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Abstract

Vision-based pose estimation using deep learning offers a
promising cost effective and versatile solution for relative satel-
lite navigation purposes. Using such a solution in closed loop to
control spacecraft position is challenging from validation and per-
formance verification viewpoint, because of the complex specifica-
tion and development process. The validation task entails bridging
the gap between the dataset and real-world data. In particular,
modelling of Sun power and spectrum, Earth albedo, and atmo-
spheric absence effects, is costly to replicate on ground. This ar-
ticle suggests a novel approach to produce synthetic space scene
images. Fine statistical balancing is ensured to train and assess
pose estimation solutions. A physically based camera model is
used. Synthetic images incorporate realistic light flux, radiometric
properties, and texture scatterings. The dataset comprises 120000
images supplemented with masks, distance maps, celestial body
positions, and precise camera parameters (dataset publicly avail-
able https://www.irt-saintexupery.com/space_
rendezvous/ created in the frame of a project called RAPTOR:
Robotic and Artificial intelligence Processing Test On Representa-
tive target). An analysis method using a dedicated metric library
has been developed to help the assessment of the solution perfor-
mance and robustness. A deeper comprehension of algorithm be-
havior through distribution law fitting and outlier identification is
then facilitated. Finally, it is shown that implementing Region-of-
Interest (RoI) training can drastically increase the performance of
the Convolutional Neural Networks (CNNs) for long-range satel-
lite pose estimation tasks.

1. Introduction
Monocular pose estimation for space rendezvous addresses
a significant challenge within the space industry, where the
avoidance of expensive LiDAR sensors could simplify ac-
cess to technologies such as deorbiting, refueling, and in-
orbit assembly. However, leveraging visible cameras for
this task introduces complex engineering problems, particu-
larly regarding Deep Learning applied to Computer Vision.

*This work was carried out as part of the RAPTOR project of the
French Technological Research Institute IRT Saint Exupéry. The authors
would like to thank Thales Alenia Space as industrial partner of the project.

(a) D1 sample, nominal exposure. (b) D2 sample, overexposure.

Figure 1. Examples of RAPTOR dataset images.

CNNs have shown a strong predominance in pose estima-
tion approaches. However, these models are data-intensive
and sensitive to domain shifts. In the context of space op-
erations, gathering a vast amount of real-world data is pro-
hibitively expensive. Thus, this lack of data must induce
new validation techniques, both for the constitution of more
representative synthetic datasets and for the correct quan-
tification of the performances of the proposed architecture.

It is tempting to address the domain gap between train-
ing and mission data using a test bench. While the Hard-
ware In the Loop (HIL) solution remains an important part
of the functional validation process, space scenes are very
difficult to reproduce on ground. The Sun light for instance
can be viewed as a very strong punctual source releasing
≈ 1400W/m2 [10] of light to Earth orbiting satellite. The
necessary light power is difficult to obtain, in particular be-
cause the source must be small or far from the model. A
collimated light can be used to overcome this problem but
this solution is more suitable for small targets [6].The at-
mospheric diffusion also brings significant disturbances to
the captured scenes. Moreover, the camera is impacted by
the orbital environment and the noise level recorded on the
ground is often low compared to that in flight [3]. Never-
theless, HIL testing remains useful for real-time constraints
and to demonstrate the radiometric validity of the simulator.

The authors propose to evaluate the domain gap using
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simulated images only by mastering key physical and mis-
sion properties. The test dataset is divided in two parts, one
with typical expected characteristics and another with ex-
tended broadcast ranges corresponding to the worst cases
that might be encountered in flight conditions.

In summary, the contributions of this article are the fol-
lowing:
1. A 120000 samples dataset specifically designed for

spacecraft pose estimation ensuring fine statistical bal-
ancing and realistic dynamic ranges using a complete
camera model. The camera model contains a physically
based ray-tracer coupled with a complete sensor model
taking into account key camera limitations. An addi-
tional test dataset is provided for testing the robustness
of the proposed solution. The provision of data like dis-
tance maps, masks and the complete scene description
allow to go deeper into the design of pose estimation so-
lutions.

2. The development of a metric library on which to lean a
methodology able to better understanding the algorithm
to embed it in an on-board closed loop architecture.

3. The performance analysis of a multi-task CNN for long-
range pose estimation using RoI training.

2. Related Work
Space applications, especially those involving on-orbit ren-
dezvous, present new challenges for data-intensive super-
vised learning models. To address these challenges, it is
necessary to generate synthetic datasets. Some efforts have
been made to provide such datasets to the research commu-
nity.

For example, in 2019, the Spacecraft Pose Estimation
Dataset (SPEED) [9] was introduced as part of the Satel-
lite Pose Estimation Challenge (SPEC2019). This initiative
aimed to estimate the pose (i.e., relative position and atti-
tude) of the Tango spacecraft from the PRISMA mission,
using individual grayscale images. Subsequently, in 2021,
the SPEED+ [14] dataset was introduced, accompanied by
a new competition under the Satellite Pose Estimation Chal-
lenge (SPEC2021). This update improves the measurement
of domain gap robustness with HIL images, sparking in-
terest from the research community. Other datasets such
as [2] show a genuine interest in generating high-quality
spaceborne synthetic dataset and highlight the difficulties
encountered in physically-based modelling. Additionally,
datasets like URSO [16] have further analyzed other satel-
lites, such as Soyuz and Dragon. On the other hand, SPARK
dataset [12] explores multi-modal spacecraft classification
using RGB and depth sensors for a wider range of objects,
including 11 classes of spacecraft and debris under various
lighting conditions.

Lastly, in 2022, the SEENIC [8] dataset has emerged as
a resource suitable for missions involving alternative sensor

types, like event cameras. Notably, SEENIC emphasizes the
importance of robustness by using a training dataset consist-
ing of simulated event-frames and a testing dataset consist-
ing of HIL data. Unlike its counterparts, SEENIC empha-
sizes the need for image sequences rather than independant,
uniformly distributed scenes.

Deep Learning architectures for pose estimation have
evolved considerably in recent years. Two different types
of architectures have emerged: direct approaches, which di-
rectly predict the orientation and translation of the target ob-
ject, and indirect approaches, where various representations
(such as Heatmaps [4], Part Affinity Fields [5], Dense Maps
[18, 22], etc.) are employed to improve network perfor-
mance. Typically, these representations are post-processed
using a variant of the Perspective-n-Point (PnP) [7] algo-
rithm.

In order to assess the performance of pose estimation,
conventional metrics typically involve computing the distri-
bution of errors in translation L2-norm and rotation (angle).
In [15], for the SPEC challenge requirements, the authors
proposed averaging errors across the dataset and introduced
a global metric as the sum of mean errors in rotation and
translation. While these metrics facilitated comparison of
solutions within the challenge framework, they lacked the
ability to quantify the extent of error distribution or its de-
pendency on distance. However, for space rendezvous, a
clear understanding of how performance improves relative
to distance is crucial to ensure trajectory convergence and
mitigate collision risks. Furthermore, for operational de-
ployment in closed-loop control systems, a commitment to
distribution quantiles is necessary.

3. Dataset Generation

3.1. SPICaM Overview

SPICaM, for Spacecraft and Planetary Imaging by Cam-
era Modeling, is a complete camera model composed of
a 3D rendering engine and a sensor model. The render-
ing engine is able to perform physically based computation
of radiance maps. It uses a ray-tracing mechanism asso-
ciated to energy conservative BRDF (for Bidirectional Re-
flectance Distribution Function) models in order to estimate
realistic light fluxes. Contrary to most known commer-
cial rendering engines which are focused on human per-
ception, SPICaM allows to compute radiances on custom
bands of light spectrum considering respective sensor effi-
ciency. Light fluxes on each band are converted to elec-
trons with a given exposure time. The electrons are then
converted to bits, each conversion comes with injection of
corresponding disturbances (optical scattering, distortions
and noise, DSNU (Dark Signal Non-Uniformity), PRNU
(Photo-Response Non-Uniformity), dark current, readout
noise).
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3.2. Simplified Camera Model

A simplified camera model has been designed to predict
how much light flux will be received per satellite face. The
client satellite is modeled here as six rectangular faces for
the body and two faces for the solar array. Each face has
its own optical response and one light ray is traced by client
face. Such approach could be embarked on board and al-
lows to approximate the best exposure time for each scene.
The best exposure time is defined as the duration of integra-
tion of the light flux which maximizes the quantity of usable
information in the image. The satellite is therefore always
visible with a good level of detail in each image.

3.3. Dataset Domains

In order to model a representative domain gap, we have cho-
sen to differentiate nominal (D1) and perturbed (D2) do-
mains based synthetically on optical, sensor, scene and tar-
get parameterization. These datasets allow to measure per-
formance over a first level of realistic perturbations. Train-
ing, validation and test split are released on D1 domain. A
second test dataset on D2 domain. Tab. 2 defines the vary-
ing parameter ranges of each domain.

Domain
Split Nominal (D1) Perturbed (D2)
Train 64000 -
Validation 16000 -
Test 20000 20000

Table 1. Dataset composition per domain and split.

3.4. Statistical Distributions

The dataset is designed to maximize the uniformity of the
distribution for the varying parameters while guaranteeing
situations respecting the physical laws. A filtering of invalid
samples is performed all along the process (see Section 3.5).

3.4.1 Main Assumptions

The following assumptions were made to define the dataset.
• A single orbit corresponding to one given fictive mission

is considered.
• The scattering methods used are valid for any Earth cen-

tered orbit.
• It is modelled a single client corresponding to Sentinel-3

satellite.
• The dataset is optimized for keypoint-based pose estima-

tion solutions (the process tries to enhance uniformity of
the distributions of keypoints positions in the image).

• Optimal exposure estimation is performed on-board (it
appears mandatory for the chaser to be able to estimate

Figure 2. Distribution of relative distance between the client and
the servicer (D1 dataset).

the camera exposure hence allowing to see the client
clearly). The section 3.2 explains the associated method.

• The camera parameters selected are: 4 Mpix 8bits CMOS
monochromatic sensor, 60° of field of view.

3.4.2 Scattered Parameters

The dataset is associated to a fictive but realistic mission
with a client spacecraft in GEO (Geosynchronous Earth Or-
bit). The samples are uniformly scattered over a one year
range to cover the full Earth orbit period corresponding to
various Earth backgrounds.

The attitude of the satellite is therefore defined by a ran-
dom quaternion in order to encompass all possible configu-
rations that could correspond to breakdown situations. Dur-
ing the mission, the chaser can be anywhere with respect to
the client satellite reference frame. The pose estimation so-
lution is designed to be efficient over a range of distances. A
spacecraft that is too close may not have all of its recogniz-
able features within the camera’s field of view. The range
is also limited by the minimum amount of pixels imaging
the spacecraft. As illustrated in Fig. 2, the distance between
the spacecrafts is drawn using a uniform distribution but the
closer the client is, the more difficult it is to place him en-
tirely inside the frame, thus changing the distribution.

The target to chaser direction is drawn randomly in order
to obtain a uniform distribution on the surface of the unity
sphere. Drawing the chaser’s attitude directly would have
led to numerous instances of the client being out of frame.
Consequently, the client’s position within the image is de-
termined using random pixel coordinates. This approach fa-
cilitates the establishment of an initial direction in 3D space
to define the chaser’s attitude. As depicted in Fig. 3, placing
the satellite entirely within the image becomes challenging
when its midpoint is near the edges of the image. Fig. 4
complements the previous one by presenting the distribu-
tions of keypoints positions within the image. the probabil-
ity of having centered keypoints is higher when the satellite
is close for the proposed configuration. This explains the
drop in probability at the edges of the image. The chaser
attitude is deduced from the client satellite relative position
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Table 2. Varying ranges between D1 and D2 domains.

Parameter Type D1 D2
PSF fwhm Distance Optical 0.4 pix 0.4 pix ± 0.1
Exposure time Sensor optimal exposure = t t× 0.5 to 2
PRNU Sensor sigma = 1/100 sigma = 2/100
MLI texture Target 1 texture 5 textures
Material BRDF Target 1 fixed BRDF Albedo coefficient × 0.5 to 1

Figure 3. Distribution of the client position in the image.

Figure 4. Distribution of all keypoints positions (X/Y) in images.

and its projected position on sensor frame. The roll around
client direction axis is uniformly drawn between −π and π.

A nominal exposure duration is computed using a sim-
plified camera model (see dedicated Sec. 3.2). The nominal
duration is only scattered in D2 test dataset by applying a
random coefficient uniformly distributed between 0.5 and
2. Fig. 1a and Fig. 1b show two samples with nominal and
scattered exposure.

The Multi-Layer Insulation (MLI) covers the majority of
the selected client. This material is flexible and usually has
many unpredictable wrinkles. This is modeled using a nor-
mal map, drawn inside a set of five reference textures. The
optical properties of materials can only be partially known
due to the exposure to space environment but also the lack
of design data on the subject. The client body cover and

structure is mainly composed of MLI and aluminum. The
optical response of the materials is modeled using a GGX
BRDF model [21]. The albedo coefficient is scattered be-
tween the nominal value and half of it over each spectral
band in order to simulate the material clouding.

The sensor usually has several defects; some of it possi-
bly corrected after a calibration step. We consider that the
dark current can be partly calibrated and that the rest is not
significant (less than one bit for our range of exposure du-
ration). The read-out noise is typically very faint (< 2 bits
with defined camera hypotheses). We identified the Photo-
Response Non-Uniformity (PRNU) as the potentially most
impacting noise for pose estimation. It is firstly a multi-
plicative noise hence introducing a non-linear transforma-
tion. The PRNU is also hard to calibrate and intended to be
degraded over satellite life-time.

3.5. Automatic Sample Filtering

Several checks are performed all along the scattering pro-
cess in order to automatically discard low quality data.

• Earth Eclipse
The client in GEO orbit is not visible without direct light.
A conical shadowing model is used to detect eclipses and
remove these cases.

• Camera Blinding
A camera is qualified to be used considering a Sun ex-
clusion angle. The dataset is therefore constructed con-
sidering that this constraint is fully respected during the
rendezvous mission.

• Keypoints Outside of Frame
The system verifies the presence of keypoints beyond the
camera frame to ensure comprehensive coverage of the
entire satellite within the captured image.

• Client Visibility
Utilizing the simplified camera model, an estimation of
client visibility is derived, with recognition of the signif-
icant impact on visibility of the Sun incidence and the
client attitude. Scenes lacking visible faces are promptly
discarded.
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3.6. Additional Meta-Data

The dataset is provided with additional meta-data intended
to open the door to further solutions. Additional masks
available for segmentation purposes are provided as 8 bits
mono-band images. The pixel values correspond to the
scene element intersected by the light ray (Earth, Moon,
client body or client solar array). Distance maps are also
provided as well as a complete definition of the scene,
paving the way for the design of other image processing
architectures.

4. Analysis Methodology and Metric Library
To compare and analyze efficiently the results provided by
various pose restitution approaches, an analysis methodol-
ogy for performance computation has been set up. The main
objectives are the following:
1. Proposing a methodology to analyze pose estimation

performances and able to compare solutions and mon-
itor learning processes;

2. Quantifying performance distributions, and not only av-
erage behaviour;

3. Understanding pose performance variations with respect
to target distance;

4. Quantifying the robustness of the solution, by estimating
the ratio of outliers in the outputs.

Robustness quantification is of importance for the integra-
tion of pose estimation algorithm in closed loop systems.
The objective is to quantify the level of outliers to be fil-
tered out by navigation algorithms.

4.1. Optimal Standard Deviation Law

In the proposed approach, performance metrics are com-
puted in the chaser camera frame, and rotations are repre-
sented by rotation angles and axis vector 3D (dimension 3)
representation. The errors therefore lie in a 6D (dimension
6) domain and are defined as follows for a given data point:

er = r̂cf − rcf (1)

eq = rotvec
(
|⟨q̂cf , qTcf ⟩|

)
(2)

where
• index cf means camera frame,
• ⟨·, ·⟩ is the quaternion inner product notation,
• rotvec is the conversion function from quaternion to an-

gle parametrization,
• rcf and r̂cf represent the true and estimated positions in

camera frame,
• qcf and q̂cf represent the true and estimated unit quater-

nions.
One of the objectives of the metrics model is to better un-

derstand the variation of the pose estimation performances
with respect to distance z from the target. Such errors typ-
ically demonstrate a quadratic variation with respect to the

distance. This law depends on the geometrical definition of
the problem, e.g., dependence on the object shape, on the
angular field of view of the camera and its resolution.

To represent the distance variation, a standard deviation
parametrization depending on z2 is proposed:

σ̃(z) = a+ bz + cz2 (3)

This law is assumed independent for each one of the 6D
components of the error vector. To estimate the parameters
of the law, the likelihood estimator is maximized. Under the
Gaussian assumption, such an estimator can be written for
a given sample population X with errors xi as follows:

P (X) =

N∏
i=1

1

σ̃(zi)
e
− 1

2

(
xi

σ̃(zi)

)2

(4)

One can rewrite the negative likelihood log F to be min-
imized as follows:

F (a, b, c) = − 1

N
log(P )

=
1

N

N∑
i=1

log(σ̃(zi)) +
1

2N

N∑
i=1

x2
i

σ̃(zi)2
(5)

This function is not convex, but depends on the inverse
of a square when close to zero and as a logarithm at longer
range, especially if data are well distributed over z. Find-
ing its minimum can be solved typically via Gauss-Newton
algorithms using efficient computation of gradient and Hes-
sian of the function:

∇(F ) =

∂F
∂a
∂F
∂b
∂F
∂c

 =
1

N

N∑
i=1

 1
zi
z2i

( 1

σ̃(zi)
−

N∑
i=1

x2
i

σ̃(zi)3

)
(6)

H(F ) =
1

N

N∑
i=1

 1 zi z2i
zi z2i z3i
z2i z3i z4i

(− 1

σ̃(zi)2
+ 3

N∑
i=1

x2
i

σ̃(zi)4

)
(7)

4.2. Outliers and Distribution Estimation

Outliers are estimated based on Gaussian assumption. Such
an assumption is motivated by the fact that many naviga-
tion filter architectures rely on the hypothesis of Gaussian
distributions to find the optimal solution.

The outliers are estimated directly in 6D, through the fol-
lowing an algorithm composed of the following steps:
1. Normalization of errors taking into account distance

model presented previously.

6774



Figure 5. Example Z law fitting for translation errors. Blues boxes:
the error distribution (up to 90% quantiles). Red curve: the fitted
90% quantile law.

2. Robust estimation of data covariance (an algorithm de-
scribed in [17] is used).

3. Estimation of outliers based on the Mahalanobis’ dis-
tance computed as:

DM (x) =

√
(x− µ)

T
Σ−1 (x− µ) (8)

where x represent a generic data point, µ is the distribu-
tion mean, and Σ is the covariance matrix.
Assuming Gaussian distributions in 6D, the square of

Mahalanobis’ distribution should follow a law in 6D. Out-
liers are computed as points whose errors are greater than
the Mahalanobis’ theoretical quantile that would gather
99% of the 6D distribution.

4.3. Performance Metrics

Performance metrics are defined as hold over 90% of the
dataset. Since performances differ significantly depending
on the axes, they are computed in 3D both in the translation
and rotation domains. They correspond to the ellipsoid that
would gather 90% of the data. The size of the ellipsoid can
be computed based on the 90% quantile of the Mahalanobis’
distance distribution.

The final performance metrics is then characterized by
the ellipsoid inner volume represented by the equivalent
sphere radius Rs (Eq. (9)).

Rs = QM (0.9)det(Σ)(1/3) (9)

where QM (0.9) corresponds to the 90% quantile over the
Mahalanobis’ distance distribution, and det(Σ) is the deter-
minant of the covariance matrix.

5. Experiments
This section is dedicated to demonstrating the good quality
of the proposed dataset, primarily through the utilization of
the proposed metrics on a reference pose estimation archi-
tecture.

Figure 6. Definition of the CE90 metric related to the equivalent
ellipsoid volume.

5.1. Pose Estimation Architecture

Current pose estimation techniques can be categorized in
two types of approaches: direct approaches (predicting di-
rectly orientation and relative position of the target object)
and indirect approaches (predicting intermediate represen-
tations). In this section, results obtained with a hybrid
multi-task approach called SPNv2 are presented. SPNv2
approach [13] has been developed at the Space Rendezvous
Laboratory (SLAB) from Stanford University. This model
is based on an EfficientNet [19] backbone, a multi-scale
feature fusion step called weighted Bi-directional Feature
Pyramid Network (BiFPN) [20] directly plugged to multi-
ple prediction heads. This model simultaneously performs
the following tasks:
1. Classification: binary classification using α-balanced

variant of Focal Loss [11].
2. Object Detection: prediction of one bounding box

per object (xmin, ymin, xmax, ymax) using Complete
Intersection-over-Union (CIoU) loss [23] .

3. Direct Pose Estimation: rotation regression using a
6D representation [24] and translation regression using
SPEED score [9]. With R̃ and R (i.e., t̃ and t) respec-
tively corresponding to the rotation matrix (i.e., transla-
tion vector) predicted and ground truth, final pose error
Epose is defined as follows:

Epose = ER(R̃, R) + ET (t̃, t)/∥t∥ (10)

with

ER(R̃, R) =
arccos(tr(RT , R̃)− 1

2
(11)

and
ET (t̃, t) = ∥t̃− t∥ (12)

4. Keypoint Detection: keypoint-wise heatmap for key-
point detection using pixel-wise Mean Square Error
(MSE) between the predicted heatmaps h̃ and the ground
truth heatmaps h. Pose is then retrieved using an algo-
rithm such as Perspective-n-Point (PnP) from a 3D ref-
erence model and camera parameters.
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MSE(h̃, h) =

n∑
i=1

(h̃i − hi)
2 (13)

5. Binary Semantic Segmentation: differentiation of the
pixels related to the detected objects from the back-
ground using pixel-wise binary cross entropy on logits.
Originally, all losses are optimized simultaneously with

equal weights. Nonetheless, we choose to not perform bi-
nary semantic segmentation as this head offers no signif-
icant performance gains [13]. Object detection have also
been deactivated when RoI training is applied. For this ex-
periment, we keep original data augmentation (brightness
and contrast, sun flare, blur, noise and random erase) pro-
posed in SPNv2 [13]. In order to improve long-range per-
formance, the impact of an imperfect object detector on sys-
tem performance is studied using RoI training and bounding
box data augmentation.

5.2. Region-of-Interest Training

Crop functions reduce image size at the entrance of the pose
estimator while maintaining content information as much
as possible. When operated in closed loop, the crop is de-
fined based on the current estimate of target position in the
full resolution image. Depending on the cases, the resiz-
ing function performs a down-sampling or an up-sampling
step. Down-sampling is the most demanding operation
while aliasing must be contained to limit noise at the en-
trance of the pose estimation network.

When applying crop, the camera projection function K
from the projective equation is changed through a pixel wise
translation and a zoom factor. The coordinates of a 3D point
Mi in the image plane depend on the rotation matrix R and
translation vector t from object frame to camera frame, the
3D point itself Mi, the camera matrix K:

mi = mi(R, t,Mi,K) (14)

The transformation corresponding to zoom and transla-
tion in the image plane cannot be represented in the pose
domain of full resolution image. This change is straight-
forward for keypoints that at first order can be considered
as being translated by neglecting distortion. However, for
what regards direct pose estimation, the problem is more
complex. The implemented solution consists in computing
the closest pose solution that minimizes the re projection
errors in image coordinates.

5.3. Results

After analysing of the output performances on the D1 and
D2 test datasets, the following main conclusions can be de-
rived.
1. The outputs confirm the quadratic dependence of the per-

formances with respect to distance (see Fig. 8).

2. Performances of the direct head are close to be Gaussian
while PnP has more elongated tail. Direct heads have
therefore less outliers (see Fig. 7 and Tab. 3). This re-
sult is explained by matrix inversions occurring in PnP
approaches. Indeed, even if keypoints errors are close to
be Gaussian, their contribution is part of matrix inversion
in SQPnP algorithm.

3. In-plane performances (rotation abound Z axis and
translation along X and Y axes) are far better than across
plane performances. This behaviour is an inherent lim-
itation of single camera pose estimation. Moreover, the
results show that the errors in the Z direction are corre-
lated with X and Y axes.

4. The implementation of RoI training enables us to
achieve better performances (see Tab. 3).

5. An expected degradation can be observed on D2 with
respect to D1, without drastically changing the amount
of outliers.

6. Systematic convergence of the PnP algorithm over D1
and D2 confirming the good quality of the dataset.

6. Discussion

The proposed dataset offers a key contribution by using a
physical renderer and implementing a fine management of
material properties as well as space environment.

The actual rendering engine still suffers from few limita-
tions. The effect of parasitic light inside the camera optical
system is not yet modeled. While a careful definition of
the approach strategy can avoid disturbing Sun incidences,
minor stray-light and flares would be observed in flight.
In addition, motion blur has been neglected from now on.
This effect might have an effect when relative dynamics are
higher or camera line-of-sight shaken due to client satellite
control. Theses two features will be implemented in future
rendering engine releases.

Real images taken on the ground are always interesting
to assess robustness to domain gap. Even if representative
space is generally limited, testing on a robotic test bench is
clearly a mandatory step to validate a pose estimation solu-
tion. This implies ensuring that the solution is fully func-
tional on this means of testing and therefore robust to the
corresponding change of domain. It is planned to comple-
ment the existing dataset with a subset of real images of
space scenes produced using a robotic testbed.

Data augmentation and domain adaptation techniques
could be improved to limit the performance degradation in
disturbed conditions. Moreover, the addition of numerous
metadata allows to investigate deeper into multi-tasking and
multi-modal architectures.

The performance metrics proposed enable a deeper com-
prehension of error distributions and facilitate the automatic
control the architecture outcomes in relation with opera-
tional needs. Some limitations can still be discussed such
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Figure 7. Illustration of typical translation distribution errors. Left: SQPnP results. Right: direct pose estimation head.

Table 3. Performances over test datasets from SPNv2-B0 keypoint detection and direct pose estimation heads.

Keypoint Detection head (SQPnP) Direct Pose Estimation head
Domain Architecture Outliers q (CE90) [°] r (CE90) [m] Outliers q (CE90) [°] r (CE90) [m]

1 SPNv2-B0 30% 60 6.0 20% 50 4.5
1 SPNv2-B0 (RoI) 30% 7 1.2 15% 14 2.2
2 SPNv2-B0 31% 78 7.6 23% 64 5.6
2 SPNv2-B0 (RoI) 30% 10 2.1 17% 16 3.0

Figure 8. CE90 estimated law over domain D2 with respect to distance to the target (with RoI). Left: translation. Right: rotation. Each
curve gives the ellipsoid radius along a given axis. The point cloud corresponds to the actual performance data zone.

as the hypothesis of Gaussian distributions used to estimate
the distance model. In case of the use of PnP algorithms, we
actually know that the distributions are not Gaussian and a
dedicated model with longer tail laws (such as Student’s law
or sinh laws [1]) could improve the results as well as being
more generic and robust.

7. Conclusions
In this work, a new pose estimation dataset is proposed. The
dataset is associated with a specific methodology of analysis
based on a dedicated metric library. The dataset is built us-
ing a unique camera model conceived to be representative to
satellite flight cameras. Scenes are defined to conform to a
typical GEO orbit rendezvous scenarios, while minimizing

distribution biases. The produced main dataset of 100000
images (including mask, distance maps and scenes defini-
tions) is abounded with another 20000 images test dataset
modelling realistic worst-case situations.

The overall dataset is used to train and test various pose
estimation architectures. An analysis of a typical computer
vision solution with RoI training revealed significant im-
provements for long-range pose estimation.

The proposed metric library allows to define an analy-
sis methodology to accurately quantify the performance and
the robustness of the solution. It also offers useful tools to
facilitate the customer-supplier interface by helping to con-
struct relevant requirements for such a subsystem.
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[14] Tae Ha Park, Marcus Märtens, Gurvan Lecuyer, Dario Izzo,
and Simone D’Amico. Speed+: Next-generation dataset for

spacecraft pose estimation across domain gap. In 2022 IEEE
Aerospace Conference (AERO), pages 1–15. IEEE, 2022. 2
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