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Abstract

The ChemCam instrument on the Curiosity rover per-
forms geochemical analyses of rocks on Mars using Laser-
Induced Breakdown Spectroscopy (LIBS). The shockwaves
generated during the LIBS measurements sometimes shift
dust from the surface of the target. The study of the Mar-
tian dust phenomena in the scope of the ChemCam instru-
ment has the potential to provide insight into the planet’s
geology and aid calibration methods for data processing.
In this study, we develop a pipeline, named Dust Displace-
ment Detection (DDD), for automatic detection of dust dis-
placement on LIBS targets based on the image dataset ac-
quired by ChemCam. To this end, we introduce a data pre-
processing methodology and test two-stage models with a
pretrained model in the first stage for feature extraction and
a Random Forest classifier or a Support Vector Machine as
a binary classifier in the second stage. The best performing
model was found to consist of the first 10 layers of VGG16
and a Random Forest classifier, achieving 92% accuracy.
Additionally, we use Explainable AI (XAI) methods such as
Shapley values and guided backpropagation for model op-
timization. The experiments show potential for model op-
timization, and the application examples presented encour-
age discussion of machine learning in the field of Martian
dust research.

1. Introduction
In 2012, NASA’s Curiosity rover landed on Mars to investi-
gate the Martian surface, geology, and climate, with a par-
ticular focus on assessing the planet’s past habitability. The
rover has successfully completed its primary mission, find-
ing signs of past habitability. After many years of service,
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Curiosity is still at work and is now on its fourth extended
mission [16, 34, 37]. The rover is equipped with various sci-
entific instruments including the mast-mounted ChemCam
(Chemistry and Camera) instrument. ChemCam consists of
the first Laser-induced Breakdown Spectrometer (LIBS) in
planetary science and a Remote Micro Imager (RMI) [12–
14]. LIBS involves focusing a laser on the surface of the
target up to several meters from the rover, creating a lumi-
nous micro-plasma that emits characteristic photons from
excited atoms, ions, and molecules. Spectral analysis of
this light provides spectra with emission lines from species
present in the sample, from which elemental composition
can be derived [6]. The RMI instrument images through the
same telescope as the LIBS providing context to the sam-
ples. RMI images are usually taken before and after the
LIBS measurements [14]. Until now, the instrument has
acquired data from more than 4000 individual targets and
collected LIBS spectra from multiple points of each target
(5-25 points per target) typically arranged in rasters. The
LIBS plasma is accompanied by a shock wave that expands
into the thin Martian atmosphere which sometimes leads to
dust displacement on the target [22]. The occurrence of dust
displacement is often observed in the images taken after the
LIBS measurements, as shown in Fig. 1. The left and right
images correspond to the RMIs acquired before and after
LIBS measurements, respectively; in the ”after” image, dust
displacement is marked by an ellipse and the LIBS pits are
circled. Investigating whether dust displacement has oc-
curred and whether it is related to specific rock types or
local or seasonal conditions on Mars, can support the in-
vestigation of the Martian surface and its atmosphere. The
Martian dust itself is also of interest to scientists, as it pro-
vides insights into the planet’s atmospheric processes and
rock cycles [11, 35]. Dust displacement properties can be
used to characterize dust in terms of thickness and, together
with LIBS observations, in terms of geochemical compo-
sition. In addition, the study of dust displacement can pro-
vide valuable information for the understanding of the laser-
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Figure 1. RMI images taken before (left) and after (right)
LIBS measurements. The post-LIBS image displays small craters
caused by multiple LIBS ablations and a contour of dust displace-
ment around them, dashed lines highlight those contours. Target
Lacropte measured on sol 3146.

induced plasma on Mars and its accompanying phenomena.
For example, the shock wave responsible for the dust dis-
placement could serve as an indicator of the quality of the
laser-target coupling [4, 29]. Such supplementary informa-
tion can contribute to the development of new LIBS data
normalization approaches.

This work focuses on optimally detecting whether dust
displacement took place during ChemCam LIBS measure-
ments based solely on RMI images. In this study, a lim-
ited number of samples are manually labeled, preprocessed,
and trained on a machine learning pipeline employing pre-
trained convolutional neural network and Random Forest
classifier. Additionally, explainable AI methods are used to
explore model optimization. The optimal automated detec-
tion allows efficient derivation of seasonal or site-specific
dependencies of dust displacement along the traverse, po-
tentially providing insight into Martian processes. The
study motivates further investigation of properties, such as
the shape of the dust displacement or its application to other
Mars rovers.

2. Literature review

2.1. Martian dust and ChemCam RMI investiga-
tions

Martian dust has been previously investigated due to its
strong influence on the atmosphere’s temperature and sed-
imentary processes [26]. One example is the research pre-
sented in [11]. They examined ChemCam LIBS data of the
first laser shot only and used multivariate regression to re-
trieve its elemental composition [5]. The study explored
whether dust contributed to an amorphous component of
soil. The work was based on LIBS data and the use of RMI
images showing dust displacement was not considered. In
another work, ChemCam RMI images were explored and
classified texture-wise using deep learning techniques [9].
The main challenge that they encountered was a limited

number of labeled data, which often occurs in real-world
machine learning problems. This problem was addressed
by using the pretrained model Inception V3 [10]. Such an
approach is also known as transfer learning [20] and the
procedure is as follows: a model is trained on a huge dataset
with millions of images such as ImageNet [7]. The weights
of the CNN filters that best describe the images are learned
during the training process. Later, the trained network can
be repurposed for another classification problem with dif-
ferent data and categories. Using this method, the authors of
the study classified LIBS targets into nine different classes
with an accuracy of 80%. Another ChemCam target clas-
sification based only on image data was performed by au-
tomatic partitioning of weakly connected components [8].
The work showed the variability of LIBS targets and an ef-
fective way to group them.

2.2. Explainable AI

Over the years, developments in the field of machine learn-
ing have led to more complex models. With the complexity
of models comes the difficulty of understanding what they
are learning and how they are making predictions, turning
them into so-called “black boxes”. This is why Explainable
AI (XAI) is becoming increasingly popular [28]. In addi-
tion to interpreting predictions and explaining the decision-
making process, XAI is also used for model optimization
to make machine learning models more computationally
efficient. Such an approach is particularly useful in on-
board space exploration applications where computational
resources are very scarce [25]. Below are presented selected
XAI methods.

SHapley Additive exPlanations (SHAP) is an approach
aiming to explain the model’s predictions [21]. The method
is based on classic Shapley values from game theory which
aims to estimate the contribution of each feature to the out-
come [30]. The principle defines an explainable function g
that explains the original prediction function, in the follow-
ing formula:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (1)

z′ ∈ {0, 1}M is simplified input features as derived in [21],
where 1 means the feature exists in the coalition and 0 de-
notes the absence of the feature. M is the maximum size of
the simplified input features. ϕi is the Shapley value for the
ith feature. Shapley values represent the importance of fea-
tures and are derived in the following manner. The model
is trained with all possible feature subsets S ⊆ F , where
F is the set of all features. In order to evaluate the im-
portance of a feature, the model fS∪{i} is trained first with
and then without that particular feature. Input features are
accordingly xS∪{i} and xS . The difference between these

6780



predictions is computed for all possible subsets S ⊆ F\{i}
and averaged to assign the importance to the feature:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})−fS(xS)]

(2)
The importance of features is frequently used to im-

prove the prediction accuracy as well as to optimize the
model. Temenos et al. employed SHAP for land use and
land cover (LULC) classification in remote sensing [33].
Their pipeline included a deep convolutional neural net-
work (CNN) and a SHAP. First, they predicted multichannel
images using the CNN and then they fed the classification
results with the images to the SHAP explainer. This way
they understood which spectral band combinations of im-
ages performed better in the classification problem. Finally,
using the SHAP explainer, they were able to demonstrate
that the qualitative visual patterns help to increase classifi-
cation accuracy. Another successful usage of SHAP is pre-
sented by Gurram et al. [17]. They addressed a problem of
feature selection for non-linear kernel-based support vector
machines, which tends to be a NP-hard problem. By deriv-
ing feature subsets using Shapley values and building the fi-
nal model they improved the classification performance for
hyperspectral datasets.

In deep learning, visualizing feature maps can be help-
ful in interpreting neural networks. However, as the num-
ber of layers increases, it becomes increasingly difficult to
understand which patterns have been learned. Therefore,
approaches to make the output of each layer more inter-
pretable have been developed. One of the algorithms is
guided backpropagation [32]. This technique allows the vi-
sualization of pixels in the input image that maximize the
activation of neurons in higher layers of the network. The
method is a combination of backpropagation and the decon-
volutional network (‘deconvnet’) [38]. The idea is to revert
the data flow from the specific high layer of the network
back to the input image. Additionally, guided backpropaga-
tion restricts the flow of negative gradients by setting them
to zero. As Shapley values, this technique can also be used
in optimization by tuning the hyperparameters of the net-
work according to the patterns learned by the convolutional
layers.

3. Methodology

3.1. Data exploration

The Curiosity rover recently passed 4000 sols, i.e. Martian
days, of time spent on Mars. During this time, ChemCam
has collected data from more than 4000 targets. The exist-
ing metadata does not contain any information on whether
dust displacement occurred during the LIBS measurements.

Figure 2. On the left erroneously predicted samples: A and B are
false negatives and C and D False positives. On the right confusion
matrix is normalized for each class.

Therefore, a visual inspection was carried out as a first step.
By comparing the images taken before and after the LIBS
measurements, and even by examining only the post-LIBS
images, it was clear that the dust had shifted on some of
the targets during the LIBS measurements as it is shown in
Fig. 1. The initial challenge of the lack of unlabeled data
was addressed by manual labeling. This allowed to employ
a first simple binary classifier for further data exploration.

A total of 200 images taken after the LIBS measurements
were manually labeled with dust displacement and the same
amount without dust displacement, resulting in a total of
400 images. The images were retrieved from the PDS Geo-
sciences node from sol 1000 to sol 3300 [36]. The size of
each image is 1024× 1024. Due to the small number of la-
beled samples, building a classifier from scratch would not
be feasible. Therefore, a pretrained model was employed.

VGG16, trained on the ImageNet dataset, was selected
as the pretrained model for our dataset [7, 31]. The model
expects the input tensors to be of the size of 3× 299× 299.
So the post-LIBS images were read as RGB, by replicat-
ing each image across the RGB channels, and resized to
meet the requirements. The labeled set was divided into
training, test, and validation in the corresponding ratio of
70/15/15. The training data was augmented by randomly
flipping, rotating, and adjusting the brightness. No fine-
tuning was performed at this point. The accuracy of the
model reached 70%. After fine-tuning the model by training
layers from the 11th layer onward with binary cross-entropy
as the loss function, the accuracy increased to 82%. How-
ever, the learning curve showed overfitting, and the differ-
ence between training and validation set accuracy was about
10%, indicating a generalization problem. In addition, the
learning curve showed fluctuations. These issues can be ex-
plained by the small size of the labeled dataset. Further-
more, false positive predictions occurred when there was an
RMI image of a drill or a target with a rough texture, while
false negatives occurred on RMIs where dust displacement

6781



was clearly visible by visual inspection but the target sur-
face was smooth. The left side of Fig. 2 shows examples of
false negatives and false positives. Targets A and B have
smooth texture and dust displacement is easily observed by
the human eye. However, the model predicted that no dust
displacement occurred. A few pebbles are visible in the tar-
get C and D has a nodular texture with layers. Both targets
represent false positives. On the right side of Fig. 2, we
show a confusion matrix of the VGG16 model after fine-
tuning. The confusion matrix shows the ratio of correctly
and incorrectly predicted samples, and indicates that false
positives are more common. In addition to visual inspec-
tion, if the target is dusty, it is expected that it will be eas-
ier to move dust on a smooth surface than on a target with
significant surface roughness, which may hinder dust dis-
placement. Based on the evidence found from erroneously
predicted samples, it was concluded that the learning pro-
cess was influenced by the texture of the target. Consider-
ing the previous works showing the variability of ChemCam
targets in texture, it was decided to remove the texture com-
ponent from the training set to allow the model to focus on
dust displacement [8, 9]. The following section presents the
preprocessing steps including texture removal that are per-
formed before the Martian in-situ data are fed into machine
learning models.

3.2. Data preprocessing

Previously, it was observed that feeding raw images into
the model leads to confusion influenced by the texture of
the LIBS targets. Therefore, the goal of this section is to
preprocess the input in such a way that the model focuses
on dust displacement. This can be achieved by removing the
texture information from the training set. The RMIs taken
prior to the LIBS measurement can be useful in this case.
The idea is to subtract the before and after LIBS images
and reduce unnecessary information such as texture in the
training data. The so-called difference images will show
only the information about the change in the field of view.

Before proceeding to the difference images, it should be
noted that there is an offset between the pre and post-LIBS
RMIs, as shown in Fig. 1, due to the location of the RMI and
LIBS instruments, which both reside in the rover’s mast. As
the LIBS measurements are made in a raster fashion, the
head slightly changes its initial position. The offset can be
described as a change along the x and y-axis. Although the
movement of the mast introduces an angle, we did not in-
clude it in the preprocessing steps. In order to remove the
offset, the RMIs before and after the LIBS are first cropped
with respect to the offset coordinates. Subtraction is then
possible, but due to the circular shape of the RMIs, some of
the texture may be preserved in the corners. Therefore, after
subtraction, the difference image is cropped to the center,
keeping 70% of the image. The preprocessing procedure

Figure 3. Schematic representation of preprocessing steps for RMI
images. Target name Barouffieres. Section A represents the origi-
nal input RMIs. In section B, the input images are cropped accord-
ing to their offset values. Section C shows the difference image,
which is centered in section D.

is illustrated in the Fig. 3, A being the input RMIs, B are
inputs after being cropped according to the offset values,
C showing the difference image, and D representing the
center-cropped image. Finally, the dataset is ready to be di-
vided into training, test, and validation sets after all these
preprocessing steps. The data is split again in the ratio of
70/15/15. The training set is augmented with several dif-
ferent filters such as random flip, random rotate, random
hue, random saturation, brightness adjustment, contrast ad-
justment, and transpose.

3.3. Dust Displacement Detection Pipeline

The preprocessed dataset, i.e. the center-cropped difference
images, was fed into the pretrained model of VGG16 repur-
posed for binary classifier by adding dense Softmax layers
of two units and without any layers being trained on our
data. The accuracy reached to 75%. The performance was
better compared to the one without preprocessed data. Al-
though the accuracy improved, it did not surpass the per-
formance of the fine-tuned model on the data before pre-
processing. Therefore, VGG16 was fine-tuned from layer
11 onwards on the preprocessed data and the accuracy in-
creased to 84%. However, the learning curve kept display-
ing fluctuations and overfitting.

The problem of an overfitting model can be solved by in-
creasing the labeled set or changing the model. Since man-
ual labeling is tedious, it was decided to modify the clas-
sification model. We decided to use a model that can deal
with overfitting such as a Random Forest [3]. Overfitting
can be resolved if enough trees are used. We could feed the
preprocessed training data directly into the Random Forest
classifier, but this would have two drawbacks. First, flatten-
ing the images and feeding them directly into the classifier
would increase the feature-sample ratio and cause the so
called “curse of dimensionality” [2]. Second, as the previ-
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ous work showed, the model would classify images accord-
ing to their pixel values rather than the dust displacement
pattern [9]. Therefore, we decided to keep part of the exist-
ing feature extraction model and add another classification
model that works well with small data sets such as the de-
scribed Random Forest. Specifically, transfer learning was
still used for feature extraction, but the extracted features
were no longer fed to the fully connected neural network,
but to a binary Random Forest classifier. The downstream
task of the Random Forest classifier was to detect whether
or not dust displacement had occurred. Such an approach
made it possible to take advantage of both a deep learning
based pretrained feature extractor model and an ensemble
learning model such as a Random Forest.

Three common pretrained models VGG16 [31], Incep-
tion V3 [10], and Resnet [18] were selected as feature ex-
tractors. Initially, no layers were trained, i.e. we froze all
layers and kept the original weights. We attached a Ran-
dom Forest classifier with a default number of 100 deci-
sion trees to the pretrained networks. The performance of
all three pipelines was checked over multiple runs with dif-
ferent training and validation splits. All of them achieved
higher than 86% accuracy. The performance is summarized
in Tab. 1. As the models are trained on millions of images
with 1000 different classes, they are all able to describe the
training data well enough. Adding a Random Forest clas-
sifier improved model accuracy, even with default hyper-
parameters.

Pretrained Model Attached Model Accuracy
VGG16 RF 88.6%
Inception V3 RF 87.1%
Resnet RF 86.6%

Table 1. Performance of the pretrained VGG16, Inception V3,
Resnet.

Next we fine-tuned the pretrained models by training
their last few layers on our training dataset. VGG16 showed
better performance than other models even before fine-
tuning. The reason why VGG16 is superior to other archi-
tectures can be explained by its size. As the training data is
very small, it may be sufficient to extract its features using a
smaller network rather than Inception V3 and Resnet, which
go deeper and cause model confusion. This motivated us to
explore VGG16 further.

During fine-tuning VGG16, we observed that freezing
the first 10 layers outperformed other combinations. In or-
der to explore those layers, we removed the rest of the lay-
ers and kept the original weights of those 10 layers. We also
fine-tuned the attached random forest. We did a grid search
starting from 100 trees to 2000. The fine-tuned Random
Forest constructed from an ensemble of 1000 decision trees
achieved an average accuracy of 92%, making it the best

performing pipeline. Such a huge number of trees can be
explained by the size of the input array. The input 1D array
has a length of 16 × 16 × 256, due to the flattened feature
maps of size 16×16 and having 256 filters at the 10th layer
of the VGG16. To compensate for the large number of input
features the Random Forest classifier required 1000 trees.

Another classification model that can cope with a lim-
ited number of samples is Support Vector Machine (SVM)
[15, 19]. We employed SVM with different kernels (lin-
ear, polynomial, sigmoid, and RBF) for the classification
part of the extracted features [27]. Linear kernel SVM per-
formed better than the others. In Tab. 2 we can observe
that the combination of the whole VGG16 and a Random
Forest outperforms the combination of VGG16 and a SVM
by 18%. As mentioned above, we have 65536 features.

Pretrained Model Attached Model Accuracy
VGG16 10 layers RF 92%
VGG16 RF 89%
VGG16 fine-tuned RF 88%
VGG16 + PCA RF 82%
VGG16 10 layers SVM 80%
VGG16 SVM 71%
VGG16 10 layers + PCA SVM 84%
VGG16 + PCA SVM 83%

Table 2. Performance of the pretrained VGG16 model in the
combination of Random Forest (RF) and Support Vector Machine
(SVM). PCA stands for principal component analysis.

Feeding such a huge number of features can result in low
model accuracy. Therefore, we reduced the input data di-
mensionality using Principal Component Analysis (PCA)
[24]. The performance of the SVM improved, but it was
still unable to achieve more than 84%. Therefore, we de-
cided to keep Random Forest as our classification model.
PCA was also applied on the input data for the Random
Forest classifier. Cross-validation showed that the overall
accuracy decreased. Random Forest already does the se-
lection of feature subsets, and in addition, feature reduction
may be unnecessary. The summary of the different models
combined with VGG16 can be found in Tab. 2. All of the
above steps helped us build the final pipeline, which con-
sists of a preprocessing step according to Fig. 3, VGG16
with the first 10 pretrained layers for feature extraction, and
a Random Forest classifier with 1000 trees. We call this
pipeline Dust Displacement Detection (DDD) of which the
schematic is shown in Fig. 4.

4. Experiments and results
The developed DDD pipeline was tested on the curated
dataset and number of conclusions were drawn. On the left
of Fig. 5, panel A is an example of a false negative predic-
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Figure 4. Schematic representation of Dust Displacement Detec-
tion (DDD) architecture.

tion that can occur when there is a large offset value and
the area where the dust shift occurred is lost during center
cropping. In panel B, an example of a false positive is il-
lustrated. The false positive predictions can be caused by
changes in the angle of the rover’s mast. The preprocess-
ing deals with an offset along the x and y axis, but does not
take into account the change in angle in the field of view.
The angle can introduce noise into the difference images,
leading to model confusion. On the right is DDD’s confu-
sion matrix, showing how the model improved predictions
over the one shown in Fig. 2. The high number of false pos-
itives observed initially is being resolved with the current
pipeline.

Figure 5. On the left, A represents a false negative sample before
center cropping. The white contour showed the region after crop-
ping and the dashed red contour encircles the dust displacement.
B is a False Positive sample. On the right is shown the confusion
matrix of DDD normalized for each class.

4.1. Importance of feature maps

Considering the limited memory and computing power of
remote sensing platforms, we were motivated to check
whether all the feature maps were necessary for the clas-
sification model and if there was room for model optimiza-
tion by removing some of the feature maps. We evaluated

whether some of the feature maps contribute more to the
model accuracy and whether there is a subset of feature
maps our model can afford to lose. Therefore, we estimated
the importance of feature maps and ranked them by this
parameter. In order to determine the minimum number of
feature maps that is sufficient to achieve a model accuracy
greater than 90%, we fed subsets of sorted feature maps and
monitored the model performance.

The values of the feature maps varied according to the
sample from which they were retrieved. In order to es-
timate the importance of feature maps that best described
the data, we examined only the correctly predicted samples.
The most activated feature maps, i.e. having the brightest
pixels, were assumed to play a decisive role in describing
the dataset. Following this reasoning, the feature maps for
each sample were sorted by magnitude. The process fol-
lowed the Algorithm 1. In the first step, for each sample,
16 × 16 pixel values of feature maps were summed up and
sorted by magnitude. In the summing step, no preprocess-
ing of the pixel values was done. All the values were posi-
tive allowing us to sum up them directly. Additionally, we
did not normalize data as we wanted to keep the raw data
to compare the feature maps. This allowed ordering feature
maps by being most to least activated. Later, indices of the
ordered feature maps were retrieved and stacked in a ma-
trix M . In the second step, the matrix was examined. The
vectors of ordered feature maps’ indices differed slightly.
We have selected the most common order of indices from
matrix M for further investigation.

To verify the procedure, we explored the importance of
features in Random Forest classifier and how they relate to
the sorted feature maps derived from Algorithm 1. The im-
portance of features was obtained from the explanation of
the model’s predictions using SHAP [21]. The idea was to
check whether the features with the highest Shapley values,
i.e. features that contributed most to the model outcome,
belonged to the important feature maps derived using the
Algorithm 1. In total, there are 16 × 16 × 256 features. In
order to map the features with the highest Shapley value to
our ordered feature maps, we had to reshape flattened fea-
tures back to 16 × 16. The results show that indeed the
features with the highest importance belong to the highest
magnitude feature maps. Fig. 6 shows Shapley values of
pixels in feature maps sorted via the Algorithm 1. The vi-
olin plots of the Shapley values tend to decrease in magni-
tude as the importance of the feature maps decreases. This
means that the feature maps extracted from VGG16 match
the important features extracted from the random forest, i.e.
the importance of features propagated throughout the whole
architecture. This conclusion motivated further exploration
of the feature maps.

To determine the number of the important feature maps
that would be sufficient for dust displacement prediction
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Algorithm 1 Sort Feature Maps by Importance

f represents pixel values of feature maps
Tc represents a set of correctly predicted test samples
M matrix of sorted indices of feature maps

Step 1:
▷ Sum and sort feature maps:
Function SortFeatureMaps(f,j):
N = 256 number of filters
j index of a sample
for i ∈ N do

allFeatureMaps.append[
∑16

l,w=0 fl,w,i]
end for
sortedIndices = Sort(allFeatureMaps)
Return sortedIndices

for j ∈ Tc do
M = Stack(SortFeatureMaps(f, j))

end for

Step 2:
▷ find most common order of feature maps:
Function IndicesSortedByImportance(M):

Return retrieve the most common vector from M

IndicesSortedByImportance(M)

we consider subsets of size 10 of the most activated fea-
ture maps as ranked in M and feed them sequentially to
the Random Forest classifier. We check the accuracy of the
Random Forest classifier by first feeding the classifier with
the 10 highest magnitude feature maps and zeroing the rest.
Then adding values of another 10 feature maps according
to the ranked order and again observing the classification
accuracy. We continue till all the feature maps have been
considered. The results, Fig. 6, showed that only 85 out of
the total 256 feature maps account for 90% of the model’s
accuracy. This means that the feature extraction part can be
reduced by using only the required number of filters. This
results in less computation for feature extraction and fewer
feature maps to feed into the Random Forest. Minimizing
the workload is especially important for remote sensing ap-
plications and our approach supports the discussion of ma-
chine learning models onboard.

To verify that these 85 feature maps are sufficient for
the important feature extraction, we visualized what pat-
terns have been learned by the output layer of the pretrained
model. As the depth of the neural networks increases, the
feature maps in the deeper layers become difficult to inter-
pret. This is why we used guided backpropagation to il-
lustrate the patterns learned by the optimized layer 10 of
VGG16 [32]. This method visualizes patterns learned col-

Figure 6. Red line displays the dependency of the model accuracy
to the number of feature maps. Purple violin plots show Shapely
values of feature maps sorted according to importance.

lectively by all feature maps in the layer. To visualize what
was learned from just those 85 feature maps, the pretrained
model had to be modified. The idea was to keep the 85
most important feature maps and set the weights for the
rest to zero. Since layer 10 of VGG16 is a max pooling
layer, we went one layer back to layer 9 and modified its
weights. Afterward, we attached the max pooling layer and
were back to the optimized model. In Fig. 7, two examples
of the original input images are provided in panel A and the
visualization of the learned pattern by the optimized 10th
layer in panel B. The brightest pixels translate into the most
activated ones. In panel B, one can detect pixels activated
in the area of dust displacement. Although there are white
dots as learned noise, the dust contour in the center is still
noticeable. The noise may be caused by the offset angle in
difference images and the texture of the target, and possibly
changing light conditions between the pre- and post-LIBS
images may be the contributor to the learned patterns. Over-

Figure 7. Section A represents two different preprocessed samples
while images in section B are the same samples after applying the
guided backprogation.
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all, the interpretation of patterns using guided backpropaga-
tion helps to validate the statement that reducing the number
of feature maps to the most important ones is feasible to de-
tect dust displacement.

5. Applications
Since manual interpretation of data is tedious and does not
prevent human error, the use of machine learning methods
comes in handy, allowing experts to interpret results effi-
ciently rather than going through all the targets. Two appli-
cations of our pipeline for Mars data are further discussed.
Fig. 8 showcases 1925 targets from the initial sols up to sol
3778 and whether dust displacement occurred while taking
LIBS measurements. A darker shade indicates that no dust
displacement is occurring in the corresponding sol. The plot
shows that dust displacement is observed less frequently in
the early sols when the rover was on the crater floor and
foothills of Mt. Sharp than later, higher on Mt. Sharp.

Figure 8. Bar plot showcasing percentile ratio of dust displace-
ment sol wise. Each bin contains 200 sols. In total 1925 targets
are processed.

Another use case of the model is to show whether there is
a dependence of dust displacement on the distance between
a target and the laser. Fig. 9 shows that less dust displace-
ment occurs with an increase of the distance. This could
also point to a change in laser-target coupling so that less
energy is transferred into the LIBS plasma and it’s expan-
sion, i.e. the shockwave. This was already observed for the
LIBS data as the LIBS signal intensity decreases with the
increase of the distance [1]. Another factor in weak cou-
pling could be dust, which is not removed by a shock wave
because the laser is further away from the sample. How-
ever, it should be noted that the number of measurements
with a higher distance is very low. There are only 4 targets
measured from the distance of 6 − 6.5 meters. Although
these plots alone do not allow us to draw distinct conclu-
sions, they do encourage further research. The study can
be continued with dust contour detection and the relation of
dust movement shape to the distance of the laser or texture
of the target.

Figure 9. Dust displacement in relation to the distance of the laser
to the target. Distance is measured in meters. Area below the
curves are normalized to 1.

Additionally, the dust detection pipeline has the potential
to be modified for the data acquired by the SuperCam in-
strument on the Perseverance rover. The instrument is also
made up of LIBS and RMI components and is measuring
targets in Jezero crater for three years now [23]. The Super-
Cam RMI captures RGB images, which could potentially
enhance the DDD.

6. Conclusion

We propose a pipeline to automatically detect dust displace-
ment on ChemCam targets using data acquired by the RMI
before and after LIBS measurements. We preprocessed the
RMIs and explored the data to understand the classification
model requirements. Due to the limited size of a labeled
dataset for training, we chose to employ transfer learning.
We tested different pretrained models and combinations of
Random Forest and SVM to find the best performing two-
stage pipeline. The final pipeline consisted of the first 10
layers of VGG16 for feature extraction and a Random For-
est binary classifier. The accuracy of the model reached
92%. For optimization purposes, we estimated the impor-
tance of the feature maps, verified their contribution using
SHAP and guided backpropagation, and kept only those that
had a significant impact on the accuracy of the pipeline.
Out of a total of 256, only 85 feature maps were found
to contribute to 90% classification accuracy, thus indicat-
ing a possible reduction of computation for onboard pro-
cessing of martian in-situ data. We thus addressed the clas-
sic challenges of planetary exploration, namely limited la-
beled data and scarce computational resources. By showing
application examples, a few points were concluded: DDD
allows researchers to efficiently detect the dust displace-
ment on targets analyzed along the entire traverse, as well
as to explore the phenomena for each target and derive its
dependence on target or instrument parameters. Overall,
the work supports the use of machine learning based meth-
ods for current Martian studies and encourages further re-
search.
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