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Supplementary

1. End-to-end System Implementation
1.1. Head Pose

Our model does not output head pose, instead we utilize the
6-DoF head pose reported by HMD’s SLAM service.

1.2. Eye Tracking

Our face tracking system also relies on the gaze output by
an eye tracking module. This eye tracking module’s core
is a deep learning model which is trained end-to-end with
a dataset of HMD’s eye camera images and ground truth
gaze.

The gaze controls both the movement of eye balls as well
as 8 eyelid blendshape coefficients (4 per eye). The coeffi-
cients of those eyelid blendshapes are linearly mapped from
the gaze angle (capped at ± 30°) for each eye separately.

1.3. Real-Time User Calibration

Although the model is trained with a large-scale dataset, it
still cannot perfectly generalize to every new subject due
to the inherent ambiguity between the user’s identity and
expression. For example, subjects with naturally narrower
eyes can be confused with a partial eye closure expression
on subjects with larger eyes (Fig. 1).

We proposed a real-time user calibration algorithm to ad-
dress this challenge. The algorithm tracks the most recent
30 seconds’ blendshape coefficients estimated by the ML
model and assumes the most frequent “true” value of each
blendshape coefficient should be 0. For each blendshape
i, we generate a histogram of its coefficients over the last
30 seconds and extract the mode of the histogram mi. Let
bi be the blendshape coefficient for the current frame, the
calibrated coefficient is computed as

b̃i =
bi −mi

1−mi
. (1)

Note the assumption (the most frequent “true” value of
a certain blendshape should be 0 during 30 seconds) only
makes sense to a subset of blendshapes (e.g., eyebrow raise)
but not others (e.g., jaw drop, as people may keep talking).
We only apply the calibration to those blendshapes where
the assumption holds.

Figure 1. Inherent ambiguity between identity and expression.
Left: a person half-closing their eyes, where the eye closure blend-
shape should be activated to about 0.5. Right: a person naturally
having narrower eyes when neutral, where the eye closure blend-
shape should not be activated.

We further customize the calibration for eye closure
blendshapes to account for cases where the person has nat-
urally narrower eyes. We know that humans blink for about
5% of time. Let j be the eye closure blendshape, mj be the
mode of the histogram for the blendshape j, Mj be the top
2% of the histogram, and bj be the blendshape coefficient
for the current frame, the calibrated coefficient for the eye
closure blendshape is computed as

b̃j =
bj −mj

Mj −mj
. (2)

1.4. Fallback Mechanism

After deploying our face tracking models onto the head-
set, we encountered various challenging situations where
the camera-based tracking failed. The most common fail-
ures were due to lacking visibility of users’ facial features
either because of poor donning or occlusion (e.g., people
touching their lower face temporarily, or people having a
thick moustache or wearing a facial mask), as demonstrated
in Fig. 2.

To address the challenges and ensure a less disruptive
user experience, we propose a fallback mechanism, as illus-
trated in Fig. 3. First, we develop an uncertainty estimation
module to check how confident the camera-based tracking
result is. When the confidence is low, we either fallback
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Figure 2. Two sample mouth camera images where our camera-
based face tracking could be inaccurate or fail due to hand occlu-
sions

Figure 3. Diagram of the fallback pipeline. Since the camera im-
ages and audio signals have different frame rates, we use retiming
to better align their estimated blendshape coefficients.

Figure 4. Sample mappings between phonemes, visemes, and
blendshapes

to neutral (by just muting the blendshape coefficients) if
no audio signals or fallback to blendshapes driven by au-
dio signals using publicly available systems such as Oculus
LipSync [4].

We utilize an existing audio-to-blendshape system to es-
timate phonemes from the audio signals. Then, we map
the phonemes to visemes, and then to artist-defined blend-
shapes, as demonstrated in Fig. 4. For uncertainty esti-
mation, we train a confidence regressor head that takes in
the image features and predicts a scalar confidence value in
[0, 1]. We train this regressor with a binary cross entropy
loss on a manually annotated corner-case dataset composed
of common failure cases such as mouth occlusion, heavy
facial hair, poor headset donning, etc.

As demonstrated in Fig. 5, our system can properly de-

Figure 5. A user making an ”O” sound while covering up the cam-
era with their hands. In such cases when the camera-based track-
ing fails but audio is available, our system can properly detect the
failure and fallback to drive the lower face blendshape coefficients
by audio signals.

tect the failure and fallback to audio-driven blendshape an-
imation when the camera-based face tracking fails due to
camera occlusion.

2. Evaluation Metrics

2.1. Qualitative Evaluation (QE)

In addition to the automatically computed quantitative met-
rics, we also employ human annotators to qualitatively eval-
uate the face tracking results. We render the tracking results
as avatars alongside the corresponding camera images, as
demonstrated in Fig. 6, and then send the rendered video to
human annotators to rate whether the tracking results match
the expressions performed.

QE helps reveal more nuanced tracking errors or artifacts
that cannot be easily captured by the quantitative metrics.
We summarize the common errors and artifacts into several
standard QE annotation questions, such as whether the teeth
contact, blinking, winking, mouth lip movements, etc., are
well tracked.

We qualitatively evaluate our final ML model on the test
dataset of 16,695 recordings from 795 subjects. The QE
results suggest that 7.8% of all the recordings have quality
issues, among which the most frequent errors are teeth con-
tact (32.9%), blinking (15.3%), mouth closure (15.1%), and
winking (5.67%). This helps us identify the areas for future
improvements.

2.2. User Experience Research (UXR)

We further directly evaluate the holistic end-user experience
in real-world VR applications through UXR studies. To this
end, we build VR Apps for 1-on-1 conversation and small
group meetings. Our HMD has our face tracking solution
enabled, while the baseline is leveraging an existing VR de-
vice (such as Meta’s Quest) that only has audio-driven face



Figure 6. A sample frame in a rendered video for qualitative evalu-
ation. The top two rows show the camera images, while the bottom
row shows the face tracking result rendered as avatars from differ-
ent views. Human annotators answer several standard questions
such as whether the teeth contact and mouth lips are well tracked.

Figure 7. Comparison of the UXR study scores between our HMD
(with our face tracking technology) and the baseline VR device
(only has audio-driven face tracking). Our HMD outperforms the
baseline HMD on all the axes.

tracking. We evaluate if our HMD enhances social pres-
ences and leads to more meaningful social interactions com-
pared with the baseline VR device.

We design a Triad Interaction task for the UXR study.
Three participants meet in VR to first play an ice-breaker
game and then deliberate on a business ethics scenario. Par-
ticipants repeat the meeting twice, one with our HMD and
the other with the baseline VR device, in a random order.
After each meeting, participants provide feedback on the
social presence they felt during the interaction, by scoring
1 to 5 along the axes of Comfort, Believability, Expressiv-
ity, Acknowledgement, Expression Readability, Authentic-
ity, Naturalness of Facial Expressions, and Naturalness of
Eye Movements.

We recruit 21 diverse participants for the UXR studies.
As shown in Fig. 7, our HMD outperforms the baseline VR
device on all the axes. Overall, 90% of all the participants
prefer our HMD over the baseline VR device for social in-
teraction in VR.

Table 1. Impact of the number of training subjects on the accu-
racy of the ML model. “2950U” stands for downsampling to 2950
subjects for training.

Training Set Semantic
Accuracy

Neutral-
ness

Smooth-
ness

Eye
Closure

Mouth
Closure

0.1%, 9U 0.532 0.456 0.766 0.918 0.849
0.3%, 27U 0.581 0.594 0.810 0.857 0.829
0.5%, 41U 0.595 0.703 0.827 0.831 0.875
1%, 93U 0.631 0.613 0.825 0.882 0.887

10%, 750U 0.656 0.703 0.848 0.921 0.922
20%, 1482U 0.661 0.705 0.849 0.924 0.885
40%, 2950U 0.662 0.724 0.841 0.925 0.898
80%, 5662U 0.663 0.684 0.841 0.925 0.898

100%, 7161U 0.675 0.735 0.847 0.950 0.894

Figure 8. 6 blend shapes for eyebrow

3. Impact of Dataset Size
After thorough data cleaning, we construct a dataset con-
sisting of 7,161 subjects for training and 795 subjects for
testing. In this study, we aim at assessing the impact of the
training dataset size on the accuracy of the ML model. We
downsample the number of training subjects from 100% to
80%, 40%, . . . , 0.1%, retrain the ML model respectively,
and evaluate the results on the same test set. Note that the
experiments have variations due to randomness in subject
downsampling and model initialization. We report the re-
sults averaged across multiple runs, as shown in Tab. 1.

The accuracy improves rapidly as the number of training
subjects increases, up until reaching 40% (2,950) training
subjects. The improvements become more marginal after-
wards. It can be interesting to further explore whether an
“emergent” ability [5] may occur with even larger datasets
or ML models.

4. Blendshapes
The figures below visualize our blend shape definitions.

5. Semantic Rig Constraints in Pseudo Ground
Truth Generation

Our artist-provided template meshes are based on FACS
shapes [2]. FACS shapes are not independent vectors – each



Figure 9. 14 blend shapes for eye regions, include 8 controlled by
gaze

Figure 10. 8 blend shapes for cheek region

Figure 11. 12 blend shapes for mouth region

Figure 12. 11 blend shapes for upper lips

Figure 13. 9 blend shapes for lower lips

Figure 14. 4 blend shapes for jaw

shape implies specific activation patterns on other shapes,
intended to represent the abilities of a human face well. Our
implementation uses a set of non-linear constraints to de-
scribe these during optimization:
• Mutually exclusive shapes (e.g., mouth left and

mouth right or eyes closed and upper lid raiser),
• Equally activated shapes, implemented as averaging (e.g.,

4 lips towards shapes should have roughly the same acti-
vation),

• Conditional activations: (e.g., lips towards shapes or the
lip suck shapes can only be active if jaw open is activated
at the same time).
Our top-level metrics don’t change much when we com-

pare a run with the rig constraints against a run without the
rig constraints. Adding rig constraints restricts the degrees
of freedom available for the optimizer, and it is expected to
cause ”visual” degradation in some cases. However, other
frames show visual improvements and the rig constraints
enforce an overall improved conformity to the artists rig-
ging expectations. Figure 15 and Figure 16 show two exam-



Figure 15. (a) With rig constraints, (b) without rig constraints on
the kiss face sequence. This is a good example of enforcing equal
activation in the lipTowards blendshapes and a more visually ap-
pealing result with the rig constraints.

Figure 16. (a) With rig constraints, (b) without rig constraints on
the scrunch face sequence. With this particular rig, the difference
in activation patterns are not very ”visible” on the final rendering
(there are some differences on the mouth shape and eye brows).
However, when looking at the activation patterns, we see an in-
correct co-activation of mouth-left (0.59) and mouth-right (0.63)
without the rig constraints vs mouth-left (0) and mouth-right (0.20)
with the rig constraints.

ples for which the blendshape activation patterns conform
more to artists’ rigging expectations.

6. Details of the On-Device ML Model
6.1. Backbone Architecture

Figure 17 shows the backbone architecture used in the on-
device ML model. Note that the left and right eye share the
same eye backbone, while the left and right mouth share the
same mouth backbone.

6.2. Training Recipe

We use a single machine with 8 NVIDIA P100 or V100
GPUs to train our on-device ML model. The effective batch
size is 224, consisting of half real data and half synthetic
data. We subsample every 10 frames from the raw video
and only keep the segment around peak expressions for each
video (frame index percentile in [35%, 65%]). We set the
max iteration to 60K, learning rate to 0.1, and weight decay
to 0.0005. We employ a cosine learning rate scheduler [3]
with 500 warm-up steps in the beginning.

6.3. Details in Iterative Distillation

Range-of-Motion (RoM) Calibration. We propose a RoM
calibration algorithm to post-process the pseudo labels with
the Art Priors. The goal is to make the blendshape activa-
tion expressive and more consistent across different training
subjects.

During data collection, we ask each participant to stay
neutral for 1-2 seconds; then perform a certain expression
(will show some photo/video as a prompt to help the person
mimic the same expression) and hold it for 3 seconds; at
last fall back to neutral position. With the Art Priors defined
by artists, we expect certain key blendshapes to be close to
certain values at the peak expression segments. The overall
blendshape activation over time should be similar to a bell
curve.

With such priors, we design the algorithm as follows:
1. For each expression video, find the frame segments of

neutral → ramp-up → peak → ramp-down → neutral,
based on the blendshape estimation (either from pseudo
ground truth or from the ML models)

2. For each key blendshape of that expression,
(a) Keep its activation at the neutral segments un-

changed
(b) Scale its activation at the peak segments to be close

to the art-expected value
(c) Scale its activation in the ramp-up and ramp-down

segments so that the transition is smooth
In Fig. 18, we demonstrate an example of how the blend-

shapes for expression “Surprise” are calibrated.
Temporal Smoothing. We apply the OneEuro Filter [1] to
smooth each blendshape activation curve independently.
Model Selection. We select from the model pool the top-
2 models that have the best Semantic Accuracy and Mouth
Closure metrics for ensembling.
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Figure 17. The backbone architecture for encoding each image into a feature map. “Conv 256x128x3x3 ↓ 2” means a convolution layer
that has 256 output channels, 128 input channels, 3x3 kernel size, and a stride of 2.

Figure 18. A sample demonstrating how the blendshapes are cali-
brated. For the “Surprise” expression, the jawDrop blendshape is
expected to be at ∼ 0.6 and the outerBrowRaiser L blendshape
is expected to be at ∼ 1.0. The initial blendshape estimation in
the top figure is calibrated toward such art priors. Note that the
authentic movement is largely preserved (the jawDrop after cal-
ibration still preserves a minor degrading over time, rather than
fixing at 0.6 as constant).

Ensemble. We use the average ensemble, i.e., averaging the
inference results across the models.
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