
Revisiting the Domain Gap Issue in Non-cooperative Spacecraft Pose Tracking

Kun Liu, Yongjun Yu
Nanjing University of Science and Technology

Nanjing, China
njust lk@njust.edu.cn, yyj njust@163.com

Abstract

The deep learning (DL) algorithms have emerged as
the foremost approach for close-range navigation of non-
cooperative spacecraft. Given the unavailability of in-orbit
images, DL models are typically trained on synthetic data.
However, when deployed in real-world scenarios, they often
encounter a domain gap that leads to performance degra-
dation. To address this, we propose a self-supervised frame-
work based on RANSAC EPnP. Specifically, we first trained
a landmark regression network and an object detection net-
work on synthetic data. Utilizing the trained landmark re-
gression network, we then infer keypoints on real-world im-
ages. Through RANSAC EPnP, we filter outliers and cal-
culate poses as pseudo-labels. Building on this, the pose
estimation network is further trained, optimizing outliers
to bridge the domain gap. The proposed method brings
a significantly lower training cost compared to adversar-
ial training, the prevailing method for bridging the domain
gap, making it suitable for in-orbit training. Moreover, we
utilize a Kalman filter to predict the bounding boxes, which
circumvents the domain gap’s impact on the performance
of the object detection network, resulting in more precise
bounding boxes. Lastly, we validated the performance of
the proposed algorithm on the SPEED+ and SPARK 2024
datasets, achieving the 2nd place in the SPARK 2024 com-
petition.

1. Introduction
Close-range autonomous navigation of non-cooperative ob-
jects is one of crucial capabilities for future spacecraft, re-
quiring precise estimation of the target’s position and at-
titude. In this field, non-cooperative objects typically re-
fer to spacecraft or space debris that cannot establish stable
communication links and lack known reflectors [1]. Such
objects are commonly encountered in missions such as de-
bris removal and in-orbit servicing. Over the past years,
image-based sensors have been considered a great source
of information for non-cooperative spacecraft pose esti-

mation. Currently, methods of spacecraft pose estimation
utilizing deep learning have attracted considerable atten-
tion, enabling monocular cameras to perform close-range
navigation. Their potential is demonstrated in numerous
studies[2–4].

The outstanding performance of DL-based methods in
spacecraft pose estimation is closely tied to supervised
training on large-scale datasets. Such supervised training
assumes that training and testing data are drawn from the
same distribution [5]. Yet, unlike terrestrial applications,
obtaining large-scale in-orbit data for space missions is al-
most impossible. As a result, training on synthetic datasets
has become the prevalent strategy, unavoidably facing the
issue of data distribution discrepancies, known as the Do-
main Gap. Moreover, DL-based methods face unique chal-
lenges in the space environment. Primarily, data acquisi-
tion is extremely difficult; images of spacecraft during the
close-range rendezvous phase are obtainable solely during
the execution of missions. This leads to a scarcity of real
in-orbit images for training and validation on the ground.
Additionally, the onboard computational resources are lim-
ited, making it challenging to support large-scale training
tasks. Therefore, it is crucial to fine-tuning using in-orbit
training to overcome the domain gap, ensuring such train-
ing is computationally efficient to remain feasible.

As in-orbit images do not become available until close-
range rendezvous in space, one key strategy is to instead
create high-fidelity surrogate images on-ground that can be
used to evaluate the robustness of Neural Network models
trained on synthetic images across domain gap on in-orbit
images [6].This evaluation strategy was first introduced by
Tae Ha Park et al. [7], who organized the second interna-
tional Satellite Pose Estimation Competition (SPEC2021)
and released the SPEED+ dataset. SPEED+ is the next-
generation dataset for spacecraft pose estimation, with a
specific emphasis on model robustness across the domain
gap. In the results and analyses following the competition,
the winning teams explicitly stated that adversarial training
with unlabeled test images plays a crucial role in address-
ing the domain gap [3]. However, Tae Ha Park et al. [3] ar-
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gue that the approach of simultaneously utilizing synthetic
training and unlabeled laboratory images is impractical in
real mission scenarios because the target spaceborne im-
ages are not available until rendezvous. Training on large-
scale synthetic datasets is not practicable during this phase.
The test set of the SPEED+ dataset contains a diverse dis-
tribution of spacecraft images across multiple angles and
distances ranging from 3 to 10 meters. It is difficult to ac-
quire such a rich array of spacecraft images in actual ren-
dezvous scenarios. Moreover, the test images of SPEED+
are discretely distributed, lacking temporal information for
optimization. Building on this, Djamila Aouada et al. [8]
from the Interdisciplinary Centre for Security, Reliability,
and Trust (SnT) at the University of Luxembourg organized
SPARK 2024. Images of the training and validation sets
have been synthetically generated, while images of the test
set have been acquired in the SnT’s ZeroG Laboratory[9].
The released test sets contain time-sequential continuous
images, better reflecting the conditions of space rendezvous
scenarios where spacecraft attitudes cannot be uniformly
acquired.

We hold the view that adversarial training might not
be the most suitable solution in the aerospace sector. It
demands access to both simulated and real-world images
to bridge the domain gap, requiring substantial data stor-
age for simulated images on servicing satellites. Addition-
ally, the introduction of new targets entails the new simu-
lated images, potentially imposing a significant load on data
transmission. Therefore, the solution proposed in this arti-
cle, aiming to meet the demands of actual space scenarios.
The proposed method is divided into three parts: Offline
Training, Online Training, and Flight. These correspond
to ground training, in-orbit training, and flight missions
in practical applications, respectively. During the Offline
training phase, a style augmentation strategy is employed to
address the overfitting caused by insufficient simulation im-
age textures. In the Online Training phase, RANSAC EPnP
is utilized to calculate pseudo-labels for self-supervised
training. In the flight phase, UKF (Unscented Kalman Fil-
ter) is applied for navigation filtering. The target box is
calculated from the prediction value of the filter instead of
the target detection network. This method improves target
box accuracy and reduces the computational demand of the
target detection network. Furthermore, during the Online
Training phase, the proposed method may lead to a new
catastrophic forgetting issue due to the image distortion,
which will be discussed in the article.

2. Related work

In this section, we review advanced methods for monocular
pose estimation of spacecraft and discuss the key issues and
solutions.

2.1. Monocular spacecraft pose estimation

A critical aspect of spacecraft pose estimation is attitude
estimation. Advanced approaches to attitude estimation
includes a variety of strategies: classfication for view-
point [10], soft classification for probabilistic direction esti-
mation [11], landmark vector regression [12, 13] and land-
mark heatmap regression [14]. Currently, the combination
of landmark heatmap regression and EPnP [15] is consid-
ered the state-of-the-art.

Furthermore, some studies focuses on the network archi-
tectures and training strategies for feature extraction from
images. Chen et al. [14] argue that maintaining high res-
olution during the feature extraction process is crucial in
landmark regression methods. They recommend using HR-
Net to preserve high resolution during feature extraction,
thereby generating heatmaps with superior spatial preci-
sion. Yinlin Hu et al. [13, 14] believe that Wide-Depth-
Range variations pose drastic difficulties for the network
and have proposed a multi-scale training and inference fu-
sion method based on FPN.

2.2. Domain adaptation in space

The algorithms for bridging the domain gap is broadly de-
fined as domain adaptation, essentially training models on
unlabeled data. Adversarial training is the most crucial
method of domain adaptation. In the SPEC2021 compe-
tition, the two winning teams utilized adversarial training to
bridge domain gap. They highlighted the critical role that
adversarial training played in their success. [3]. Further-
more, Mohsi Jawaid [3] optimized landmark regression by
refining the preliminary object bounding box. This tech-
nique proves especially beneficial in processing images un-
der extremely dim lighting conditions, aiding in the reten-
tion of crucial visual features that might be compromised
by image downsizing or poor visibility. Wang et al. [16]
implemented a multi-task learning strategy, including land-
mark regression and semantic segmentation tasks, further
augmented by a self-training mechanism. Their work high-
lights the advantages of integrating multiple learning tasks,
enhancing pose estimation accuracy by leveraging the syn-
ergistic strengths of landmark detection and semantic seg-
mentation.

However, adversarial training requires access to both
simulated and real-world images, necessitating significant
data storage for simulated images on service satellites. If
there are multiple targets—a likely scenario—switching
service targets would necessitate updating a large volume
of new target simulation data, imposing substantial data
transmission burdens. Therefore, some research directions
may hold more practical value. Park et al. [17] introduced
a multi-task framework named SPNv2 and the Online Do-
main Refinement (ODR) strategy for in-orbit training. ODR
enhances SPNv2 by fine-tuning its normalization layer pa-
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rameters, guided by the goal of minimizing the Shannon
entropy of the segmentation head. Their work does not re-
quire simulated data. Though slightly less precise, it offers
greater practical application potential. Their subsequent
work [18] demonstrates that with the aid of Kalman filters,
final accuracy could be elevated to higher levels, proving
the efficacy of this approach in practical scenarios.

3. Approach
To achieve spacecraft pose estimation, the first step in-
volves acquiring reliable spacecraft bounding boxes. Then,
2D landmarks are inferred using the proposed landmark
heatmap regression network, and finally, position and at-
titude are calculated through RANSAC EPnP.

This section introduces the key components and essen-
tial details of the proposed method. The entire framework
is illustrated in Figure 1, primarily divided into three stages:
Offline Training (in Section 3.1), Online Training(in Sec-
tion 3.2), and Flight(in Section 3.3). During the Offline
training phase, we trained a Faster R-CNN[19] network for
object detection and a landmark heatpmap regression net-
work. The trained Faster R-CNN is then utilized to re-
fer the initial target bounding box in the online training
phase. The bounding boxes in online training need further
optimization to enhance the Online Training performance
(see Section 3.2.3). Subsequently, spacecraft images are
cropped according to the bounding boxes for Online Train-
ing or inference of landmark regression network. To address
the domain gap in landmark regression network, we intro-
duce a self-supervised training method based on RANSAC
EPnP and reveal how the method works. Finally, in the
flight phase, we suggest using Kalman filters for bound-
ing boxes prediction to replace the target detection network.
This method not only reduces computational costs but also
predicts more accurate bounding boxes (the target detection
network is also affected by domain gap).

3.1. Offline training

3.1.1 Architecture

The proposed landmark heatmap regression architecture in-
cludes encoder and decoder as shown in Figure 1. The
encoder references the Swin-Transformer’s [20], utilizing
Swin Transformer Blocks for feature extraction, and Patch
Merging for downsampling. The decoder references the
swin-Unet [21], utilizing Swin Transformer Blocks for fea-
ture extraction, and Patch Expanding to accomplish upsam-
pling.

Moreover, we implemented an improvement in the de-
coder part. Drawing inspiration from studies [22] and
[23], we developed a coarse-to-fine supervision strategy, as
shown in Figure 2. Gaussian kernels of different sizes are
employed to enhance and optimize the outputs at stages 2

Table 1. List of Data augmentation used in offline training phase.
p represents the activation probability

Augmentation Effect p
Style Aug.[25] Texture enchancement 0.5
Sunflare Exposure enhancement 0.5
Blur Noise enhancement 0.5
Contrast Contrast enhancement 0.5

and 3.

3.1.2 Loss function

To attain coarse-to-fine supervision, the loss function is de-
termined as follows,

Lh =
∑
i

(
JS

(
Ĥ

(s=3)
i

∣∣∣H̄(i,σ=1.5)

)
+ JS

(
Ĥ

(s=2)
i

∣∣∣H̄(i,σ=3)

))
.

(1)
Where Ĥ

(s=3)
i represents the i-th landmark heatmap out-

put from stage 3. The heatmap is normalized by softmax.
JS(·) represents the Jensen-Shannon divergence [24], which
is used to calculate the distance between the estimated value
Ĥ and the true value H̄ . Gaussian kernels σ of size 3 and
1.5 are employed for stage 2 and stage 3 respectively.

3.1.3 Data augmentation

In scenarios involving an unknown target domain, data
augmentation is often the sole strategy for domain gen-
eralization. Kisantal et al. [2] mentions that there are
some discrepancies between synthetic and real-world im-
age properties, such as the spacecraft’s texture and illu-
mination. Therefore, the specific data augmentation tech-
niques utilized in this study are detailed in Table 1, no-
tably Style Augmentation [25] and Sunflare, which sig-
nificantly contribute to domain generalization. Data aug-
mentation excluding Style Augmentation is implemented
by Albumentations[26].

3.2. Online training

As shown in Figure 1, Online Training generates pseudo
labels according to the prediction from stage3, and the trains
the network by calculating the loss of stage2.

3.2.1 Pseudo labels generation

The first step in generating pseudo-labels is to regress to 2D
landmarks from the output of stage 3. The output that nor-
malized by softmax is present as a probability distribution
heatmap. Following the differentiable spatial to numerical
transform(DSNT) [27], the probability distribution will be
multiplied with the preset Xi,j = (2j − (n + 1))/n and
Y(i,j) = (2i− (m+ 1)/m.
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Figure 1. The whole framework of the proposed method.

Figure 2. The proposed decoder architecture.

µi = DSNT(Ĥ) =
[〈

Ĥ
(s=3)
i , X

〉
F

〈
Ĥ

(s=3)
i , Y

〉
F

]
(2)

where Ĥ
(s=3)
i is the normalized output from stage 3, and

⟨·, ·⟩F denotes the Frobenius inner product, which is equiv-
alent to taking the scalar dot product of vectorized matrices.
µi is the estimated coordinates of the i-th landmark.

After determining the estimated value of the 2D projec-
tion, utilize PnP algorithm to resolve the nonlinear equation.

µi = K
[
R t

]
Xi (3)

where the camera internal parameter K and the 3D coor-
dinates Xi of the landmarks in the body coordinate system

are known quantities. RANSAC EPnP is used to solve the
equation to obtain the rotation matrix R and the translation
matrix t which is treated as pseudo labels. Subsequently,
these 3D coordinates are reprojected onto the image plane,
leading to the generation of pseudo-Gaussian heatmaps.

H̄(i,σ) = P (µ̄i, σ) (4)

where, P (·) represents the mass function, which generates
a heatmap at the 2D coordinate µ̄i with a Gaussian kernel
of size σ.

3.2.2 Outlier filter

RANSAC EPnP is used for outlier landmarks elimination,
with reprojection error serving as the criterion to classify
landmarks as inliers or outliers. A landmark is considered
an inlier if its reprojection error falls below the threshold;
otherwise, it is classified as an outlier.

Ei(R, t) =
∥∥µi −K

[
R t

]
Xi

∥∥ (5)

where, µi denotes the estimated coordinates and Ei(R, t)
represents the reprojection error of the i-th landmark.
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3.2.3 Loss function

Online training encourages outliers to learn the correct 2D
coordinates and align across domains by minimizing the JS
distance of the heatmaps. Mathematically, let θG denote
learning parameters in the selected part of the network G.
Let θnorm

G ⊂ θG denote the normalization layers of θG . On-
line training amounts to solving,

min
θnorm
G

1

n

n∑
i=1

ℓ (xi; θG) (6)

where, xi represents the unlabeled target domain image.
The loss function determines as follow.

l(xi; θG) =


loss1 =

∑
i JS(Ĥ(s=2)

i ∥H̄(i,σ=3))

loss2 =
∑

i(JS(Ĥ(s=2)
i ∥H̄(i,σ=3))

+JS(Ĥ(s=3)
i ∥H̄(i,σ=1.5)))

(7)

Pseudo labels are generated from high-precision
heatmaps, and the inliers landmarks is likely to be overfit-
ted if trained the high-precision heatmaps directly. With
this consideration, it is proposed to minimize the loss of the
middle layer. The comparison between loss1 and loss2 will
be examined in the subsequent section.

3.2.4 LayerNorm layer parameter updates

The feature extraction layers have been trained to extract
correct features from synthetic images with various styles
and textures during the offline training phase. Updating all
the parameters may destroy the trained feature extractor due
to unreliable pseudo-labels. Therefore, only the parameters
of LayerNorm(LN) layers are updated.

LN normalizes the input features along channel direc-
tion. xi is input features, x̂i represents normalized output
features.

µ =
1

d

d∑
i=1

xi σ2 =
1

d

d∑
i=1

(xi − µ)
2

x̂i =
xi − µ√
σ2 + ϵ

(8)
LN scales and aligns features through two learnable pa-

rameters γ and β.

3.2.5 Bounding boxes adjustment

Since domain adaptation is not applied to the target detec-
tion network, the predicted bounding boxes tend to be ei-
ther too large or too small. As depicted in Figure 3, larger
bounding boxes increase the susceptibility of landmark pre-
dictions to background interference, whereas smaller boxes
may result in missing crucial landmarks. To mitigate this
issue, we propose recalculating and updating the bounding

(a) An example of a too-small
bounding box.

(b) An example of a too-large
bounding box.

Figure 3. The visualization of the bounding box’s impact. (a) The
predictions for points 13 and 14 are constrained by the boundaries
of the bounding box. (b) The prediction of point 12 is disrupted
by light spots in the background.

Figure 4. The forgetting issue in Online Training. The predicted
values of landmarks have deviated from the set values, possibly
due to image distortion.

box based on pose prediction results. Additionally, we im-
plemented data augmentation on the bounding box for on-
line training. We adjusted the four parameters of the bound-
ing box by adding a mean error, calculated as ten percent
of the box’s length or width. This adjustment was made
because networks trained with a static bounding box per-
form excessive sensitivity to the target box’s position during
self-supervised training. It’s important to note that, for the
same image, even minor bounding box modifications result
in substantial pose estimation inaccuracies, which is unde-
sirable.

Additionally, when training on SPARK2024, we encoun-
tered a distinct type of catastrophic forgetting, leading to
significant deviations in the predicted landmarks from their
initial setups, as shown in Figure 4. This deviation, not
present in the SPEED+ test set, is suspected to be caused
by camera distortion. The actual distortion parameters of
the camera, not revealed by SPARK2024, likely intensi-
fied this issue. Accurate distortion parameters are crucial
for effective Online Training. Unfortunately, we currently
lack a robust method to model errors in landmarks post On-
line Training. To mitigate distortion-related issues, we used
target boxes that precisely fit the spacecraft, excluding any
landmarks that extended beyond these boxes from training.
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3.3. Flight

During the flight phase, we use an Unscented Kalman
Filter(UKF) for close-range navigation around a non-
cooperative target. The absence of precise information
about orbit, rotational inertia, and other relevant factors
makes establishing an accurate dynamical model unfeasi-
ble. Therefore, it is not meaningful to discuss our Kalman
filter design in depth here. However, as shown in Figure 1,
we use the Kalman filter to predict the spacecraft’s pose for
the next moment. This prediction is used to calculate the
bounding box, resulting in more precise target boxes than
those predicted by the object detection network. The sig-
nificance of this work lies in the following: In methods
where target detection and pose estimation operate inde-
pendently, the precision of target boxes is crucial for en-
suring accurate pose estimation; For integrated approaches
that combine target detection and pose estimation within
the same feature extraction framework, challenges such as
Wide-Deep-Range necessitate larger inputs to maintain res-
olution. Adopting this method allows for the selection of
smaller networks, thereby achieving computationally effi-
cient pose estimation.

4. Experiments
4.1. Metric

The performance of the proposed algorithm is evaluated by
translation and attitude errors. The translation error is de-
fined as follows, where tgt represents the true relative dis-
tance, and test is the estimated value.

Et =

{
0 if Et/ |tgt|2 < 2.173mm/m

|tgt − test|2 otherwise
(9)

The attitude error is defined as follows, where qgt represents
the true relative attitude and qest represents the estimated
value.

ER = 2 ∗ arccos (|zs|) ,where

z = [ zs zv ] = qgt ∗ conj (qest)
(10)

The final pose score is defined as follows.

Epose = Et/ |tgt|2 + ER (11)

4.2. Implementation details

During offline training phase, the proposed network is
trained on GPU NVIDIA GTX3090 with AdamW[28] op-
timizer. Batchsize is set to 32. The training lasts 25 epochs
with a learning rate warmup at first epoch from 0 to 0.0005.
The learning rate is reduced to 0 according to cosine anneal-
ing during the rest epochs.

During Online Training phase, the proposed network
is trained with the same optimizer with a learning rate of
0.0002. The batchsize is set to 1.

Table 2. The operational speed of Online Training on different
devices.

Hardware Operating time

i9-12900K@3.2/5.0(GHz) 0.25s
GTX3090@35.6(TFLOPS) 0.05s

In addition, Table 2 shows the online operating efficiency
on different device. Online Training runs at about 4 it/s on
the CPU, including inference, pseudo-label generation and
gradient backpropagation. The running speed on GTX3090
at 35.6(TFLOPS) is about 20 it/s.

4.3. Evaluation on the SPEED+ dataset

SPEED+ is a pioneering dataset designed for vision-only
spacecraft pose estimation and relative navigation, focusing
on the domain gap. It consists of three different domains,
synthetic, lightbox and sunlamp. The synthetic domain
comprises 59,960 images of the Tango spacecraft rendered
with OpenGL. The lightbox and sunlamp domains contain
6,740 and 2,791 images of a model of the same spacecraft
captured in a robotic simulation environment. The satellite
in the lightbox domain is illuminated by several lightboxes
to approximate the diffuse light of Earth, while the same
object in the sunlamp domain is exposed to an arc lamp to
simulate the direct sunlight.

Table 3 shows the performance of the Online Training
and Offline Training parts in sunlamp and lightbox domains,
incrementally revealing the test results following the appli-
cation of style transfer, sunflare, and Online Training, based
on a baseline model. The result without any augmentation
constitutes the baseline. The results indicates that offline
training conduct certain improvements, yet the outcomes
are not entirely satisfactory.

4.3.1 Loss function

Figure 5 illustrates the performance of the loss function of
Online Training mentioned in Section 3.2.3. Loss1 that
minimizes the loss of the middle layer achieves better re-
sults. Obviously, the results are consistent with the previous
inferences.

4.3.2 Learnable parameter

Each set of parameters is trained 10 times with a 13,000
training iteration, and the mean and variance are counted
to verify the performance of the algorithm. GE and GD are
defined to represent the Encoder and Decoder parts of the
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Table 3. The performance of the Online Training and Offline Training parts on SPEED+.

Config. sunlamp lightbox

ER[◦] Et[m] Epose[-] ER[◦] Et[m] Epose[-]

Our Baseline 65.72 0.74 1.27 57.71 1.07 1.17
+Style Aug. 33.36 0.35 0.64 24.17 0.31 0.48
+Sunflare 19.71 0.24 0.39 21.27 0.30 0.42
+Online Training 5.51 0.22 0.13 6.68 0.17 0.15

(a) Attitude Error (b) Position Error

Figure 5. Comparisons of the proposed loss functions.

network, θnorm
GE

denotes that only LN parameters of the En-
coder part are learnable. As shown in Table 4, Online Train-
ing works when only the normalization layers are learnable.
Comparing θnorm

GE
and θnorm

GD
, the encoder part plays a key

role in domain adaptation. Furthermore, only training the
normalization layers of the encoder part make Online Train-
ing more stable.

Table 4. Ablation study for learnable parameters on SPEED+

Params. ER[◦] δR[◦] Et[m] δt[m]

θall
Gall

@epoch1 127.1 N/A 6e4 N/A
θnorm
GE

6.36 0.153 0.180 9.28e-3
θnorm
GD

17.86 0.268 0.240 7.02e-3
θnorm
Gall

6.54 0.431 0.198 13.4e-3

4.4. Evaluation on the SPARK2024 dataset

The test images of SPARK2024[8, 9] originate from the
’SnT Zero-G Lab’ of the Interdisciplinary Center of Secu-
rity, Reliability, and Trust (SnT) at the University of Luxem-
bourg. SPARK2024 comprises two streams: Spacecraft Se-
mantic Segmentation and Spacecraft Trajectory Estimation.
The performance of our proposed algorithm was validated
within the dataset of the SPARK 2024 Spacecraft Trajectory
Estimation. The training set includes 100 groups of various
trajectories, each with 300 labeled synthetic images. The
test set consists of four groups of trajectory obtained from
the SnT Zero-G Lab, named RT001, RT002, RT003, and
RT004, containing 681, 424, 678, and 340 time-sequential

images, respectively. These images cover relative distances
ranging from 2m to 6m.

Table 5. The performance of the three phases on SPARK2024.

Phase SPARK2024

Et[m] ER[rad] Epose[-]

Offline Training 0.0492 0.1843 0.1971
Online Training 0.0275 0.0509 0.0574
Flight 0.0243 0.0448 0.0508

Table 5 summarizes our testing results at each phase.
It is obvious that Online Training is crucial, especially for
pose estimation. The improvements during Flight phase are
primarily attributed to the increased accuracy of bounding
boxes. Furthermore, data augmentation for bounding boxes
is equally important, mentioned in Section 3.2.5. Without
this augmentation, applying precise bounding boxes from
UKF in Flight phase would have led to inferior pose predic-
tion accuracy. The final leaderboard scores for SPARK2024
are presented in Table 6.

Table 6. Comparison of the results from different phases.

Config. SPARK2024

Et[m] ER[rad] Epose[-]

csu nuaa pang 0.0252 0.0187 0.0252
lucca(ours) 0.0243 0.0448 0.0508
juanqilai 0.0335 0.0843 0.0934
yyyyy 0.0335 0.0918 0.1009
shashasha 0.0335 0.0939 0.1030

Figure 6 shows our position prediction curve. Through-
out the entire trajectory prediction process, there were no
instances of sudden failure. However, we observed signif-
icant periodic jitters, which seem to be related to the satel-
lite’s attitude. Additionally, we present samples of our at-
titude prediction in Figure 7. We select steps 50, 100, 150,
and 200 from each of the four trajectory groups for demon-
stration. It’s also worth noting that target box prediction
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(a) RT001. (b) RT002. (c) RT003. (d) RT004.

Figure 6. Position prediction results with time step. Periodic jitters can be found in each curve.

Figure 7. Visualization of pose prediction results on the SPARK2024 dataset. Each row represents a different trajectory. They are RT001,
RT002, RT003 and RT004 from top to bottom.

using the Unscented Kalman Filter proves to be remarkably
stable and accurate.

5. Conclusion

This paper divides the spacecraft pose estimation strategy
into three phases: Offline Training, Online Training, and
Flight. Offline Training employs style augmentation to im-
prove the network’s generalizability. Online Training intro-
duces a self-supervised learning method for domain adap-
tation. Flight uses UKF for more accurate bounding boxes
to enhance pose estimation accuracy. The algorithm’s ef-

fectiveness was validated on the SPEED+ and SPARK2024
datasets. However, given that Online Training is an inde-
pendent process within mission execution, it is crucial to
consider fewer training iterations to shorten the time spent
on this stage and achieve rapid domain adaptation.

Furthermore, each spacecraft currently requires its own
dataset for pose estimation, in both offline and online sce-
narios. Developing more generalized algorithms for pose
estimation, particularly for unseen objects, could be the
most promising area of future research in this field.
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