Recognition Workshops

4671



(CVPRW), 2017 IEEE Conference on, pages 1980–1987.
IEEE, 2017. 1

[21] Wei Zhang, Bowen Ma, Feng Qiu, and Yu Ding. Multi-
modal facial affective analysis based on masked autoencoder.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5792–5801, 2023. 1

[22] Zengqun Zhao and Qingshan Liu. Former-dfer: Dynamic
facial expression recognition transformer. In Proceedings
of the 29th ACM International Conference on Multimedia,
pages 1553–1561, 2021. 2

4672


	. Introduction
	. Related Work
	. Methodology
	. MAE Pre-training
	. Fine-tuning
	. Temporal Convolutional Network
	. Temporal Encoder
	Prediction

	. Loss Functions

	. Experiments and Results
	. Experiments Settings
	MAE Pre-training and Fine Turning
	Task Training

	. Overall Results
	. Ablation Studies

	. Conclusion

