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Abstract

Satellite data transmission is a crucial bottleneck for
Earth observation applications. To overcome this problem,
we propose a novel solution that trains a neural network
on board multiple satellites to compress raw data and only
send down heavily compressed previews of the images while
retaining the possibility of sending down selected losslessly
compressed data. The neural network learns to encode
and decode the data in an unsupervised fashion using dis-
tributed machine learning. By simulating and optimizing
the learning process under realistic constraints such as
thermal, power and communication limitations, we demon-
strate the feasibility and effectiveness of our approach. For
this, we model a constellation of three satellites in a Sun-
synchronous orbit. We use real raw, multispectral data
from Sentinel-2 and demonstrate the feasibility on space-
proven hardware for the training. Our compression method
outperforms JPEG compression on different image metrics,
achieving better compression ratios and image quality. We
report key performance indicators of our method, such as
image quality, compression ratio and benchmark training
time on a Unibap iX10-100 processor. Our method has
the potential to significantly increase the amount of satellite
data collected that would typically be discarded (e.g., over
oceans) and can potentially be extended to other applica-
tions even outside Earth observation. All code and data of
the method are available online to enable rapid application
of this approach.

1. Introduction

Earth observation data are becoming increasingly valuable
for a variety of applications such as environmental mon-
itoring, disaster management, urban planning and secu-
rity [24, 28, 33]. These applications are especially rele-
vant for addressing the challenges posed by climate change.
The number of Earth observation satellites is also growing
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rapidly, as is the amount of data produced. For instance,
Copernicus satellites alone produce around 20 TB of data
daily'. However, transmitting large amounts of data from
satellites to ground stations is an increasingly challenging
task due to the limited availability of ground station win-
dows and the limited bandwidth of communication links
[4, 29]. Therefore, there is a need for efficient methods to
compress satellite data and reduce the transmission load.

Numerous approaches have been proposed to tackle this
problem. Some research works leverage Deep Neural Net-
works (DNNGs) to filter data to transmit to the ground by
limiting the transmitted data to actionable information only
[10, 15, 16, 32]. Examples of actionable information in-
clude the coordinates of events of interest or cloud-free im-
ages. This approach is particularly suitable for latency-
constrained applications and early-alert systems [10, 1 1] but
does not translate well to scientific missions aiming to pro-
vide the end users with as much data as possible.

For those missions, alternative approaches relying on
lossless or near-lossless compression schemes are preferred
[22]. In this way, payload data are compressed on board the
satellite before downlink and decompressed at the ground
segment with no or limited data loss. In particular, solutions
leveraging autoencoders have been proposed [2, 18] to learn
to encode the input data into a lower-dimensional represen-
tation and decode them back to the original data. Although
autoencoders have been shown to outperform JPEG and
other onboard payload compression methods in terms of
compression factors/quality trade-offs, previous approaches
assumed training a model on ground, which is often infea-
sible as it assumes the data are already present and is not
targeted at raw data available on a satellite.

This paper proposes an initial investigation for a novel
mission concept “LICOS” (Learning Image Compression

'New interface makes open Earth Observation data truly open.
Available online at: https: //projects . research-and-
innovation . ec . europa . eu/ en / projects / success —
stories / all / new - interface — makes - open — earth -
observation-data-truly-open. Accessed: 2024-04-12
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Figure 1. Schematic overview of the proposed method; Notice that the method enables sending down heavily compressed previews of

images with minimal communication overhead.

On board a Satellite constellation) that capitalises on an Ar-
tificial Intelligence (Al)-based compression scheme to en-
able data selection by the end-user based on compressed
previews. To this aim, we leverage satellites’ increasing on-
board computing capabilities to train an autoencoder that
can compress raw data and only send down heavily com-
pressed previews of the images. The compressed previews
can then be used to select only specific images that are
interesting for further analysis and request the larger, raw
images on demand. This way, the transmission can be
prioritized according to the user’s needs and preferences.
Thus, this method can provide huge data transmission sav-
ings and overcomes the risks of losing relevant data typical
of standard onboard processing techniques [1, 15, 16].
schematic of the approach is given in Fig. 1.

However, training an autoencoder on board a satellite
constellation involves several operational constraints such
as thermal, power, bandwidth and communication limita-
tions that affect the performance and feasibility of the learn-
ing process [17]. Moreover, if multiple satellites are in-
volved in the same mission, they shall coordinate and syn-
chronize their learning activities in a distributed fashion us-
ing federated or decentralized learning techniques [25, 30].
These aspects are often neglected or oversimplified in exist-
ing works on satellite image compression.

To model the impact of thermal, power and commu-
nication constraints and optimize the learning process un-
der realistic conditions, we use PASEOS. This open-source
Python module simulates the environment to operate mul-
tiple spacecraft [17]. We also exploit multiple satellites’

computing and data collection capabilities and train the
autoencoder in a distributed way using federated learning
techniques [17, 25, 30]. These techniques are ideal for our
problem since they do not require labels or centralized coor-
dination for the data. In contrast to existing works on satel-
lite image compression [1, 2, 18], we account for various
operational constraints in our approach and demonstrate its
feasibility and effectiveness directly on raw data available
on board, taking a significant step to close the reality gap
of many machine learning approaches. We demonstrate our
approach on a hypothetical constellation of three 6U Cube-
Sats equipped with Unibap iX-10 100 satellite processors
[6] in Sentinel-2-like orbits, a constellation of two polar-
orbiting satellites that monitor land surface conditions as
part of ESA’s Copernicus program [12]. We use real, mul-
tispectral raw data from Sentinel-2 that would be available
on a satellite (in contrast to commonly used, post-processed
data such as the EuroSAT dataset [20, 21]) and compare our
compression method with JPEG compression on different
metrics such as peak signal-to-noise ratio (PSNR), struc-
tural similarity index measure (SSIM), bits per pixel (BPP).

The main contributions of this paper are:

* We present the first work demonstrating the feasibility of
training an image compression neural network on board
satellites.

* We consider the operational and physical constraints of
the spacecraft using PASEOS and show how they affect
the learning process.

* We use real raw data from Sentinel-2 and a Unibap iX-10
100 satellite processor to demonstrate the feasibility and
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Figure 2. Flowchart describing the logic to select the next spacecraft activity to be performed. Possible activities include training, updating

the model and being on standby.

effectiveness of our approach. On the Unibap iX-10 100
device, training one batch of 16 256px x 256px takes 10
s and 8 s respectively when 13 bands and one band are
used.

* We compare our compression method with JPEG com-
pression on different metrics and show that we achieve
better compression ratios and image quality.

We believe that our method can transform current Earth
observation paradigms by allowing the collection of signif-
icantly more data that would typically be discarded (e.g.,
data collected over oceans) and reducing the required data
transmission and thus freeing up communication windows.
Moreover, our method can conceivably also be applied to
other modalities and domains beyond Earth observation.
All code used here is available open-source online.

2. Materials and Methods

In the remainder of the manuscript, we describe how we
model the satellites and the machine learning approach
to compress the raw imaging data, detail the approach to
distribute training amongst the satellites and give detailed
specifications of the software and hardware setup. An
overview of the training algorithm is given in the flowchart
in Fig. 2.

2.1. Satellite Modeling

For many machine learning applications in the space sec-
tor, practical considerations, such as the physical constraints
of spacecraft in terms of thermal, power and communica-
tions budgets, are often neglected or treated superficially.

’https://github.com/gomezzz/LICOS. Accessed: 2024-04-
12

However, the harsh space environment is often the deci-
sive factor for whether something is viable. Thus, we rely
on a Python module called PASEOS [17], which has been
demonstrated previously to be well-suited to allow consid-
eration of a variety of operational constraints in onboard
machine learning applications [26].

With PASEOS, we model Keplerian orbits of the con-
stellation and compute windows with ground stations based
on the satellites’ angle over the horizon. Communication
with the ground stations is limited by a fixed available band-
width during the window. We address the power budget by
modeling the battery state-of-charge (SoC) based on con-
sumption from training, communication, and standby us-
age and charging outside eclipses through solar panels. A
single-node ordinary differential equation model is used for
the thermal model of the satellites as provided by PASEOS
[17]. Overall, a PASEOS simulation runs in parallel and
asynchronously with the neural network training using the
Message Passing Interface (MPI). To avoid MPI ranks ad-
vancing quicker than others, synchronization of the simu-
lation time of each rank was performed every 10 minutes
of simulation time. A detailed overview of the specific pa-
rameters of the constraints we tested is given in 3. To ob-
tain realistic values for training times, we profiled the per-
formance of the training on a Unibap iX10-100 processor.
Communication modeling assumed a downlink data rate of
10 Mbit/s.

2.2. Neural network architecture and training algo-
rithm

Several recent works have demonstrated great advances in
image compression with neural networks [4, 5, 13, 14, 19],
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outperforming classic compression techniques. These types
of techniques have seen limited application for satellite im-
agery, where only a small number of works have explored
so-called neural compression techniques [1, 3, 8].

In this work, we rely on the model proposed by Ballé
et al. [4], which is implemented in the PyTorch framework
CompressAl [5]. We modified the proposed model to raw,
multispectral Sentinel-2 data by changing the parameters of
the synthesis and analysis transforms g, and g,, as well as
the entropy bottleneck of the model.

Pretrained models and most established compression
methods focus on grayscale or RGB images. This is one of
the challenges as many satellites gather multispectral data
with a larger number of image channels [7, 12, 16]. The
data from Sentinel-2 used in this work are 13-channel im-
ages. Consequently, we study different schemes for the
compression: One called merged, where we compress all
13 channels jointly, and one called split, where the image
channels are compressed individually. Note that even in
split we use the same model for all 13 channels to avoid
additional overhead. Conceivably, training one model for
each channel may provide additional benefits.

2.3. Federated learning protocol and communica-
tion scheme

Even though our method can be applied on individual satel-
lites, constellations provide a crucial benefit to our proposed
method as they allow training in parallel on multiple devices
that also collect data from different places simultaneously

[23].

To facilitate this, we propose using the ground stations of
the constellation as the central server in a federated learn-
ing setup. During communication windows with the ground
stations, the satellites send their model to the ground sta-
tion and receive an updated model from it. Note that this
is quite efficient as the proposed models are smaller (11.8
MB) than even a single image (49.12 MB), introducing
only minimal communications overhead. Alternative satel-
lite network patterns relying satellite communicating with
inter-satellite links are possible, as described in our previ-
ous work [26], which are not investigated in this work.

On the ground, we use a modified version of federated
averaging, in which we weigh the update based on the
model performance on a validation set of images. Thus,
given the validation losses L4 and L epn1r-q; Of the satellite
and central model on the ground, respectively, the updated
model weights w are calculated as in Eq. 1:

‘Csut Ecentrul

w = Weentral 1
»Csat + »Ccentral

wsat (1
»Csat + »Ccentral ! ( )

where Weentrql and wgqs are the current model weights of
the central server and satellite, respectively. In this fash-
ion, we push the central model to converge towards better
solutions.

The updated model is then sent back to the satellite
for further training. The exchange of the models is con-
strained by the satellite modeling performed with PASEOS,
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Figure 4. SSIM versus BPP and PSNR vs SSIM trends for JPEG, merged, split compression algorithms. Results for “Split” and “Merged”
models, which were tested for quality factors of 1,2,4,8, overlap in the image and look like a single point.

i.e. available communication windows and bandwidth. The
time for computing the validation loss on the ground is ne-
glected. Parallel training is made feasible by allocating one
training device per MPI rank.

3. Results

As a demonstration of the feasibility and advantages of
the proposed approach, we showcase results from a com-
prehensive simulation of three satellites in low-Earth orbit
jointly learning to compress raw Sentinel-2 data while bal-
ancing thermal, power and communication constraints us-
ing real satellite processors. We compare results with JPEG,
an established compression standard, and explore a mono-
channel (splif) as well as multi-channel (merged) approach.

3.1. Setup
3.1.1 Dataset

Many works related to onboard machine learning applica-
tions for satellite imagery rely on high-end products, which
underwent dedicated processing including orthorectifica-
tion, geometric and radiometric correction [31]. This is
quite a strong assumption as small satellites may lack the
processing power for this [10]. For this reason, we instead
demonstrate our method on a subset of the THRawS dataset
consisting of raw Sentinel-2 imagery[9]. The dataset con-
tains over 900 Sentinel-2 raw granules depicting volcanic
eruptions, wildfires, and other areas free of thermal anoma-
lies. A raw granule corresponds to a portion of 23 x 25km?
acquired by a single onboard detector. The “raw” format is
not a standard Sentinel-2 product,® but corresponds to de-
compressed Level-0 data with additional metadata [10].
The following results assume a split of the dataset into
train, validation and test sets with a ratio of 0.7, 0.1 and 0.2,
respectively. A total of 860 images with resolutions ranging

3Sentinel-2 Products Specification Document. Available on-
line at: “https : / / sentinel . esa . int / documents /
247904/685211/sentinel-2-products—-specification-
document”. Accessed: 2024-04-12

from 384px x 1296px up to 2304px x 2592px were used.
Specifically, we randomly select one 256px x 256pz patch
from each train image and pick the central 256pz x 256px
crop for each validation image to speed up the training and
limit the model memory footprint. The images in the test
set are from different geographical locations than train and
validation to avoid data leakages and ensure generalizability
to different spatial locations.

Data were prepared using PyRawS. #. The latter is
an open-source Python package designed to open, visu-
alize, and post-process raw Sentinel-2 data, for instance,
by applying lightweight bands coarse registration and geo-
referencing processes. In the frame of this project, PyRawS
was only used to export the various data in a format ready to
use for training, including information on granule locations
needed for the train/test splitting based on geographical lo-
cations. Since the Sentinel-2 satellites have bands of dif-
ferent resolutions, i.e., 10 m, 20 m, 60 m, for the “merged*
models we resampled all the bands to 20 m spatial resolu-
tion to ensure that all the bands have the same number of
pixels, which is necessary as it requires fixed image sizes
per channel. Depending on the specific application a higher
or lower resolution may be used. Note this may slightly im-
pact results when comparing merged to other compression
methods. Except for this step, no further processing steps
were applied to the bands.

3.1.2 Scenario

The scenario we used to demonstrate the feasibility of our
approach is a constellation of three 6U CubeSats in the same
orbit as Sentinel-2. Figure 3 gives a detailed overview of the
parameters of the satellites and the constellation. We as-
sume a Unibap iX10-100 device will be used for the train-
ing. Through profiling, we identified the time required to
train on a batch on this device to be ten seconds. A detailed
overview of the training algorithm is given in Section 2 and

“https://github.com/ESA-PhiLab/PyRawS Accessed
2024-04-12
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Figure 5. Exemplary compression results.

illustrated in Fig. 2. Most notably, the assumed satellites
are smaller than the Sentinel-2 satellites to show that this
approach can work on CubeSats.

3.2. Compression performance

Overall, we present results compared to the established
JPEG standard regarding PSNR, SSIM, and BPP obtainable
with LICOS. We also provide results in terms of compress
ratio (CR), defined as the ratio between the compressed and
the original file sizes.

To calculate JPEG results, we compressed the test set
designed for the “split” model by using JPEG with quality
factors [1,2,3,4,5,6,10]. The “merged” and “split” models
were run on their respective test datasets, respectively with
13 and 1 input bands per image, with quality factors [1, 2, 4,
8]. Such quality factor values are supported by CompressAl
for the autoencoder model used.

Fig. 4 we display a comparison with JPEG in terms of

BPP/SSIM and BPP/PSNR values. Both the “merged” and
“split” models achieve higher SSIM and PSNR values for
lower BPP values than JPEG. Even with quality factor 1,
JPEG cannot reach the same compression level as “merged”
and “split” models, achieving a minimum BPP of 0.0985,
with SSIM and PSNR values ranging from 0.585 to 0.892
and 29.5 to 37.3. Differently from JPEG, “merged” and
“split” models achieve roughly constant SSIM, BPP, PSNR
values for the different quality factors. Specifically, “split”
models achieve average PSNR and SSIM values of 43.4 and
0.955 for an average BPP of 0.0383, while “merged” mod-
els feature average SNR and SSIM values of 37.7 and 0.950
for an average BPP of 0.00788. Notably, “merged” mod-
els achieve higher compression factors than split models at
quality expenses, as demonstrated by the lower PSNR val-
ues.

Fig. 5 compares different Sentinel-2 raw bands after
compression and decompression performed with different
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algorithms: JPEG (g=8), “split” model (q=1) and “split”
model (q=4). Compression artefacts, PSNR, SSIM, and
compression ratio values are shown for the different im-
ages and compression methods. Notably, the abundance
of spatial features limits the compression factor that can be
achieved. Indeed, “split” models offer slightly higher val-
ues of compression while ensuring higher quality as demon-
strated by the higher values of PSNR, SSIM and lower num-
ber of artefacts. For the two images at the bottom, “split”
models offer compression factors up to 5 times higher than
JPEG while keeping higher quality after compression.

3.3. Operational constraints

Aside from the compression and image quality, we also in-
vestigate the operational aspects modeled with PASEOS.
The internal temperature, state of charge (SoC), eclipse sta-
tus and training loss trends are displayed in Fig. 6 for the
different satellites in the constellation. At the beginning of
our simulation, each satellite has a SoC of 50% and a tem-
perature of 283.15 K.

The satellites are constantly exposed to solar radiative
power, as they do not enter eclipse until day 28 of the or-
bit. This condition enhances the battery charging and in-
creases the incoming heat flux, which adds to the heat dis-
sipation from the internal sources during different activi-
ties. The current satellite design cannot dissipate the excess
heat completely, resulting in a rise in the internal tempera-
ture that triggers interruptions in the training. For constant
training and during eclipse, the power demand for the train-

ing activity also exceeds the power supply from the solar
panels, leading to a decrease in the state of charge (SoC) of
the battery.

Because of that, as shown in Fig. 6, at the beginning
of the simulation, the SoC of the different satellites de-
creases from 0.5 to 0.2, forcing the satellite to switch to
the “standby” activity until the battery has sufficient en-
ergy for the satellite to resume training or perform a model
update. Specifically, during the initial five days, the SoC
exhibits periodic fluctuations within the range of 0.2 and
0.29, whereas the satellites’ temperatures rise steadily but
remain below 313.5 K. (40° C). In this situation, the satel-
lites are power-constrained since the low SoC triggers the
“standby” activity and forces the training and model update
to be stopped periodically.

Around Day 5, the satellite’s internal temperature
reaches 313.5 K, the maximum permissible temperature.
Consequently, the “standby” activity is triggered to allow
heat dissipation. Given the reduced power draw due to heat
dissipation “standby”, this results in the SoC increasing and
stabilizing at approximately 0.95, with minor variations be-
tween 0.91 and 0.99. In this phase, satellites are constrained
by their internal temperature.

Finally, between Days 28 and 29 satellites go into
eclipse. This prevents the battery from being recharged
while reducing the incoming heat flux. In this situation,
both the SoC and the temperature decreases. A prolonged
eclipse would make the satellite’s batteries reach the limit
of 0.2 SoC, making the satellite enter a power-constrained
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state as at the beginning of the simulation.

Notably, since all the satellites exhibit similar SoC and
temperature trends, all the training losses show a similar
smooth decreasing trend. Therefore, differently from the
behaviour showcased by Gome’z et al. [17], all the satel-
lites provide a similar contribution to the model training in
our scenario. Moreover, Figure 6 shows that the training
loss for all the satellites dropped by more than 99% of the
total delta already after Day 5. Therefore, we can reason-
ably infer that the training time can be substantially reduced
with minimal performance loss, resulting in significant op-
erational benefits. This possibility will be further explored
in future works through a dedicated ablation study.

4. Discussion
4.1. Hardware limitations and satellite design

One limitation inherent to this approach is the need for suit-
able computing hardware. Especially the memory footprint
of 5.472 GB (5218 MiB) is restrictive. Note that we only
used the CPU of the Unibap iX10-100 device; on a GPU
the training would be significantly faster. Thus, at this time,
a state-of-the-art modern satellite processor is necessary. In
the future, smaller, more efficient devices may also support
this scenario. Running the training on a GPU would be most
preferable and likely speed up training.

With the need for such a processor comes some design
considerations that have to be made. The allocated power
budget of 30W for the training is fairly high for a 6U Cube-
Sat, but not unimaginable as there are ongoing studies,
e.g., for a 100W 1U CubeSat deployable solar panel [27].
On the thermal management, one can already see from the
PASEOS specifications in Fig. 3 that a fairly large emissive
area to dissipate heat is assumed. This is likely necessary
but not an insurmountable problem.

Similarly, the need for a large onboard mass memory is
another possible limitation, especially if the selection of the
previews of interest and the download of the corresponding
useful data cannot be performed in a single pass with the
ground station. This aspect is not investigated in this study.
Indeed, during the training, only the model parameters are
exchanged between the ground station and a satellite, and
the operational life is not investigated after training.

4.2. Application to other mission scenarios

Although we explored a specific scenario in terms of con-
stellation and data in this work, the presented approach
should translate well to different types of data and appli-
cations. It can be employed for any imaging data, possibly
also synthetic aperture radar, as it works on raw data. Fur-
ther, it may be particularly beneficial in scenarios where it
is not beforehand clear which images are of interest. This
may, e.g., be the case in natural disaster detection. In

these cases, one can send down the heavily compressed ver-
sions and even run potential detection algorithms to identify
which images will be sent down with lossless compression
[32].

4.3. Future work

This work presents the first results of the LICOS concept in-
vestigation. Results showcase that the proposed neural net-
work model is a promising solution for transmitting heavily
compressed previews, especially when the “split” is used.
However, a proper thorough statistical evaluation including
additional random seeds may help ensure the robustness of
the approach. However, further investigations are needed to
compare more thoroughly to other state-of-the-art compres-
sion methods for multispectral imagery, such as CCSDS
123-0-B-2 [22]. In that respect, we plan to consider ad-
ditional metrics such as the mean absolute error and mean
relative error that are relevant for remote sensing applica-
tions.

However, it is worth mentioning that we do not aim
to replace existing standards or mission-specific solutions.
Instead, we suggest complementing them with a low-
overhead, lossy compression scheme that can allow trans-
mission of heavily compressed versions of imagery that
may otherwise be discarded or is not the primary objective.
That way, data from areas underrepresented in datasets,
such as oceans or other less often sampled areas, may also
be analysed.

Furthermore, future investigations will focus on
analysing the concept during the operational scenario af-
ter the initial model training. Indeed, as previously men-
tioned, current simulations focused only on the initial train-
ing phase, where the autoencoder model does not offer
enough accuracy to be deployed. Because of that, aspects
related to the satellite link budget, trade-offs in terms of
onboard memory and number of ground stations available
were not explored in the scope of this study.

5. Conclusion

This work presents the first results of the LICOS con-
cept, which proposes the use of onboard-trained autoen-
coder models to deliver highly compressed previews to the
ground mitigating the downlink bandwidth bottleneck. Two
different configurations, “split” and “merged” models, were
compared to JPEG standard on Sentinel-2 data demonstrat-
ing superior quality/compression trade-offs. Finally, an
investigation of the main parameters affecting the train-
ing was investigated demonstrating the viability of training
such models on properly designed 6U CubeSats. Results
suggest the presented approach has the potential to miti-
gate the downlink bottleneck while providing the end users
with the possibility to download original uncompressed im-
ages.
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