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Abstract

Lunar survey missions require accurate estimation of
satellite and/or sensor pose (position and attitude) to
achieve precise surface measurement. Crater-based pose
estimation (CBPE) holds promise to achieve the desired ac-
curacy. However, current pose estimation methods suffer
from one or more weaknesses, such as loose coupling of po-
sition and attitude optimisation, not accounting for wrong
crater matches, and using geometrically invalid objective
functions for estimation. To conclusively address these
drawbacks, we develop a robust perspective-n-crater pose
estimation method that employs geometrically meaningful
and information-rich elliptical representation of craters,
in combination with M-estimators to account for incorrect
crater identifications. To enable evaluation, we construct an
extensive labelled dataset of synthetic lunar images taken
under diverse conditions over the Moon’s surface. Results
on the dataset demonstrate that our work addresses the
drawbacks of previous methods and raises the achievable
accuracy of CBPE. As another contribution, we will also
release our dataset to stimulate further research.

1. Introduction
In recent years, the surge in human activity in cislunar space

has led to over 30 planned missions to the Moon by 2030,

encompassing flybys, orbiting, and landings. A critical as-

pect of these ventures is spacecraft navigation, which has

seen significant advancements [4, 10, 14, 21, 33].

Increasingly, vision-based navigation systems are being

adopted for these missions [4, 21]. The preference for these

systems is due in part to the availability of mature camera

payloads for space exploration missions. In particular, ter-

rain relative navigation (TRN) [14], where the natural land-

marks observed on a planetary body (e.g., Moon, Mars, as-

teroids) are used to localise and orient a spacecraft relative
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Figure 1. A representative CBPE pipeline.

to a reference frame on the body, has met success in recent

years, e.g., in the OSIRIS-REx sample return mission [19]

and the landing of the Perseverance rover on Mars [24].

Absolute camera pose for cislunar-located spacecraft

can be determined from a single image provided there is

a known association between the 2D image observation

and the corresponding 3D landmark in the lunar reference

frame. Prior lunar missions have captured highly detailed

data on the Moon’s topographical composition [26, 30]

which in turn has allowed for the creation of high-resolution

digital elevation maps (DEM) [25] and crater catalogues

[29]. Given that craters are detectable 2D features in the

image plane with known 3D locations in the lunar reference

frame, this has motivated the development of crater-based

pose estimation (CBPE) for cislunar localisation.

As depicted in Figure 1, existing CBPE algorithmic

pipelines broadly consist of a crater detection algorithm

(CDA), a crater matching algorithm (CMA) and a final pose

estimation step. Crater detection and crater matching rep-

resent considerable challenges as they are prone to produc-

ing noisy crater detections and false crater matches (out-

liers) which can result in inaccurate or outright wrong pose

estimates. For this reason, CDA and CMA have been the

primary focus of CBPE research. Comparatively, the pose

estimation step of the pipeline has received less attention.

The pose estimation step in recently proposed CBPE

pipelines suffers from one or more weaknesses, e.g., decou-

pled estimation of position and orientation thereby leading

to suboptimal 6 degree-of-freedom (DoF) pose estimate [4,

6, 15], not accounting for outliers from CMA [4, 6, 36],
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and using geometrically invalid cost functions for estima-

tion [2, 21, 37, 38]. A notable example of the latter case is

solving the perspective-n-point (PnP) problem to estimate

pose from 2D-3D crater matches [2, 21, 37, 38], which es-

sentially assumes that a 2D imaged ellipse produces a line-

of-sight vector to the centre of the corresponding 3D crater

rim, which is generally not true [4] (see Figure 2a). As we

will show in Section 5, this could limit the CBPE accuracy.

Additionally, there have been few studies that compre-

hensively evaluated different CBPE pipelines. A major fac-

tor is the lack of publicly available data (e.g., lunar surface

images) that is labelled (e.g., with ground truth CDA/CMA

results or camera poses). This has made it difficult to com-

pare and benchmark different CBPE solutions.

1.1. Contributions

To address the weaknesses of pose estimation methods in

existing CBPE pipelines, we propose a robust perspective-
n-crater (PnC) approach that estimates 6DoF camera pose

from crater correspondences. Our method minimises the

reprojection error of craters represented in a geometrically

meaningful and information-rich elliptical format, with the

use of M-estimators to account for outlier crater matches.

We conclusively demonstrate that our work addresses the

drawbacks of previous methods and makes significant im-

provements to the overall CBPE accuracy.

To comprehensively evaluate the performance of pose

estimators in the context of CBPE, we produced CRESENT:

a CRatEr-baSed pose estimation datasEt for cisluNar-

located spacecrafT1. CRESENT is an extensive dataset con-

sisting of synthetically generated images with correspond-

ing ground truth camera poses taken above lunar regions of

scientific interest at varying angles off nadir. Given a crater

catalogue, ground truth crater locations can be obtained and

used to provide CDA/CMA results.

2. Related work

Here, we further survey existing methods that contribute to

CBPE and motivate our work.

2.1. CDA

The input to a CBPE pipeline is an image taken of the lunar

surface which is then passed to a CDA to return the location

and elliptical rim shape of the detected craters on the image

plane. There are more than 100 CDAs listed in survey pa-

pers [7, 31, 35], and recent developments in CDAs which

used machine learning [9, 16, 32, 34]. CDAs need to be

able to detect as many craters as possible with high ellipse

fitting precision to yield accurate pose estimates, hence, this

is an active research topic in CBPE research [2, 6, 12, 42].

1CRESENT will be released publicly.

2.2. CMA

After craters have been detected by the CDA, the imaged

craters are passed to a CMA and matched to known craters

in a crater catalogue. The crater catalogue used by recent

crater-based pose estimation algorithms [2, 4, 6, 8] is Rob-

bins’ crater catalogue [29], consisting of 1.3 million manu-

ally identified craters describing the location and shape of

each crater. CMA approaches have varied from context

matching to cross-correlation matching to state-of-the-art

descriptor matching [3, 4, 12, 13, 21, 27, 39]. While there

has been significant progress made in CMA development,

CMAs are still prone to producing outlier crater matches

which if not dealt with, can result in bad pose estimates.

2.3. Pose estimation from crater matches

While there has been extensive research into CDA and

CMA development, there have been fewer studies on pose

estimation algorithms for CBPE. Often, pose estimation

methods are integrated into CBPE pipelines without strong

conceptual or empirical justifications (more details below),

which raises questions on the achievable accuracy.

Rather than estimating the 6DoF pose, many CBPE

pipelines restrict the estimated DoF by assuming known at-

titude [4, 6], known altitude and attitude [15, 36] or restrict

the application to a landing scenario which assumes copla-

nar craters [20]. Christian et al. have produced a state-of-

the-art CBPE pipeline [4] with a position estimation step

solved in a least squares (LS) sense using verified crater

matches and known attitude from a star tracker. While star

trackers can be accurate in the range of arcseconds [18],

without the ability to refine the attitude, any error intro-

duced by the star tracker will directly affect the position

and observed surface accuracy. Another drawback of this

method is that the LS solver does not account for outlier

crater matches. While Doppenberg [8] built on this method

by implementing random sample consensus (RANSAC)

[11] to account for outliers, the base metric still directly

solves the position without the option to refine for attitude.

As far as we are aware, there have been four recent CBPE

pipelines that have applied the PnP algorithm to solve for

6DoF pose [2, 21, 37, 38]. While these methods allow for

the estimation of both position and attitude estimates, the

point representation used by PnP assumes the 3D ellipse

centre of the catalogued crater projects to the centre of the

corresponding 2D imaged ellipse, which is generally not

true (see Figure 2a). Zhu et al. indirectly accounts for this

in their weighted POSIT algorithm by acknowledging the

anisotropic, correlated and non-identical characteristics of

the craters’ localisation errors [42]. However, in scenarios

where few craters are detected or the majority of craters are

given low weightings, the pose accuracy will suffer. A fur-

ther drawback of these methods is the substantial amount

of valuable navigation information lost from reducing the
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Figure 2. (a) The centre of a crater ellipse (red cross) does not necessarily project to the centre of the ellipse (yellow cross) that corresponds

to the crater rim when viewed from a non-nadir pose. (b) - (e) Lunar dataset regions produced using PANGU Planet Surface Simulation

Software developed by the Space Technology Centre at the University of Dundee, Scotland. (b) North Pole (c) South Pole (d) region

of highest crater density (e) region of lowest crater density. (f)(g) Problem instances with ground truth crater locations (green), noisy

crater locations (red) and incorrectly matched craters (blue), reprojected with optimised pose (yellow) from the EP (Sec. 4.1) (f) and PnP

(Sec. 3.3) (g) metrics, yielding observed surface errors of 46.96 m and 582.96 m respectively.

elliptical representation of a crater to a single point.

3. Preliminaries
In this section, we provide important background informa-

tion before describing the proposed method in Sec. 4.

3.1. Crater imaging

The rim of a real-world crater can be approximated as a 2D

ellipse (1) on a local plane on the Moon’s surface. The 2D

ellipse can be represented as a conic

D =

⎡
⎣ J I/2 Q/2
I/2 O S/2
Q/2 S/2 U

⎤
⎦ (1)

where the values in D are extracted from the structure of

the crater as compiled in a crater catalogue, e.g., [29]. The

normal of the local plane and selenographic coordinates of

the crater centre pM can also be derived from the data in the

crater catalogue. This allows to set up a local east-north-up

(ENU) frame T =
[
e n u

]
centred at pM [4].

It follows that the transformation relating a homoge-

neous 2D point q̄E on the crater ellipse to the corresponding

homogeneous 3D point q̄M in the selenographic frame is

q̄M =

[
L
kT

]
q̄E , (2)

where

k =

⎡
⎣00
1

⎤
⎦ L =

[
TS
pM

]
S =

[
I2×2

01×2

]
. (3)

Let the pose of a camera observing the lunar surface be

(R, rM ), (4)

where R ∈ SO(3) is the rotation from the selenographic

frame to the camera frame and rM is the camera’s position

in the selenographic frame. The camera projection matrix

P = K[R|rC ] (5)

allows to perspectively project a 3D point expressed in the

selenographic frame to the image frame, where K ∈ R3×3

is the calibrated camera intrinsic matrix, and

rC = −R · rM . (6)

We can thus determine the homography H between the

camera’s image plane and the crater’s local plane as

H = P

[
L
kT

]
. (7)

The 2D conic D of the crater defined in the local crater

plane, and the 2D conic A which defines an ellipse that

outlines the crater’s rim observed in the image taken under

camera pose (R, rM ), can be related by

A−1 ∝ H ·D−1 ·HT . (8)

To simplify subsequent notations, we summarise (8) as

A := g(R, rM ,D). (9)

3.2. Position estimation in the known attitude case

Let A = {Ai}Ni=1 be detected 2D ellipses resulting from

applying a CDA on an input image. Let D = {Di}Ni=1 be
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the local plane conics of catalogue craters determined by a

CMA to correspond to the observed craters A. Our aim is to

estimate the camera pose (R, rM ) of the input image based

on the crater correspondences C = (A,D), which is noisy

and contaminated with false correspondences (outliers).

Assuming known camera attitude R, Christian et al. [4]

construct the system of linear equations⎡
⎢⎣
STT1

TB1

...

STTN
TBN

⎤
⎥⎦ rM =

⎡
⎢⎣

STT1
TB1pM1

− ŝ1S
TD1k

...

STTN
TBNpMN

− ŝNSTDNk

⎤
⎥⎦

(10)

and solve for rM using linear LS, where

ŝi =
vec(STDiS)

T vec(STTi
TBiTi

TS)

vec(STDiS)T vec(STDiS)
(11)

Bi = RTKTAiKR. (12)

However, solving for position without jointly estimating the

attitude can be problematic, since errors in the attitude will

cause errors in the estimated position, leading to overall

suboptimal 6DoF pose estimates, as we will show in Sec. 5.

Moreover, the LS method does not account for outliers,

though the method can be extended with RANSAC [8].

3.3. Estimating pose through PnP

CPBE pipelines that invoke PnP minimise the reprojection

error of the crater centres from the crater catalogue to the

ellipse centres of the detected crater ellipses [2, 21, 37, 38].

The crater centre is projected onto the image plane as

p̄c = Pp̄M , (13)

where P is the camera projection matrix (5), p̄M =
[pT

M 1]T is the homogeneous version of the selenographic

crater centre coordinates pM , and p̄c = [pT
c 1]T is the ho-

mogeneous version of the projected crater centre on the im-

age plane pc = [px, py]. For brevity let h be the function

pc = h(R, rM ,pM ), (14)

that obtains the projected image coordinates of a crater cen-

tre under camera pose (R, rM ).
Let J = {pc,i}Ni=1 be a set of crater centres observed

in the input image, and K = {pM,i}Ni=1 be the centres of

corresponding craters in selenographic frame. To estimate

the camera pose underlying the image, PnP solves

min
(R,rM )∈SE(3)

N∑
i=1

‖h(R, rM ,pM,i)− pc,i‖2 , (15)

which can be achieved using a PnP solver, e.g., [17].

While K are the centres of D, the centres of A do not

necessarily equate to J, as illustrated in Fig. 2a. PnP-based

methods [2, 21, 37, 38] that take the centres of A as the

observed centres of D run the risk of significant errors in

the estimated pose, as we will show in Sec. 5.

4. Perspective-n-Crater

To address the shortcomings of the methods in Sections 3.2

and 3.3, we propose a robust PnC approach that can esti-

mate 6DoF camera poses. As mentioned in Section 2.3,

previous CBPE methods that took ellipse shape into account

have considered more restricted cases (e.g., position estima-

tion only [4], assumes all craters are coplanar [20]).

As before, the input to our method is a set of noisy and

outlier prone crater correspondences C = (A,D), where

A = {Ai}Ni=1 are 2D ellipses in the input image detected

by a CDA, and D = {Di}Ni=1 are the local plane conics of

catalogue craters determined to be corresponding to A by a

CMA. In its general form, the proposed PnC solves

min
(R,rM )∈SE(3)

N∑
i=1

d [g(R, rM ,Di),Ai]

subject to ∠(R,R†) ≤ δ,

‖rM − r†M‖2 ≤ γ,

(16)

where d is an ellipse error function that measures the dis-

crepancy between the (perspective) image projection of Di

and the observed ellipse Ai, while ∠(·, ·) is a suitable met-

ric (e.g., chordal distance) between two rotation matrices.

Another departure from previous methods is the inclu-

sion of constraints in (16) that allows to leverage a pri-
ori known attitude R† and position r†M , respectively with

uncertainty δ and γ. Such prior information can be ob-

tained from other positioning capabilities such as onboard

star trackers [18] and radio ranging [21, 22].

PnC is related to the perspective-n-ellipsoid (PnE) prob-

lem in robotic vision [43], which aims to estimate cam-

era pose from observations of objects that can be bounded

within ellipsoids. Since ellipsoids are imaged as ellipses, el-

lipse error functions used in PnE are also applicable to PnC.

Nonetheless the different types of reference 3D objects de-

mand a careful selection of ellipse errors for PnC.

4.1. Ellipse error functions for PnC

The conic parameters of a 2D ellipse, i.e., Ai or the result

of the projection g(R, rM ,Di), can be distilled into five

geometrically meaningful parameters (x, y, a, b, θ), where

x = [x, y] is the ellipse centre, r = [a, b] are the lengths

of the semi-major and semi-minor axes of the ellipse, and

θ is the angle of orientation on the plane; see Sec. 8 of the

supplementary material for the distillation process.

Given two sets of ellipse parameters e = (x, y, a, b, θ)
and e′ = (x′, y′, a′, b′, θ), the following ellipse error func-

tions are applicable to PnC:

• Ellipse centre distance (ED): We compare the centre of

the projected crater ellipse, with the centre of the detected
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crater ellipse, as follows:

d =

∥∥∥∥
[
x
y

]
−

[
x′

y′

]∥∥∥∥
2

. (17)

• Ellipse parameter distance (EP): The EP takes the dif-

ference between the ellipse parameters directly

d = ‖e− e′‖2 (18)

• Ellipse characteristic point distance (ECP): The five

characteristic points (CPs) of an ellipse e are

p0 =
[
x y

]T
, (19)

p1 =
[
x+ a cos(θ) y + a sin(θ)

]T
, (20)

p2 =
[
x− b sin(θ) y + b cos(θ)

]T
, (21)

p3 =
[
x− a cos(θ) y − a sin(θ)

]T
, (22)

p4 =
[
x+ b sin(θ) y − b cos(θ)

]T
. (23)

Given the CPs from two ellipses, the ECP [40] is

d =

(
4∑

�=0

(p� − p′�)
2

)1/2

. (24)

• Level set distance (L Set): The level set distance is a

cost function based on level set sampling [43]. The gen-

eral quadric equation of an ellipse is

Υ(xs) = (xs − x)TV

[
1
a2 0
0 1

b2

]
VT (xs − x) (25)

where V is the rotation matrix for the ellipse’s angle of

orientation θ. The distance is calculated as a summation

of the distances from regularly sampling a finite set of n
points along the level curves of the first ellipse

d =

n∑
j=1

(Υ(xj)−Υ′(xj))
2. (26)

• Wasserstein distance (Wass): The Wasserstein distance

proposed by Zins et al. [43], is used to compare two

2D Gaussian distributions. An ellipse is represented as

a Gaussian distribution N (x,Σ) where

Σ−1 = V

[
1
a2 0
0 1

b2

]
VT (27)

with the Wasserstein distance calculated as follows

d = ‖x− x′‖22 + Tr(Σ+Σ′ − 2(Σ
1
2Σ′Σ

1
2 )

1
2 ) (28)

• Gaussian angle distance (Gauss Ang): The Gaussian

angle is the distance between two bivariate Gaussian dis-

tributions [4] and is defined as follows

d = cos−1(G), (29)

where G =
4
√|Σ−1||Σ′−1|
|Σ−1 +Σ′−1| exp

[

− 1

2
(x− x′)TΣ−1(Σ−1 +Σ

′−1)−1Σ
′−1(x− x′)

]
Section 5 will comprehensively evaluate the different ellipse

distances for PnC-based camera pose estimation.

4.2. Optimisation algorithm

PnC is a non-linear least squares (NLLS) problem that can

be solved using existing NLLS solvers. In this work, we

used SciPy’s Optimize with L-BFGS-B method, which is

a second-order Quasi-Newton method used to solve large

nonlinear optimisation problems [5]. The package supports

numerical differentiation and nonlinear constraints, which

allow convenient implementation of (16).

4.3. M-estimators for robust PnC

To account for outliers in C, we employed M-estimators for

PnC. Problem (16) is modified to become

min
(R,rM )∈SE(3)

N∑
i=1

ρ {d [g(R, rM ,Di),Ai]} , (30)

where ρ is a robust loss function called an M-estimator2.

We adopted Tukey’s biweight [41] in our work,

ρ(d) =

{
(ε2/6)(1− [

1− (d/ε)2
]3
) if |d| ≤ ε

(ε2/6) otherwise,
(31)

where ε is a positive, user defined inlier threshold. Intu-

itively, ρ ignores the contribution of crater matches whose

ellipse distances are greater than ε.
To solve (30), we applied the iteratively reweighted least

squares (IRLS) algorithm [41]. Starting from an initial

(R(0), r
(0)
M ), at each iteration t, IRLS obtains the error

d
(t)
i = d

[
g(R(t), r

(t)
M ,Di),Ai

]
(32)

of each datum based on the current estimate (R(t), r
(t)
M ),

and computes the weight of each datum using the function

w
(t)
i = w(d

(t)
i ) = ρ′(d(t)i )/d

(t)
i , (33)

where ρ′ is the derivative of ρ. IRLS then updates the pa-

rameters to (R(t+1), r
(t+1)
M ) by solving the weighted LS

min
(R,rM )∈SE(3)

N∑
i=1

w
(t)
i d [g(R, rM ,Di),Ai]

2
, (34)

which we achieved using the NLLS solver (Sec. 4.2). The

alternation is conducted until convergence. Algorithm 1 de-

scribes the proposed robust PnC based on M-estimation.

2For brevity we did not show constraints in (30), but readers should be

reminded that that the constraints in (16) apply to all problems in Sec. 4.3.
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Algorithm 1 Robust PnC based on M-estimation.

Require: D = {Di}Ni=0, A = {Ai}Ni=0, initial attitude es-

timate R(0), initial position estimate r
(0)
M , convergence

threshold λ, maximum number of iterations T ,

1: w
(0)
i = 1 for all i

2: o(0) ← minimised value of (34) at t = 0
3: for t in range 1...T do
4: R(t), r

(t)
M ← minimiser from (34)

5: o(t) ← minimised value from (34)

6: if |o(t) − o(t−1)| ≤ λ then
7: return R(t), r

(t)
M

8: end if
9: end for

5. Results
This section will outline the proposed CRESENT dataset

and results of benchmarking different CBPE methods on the

dataset. Methods that were compared consist of the 3DoF

LS solver (3DoF LS) (Section 3.2), PnP (Section 3.3), and

the proposed PnC with different ellipse errors (Section 4).

5.1. Dataset generation

To evaluate the accuracy of the benchmarked CBPE meth-

ods, we developed CRESENT - an extensive dataset con-

sisting of 5,183 images that mimicked the expected con-

ditions of a typical lunar orbiter surface surveillance mis-

sion [23]. Using PANGU [1], a planet and asteroid surface

generation software, we loaded high-resolution DEMs from

the PDS data node [25], and took Moon surface images at

100km altitude above areas of scientific interest, at angles

increasing from 0◦ to 60◦ off nadir in increments of 10◦.

Figures 2b - 2e consist of images taken from each of the

four lunar regions. As neither CDAs nor CMAs were the

focus of this work, both of these processes were simulated

to return realistic crater detections with matched crater cor-

respondences in Robbins’ crater catalogue [28]. The im-

plemented CDA filtered craters based on their 3D structure

and projected ellipse appearance on the image plane and

the CMA simulated incorrect crater matches introduced as

a percentage of the number of available craters (keeping at

the very least three correctly matched craters). Section 9 of

the supplementary material provides more detail on image

generation and how the CDA and CMA were simulated in

this work.

5.2. Problem instances and evaluation metrics

All problem instances were initialised with the same noise

to the crater detections and incorrect crater match corre-

spondences. Given the ground truth R‡ and r‡M was known

in the synthetic data, R† and r†M was simulated in the range

of R‡ − δ ≤ R† ≤ r‡M + δ and r‡M − γ ≤ r†M ≤ r‡M + γ

for each problem instance. For fair analysis of the PnP al-

gorithm against the PnC methods, PnP was also provided

with this same priori information.

To test the robustness of the benchmarked methods, the

percentage of incorrectly matched outliers was increased.

The attitude and position uncertainties were also increased,

with δ and γ initialised to values of 0.01◦ and 6.7km

([21, 22] with justification in Sec. 10 of the supplementary

material) and increased to uncertainties of 0.1◦ and 100km

respectively.

The pose estimation algorithms were benchmarked using

the following evaluation metrics:

• observed surface error (m): |s‡M − sM
∗|

The observed surface error was measured as the absolute

distance between the two points produced by the inter-

section of the Moon’s surface with the ground truth cam-

era’s line of sight vector and the estimated camera’s line

of sight vector (see Sec. 11 in the supplementary mate-

rial).

• position error (m): |r‡M − rM
∗|

The position error was measured as the absolute distance

between the ground truth camera position and the esti-

mated camera position.

• angular error (deg): arccos ((Tr(R‡.R∗T )− 1)/2)
The angular error was measured as the absolute angular

difference between the ground truth camera rotation and

the estimated camera rotation.

5.3. Initialisation and hyperparameters for PnC

R
(0)
M and r

(0)
M were both randomly initialised in the range of

R† − δ ≤ R
(0)
M ≤ r†M + δ and r†M − γ ≤ r

(0)
M ≤ r†M + γ

for each problem instance. The inlier threshold ε in Tukey’s

loss function (31) was also uniquely tuned for each metric.

5.4. Results on a reduced dataset

The benchmarked methods were initially evaluated on a re-

duced dataset consisting of 140 images from each of the

four surface locations in CRESENT, with 20 images from

each angle off nadir per surface. Every problem instance

was captured in its best-case scenario, i.e. perfect crater

matches and position and angular uncertainties of 6.7km

and 0.01◦ respectively. The quantitative results for these

experiments can be seen in table 1 and qualitative results

can be seen in Figure 5 in the supplementary material.

For completeness, 3DoF LS was included in the bench-

marked methods, however, from these results we can see

that the error introduced into the attitude initialisation af-

fected the position accuracy, highlighting the importance of

being able to refine both attitude and position for pose es-

timation. PnP has the second-highest observed surface er-

ror, demonstrating that the geometrical inconsistencies of

PnP contribute an additional 135.5m on average to the ob-

served surface error from the geometrically correct ED met-
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observed surface error (m) position error (m) angular error (deg) runtime (s)

3DoF LS 477.15 754.67 - 0.06

PnP 403.03 584.96 0.02 0.35

ECP 328.27 679.42 0.02 3.80

EP 247.84 437.42 0.02 4.10

ED 267.53 476.93 0.01 5.24

Gauss Ang 301.72 536.94 0.02 5.68

L Set 305.87 540.52 0.01 13.88

Wass 267.37 474.55 0.02 8.46

Table 1. Avg. results on the reduced dataset with perfect crater

matches and position and angular uncertainties of 6.7 km and

0.01◦ respectively.

ric. While ED and L Set are the only two metrics to notice-

ably improve the angular error, EP is the top-performing

metric, improving the position and observed surface mea-

surements by more than 147m and 155m respectively from

the traditionally invoked CBPE methods.

On the same restricted dataset, we introduced 10% in-

correct crater matches per image and obtained quantitative

results (table 2) and qualitative results (Figures 2f and 2g -

expanded in Figure 6 of the supplementary material).

observed surface error (m) position error (m) angular error (deg) runtime (s)

3DoF LS 17564.27 39356.40 - 0.08

PnP 521.62 870.57 0.02 1.67

ECP 344.53 725.99 0.02 14.24

EP 278.17 514.19 0.02 16.09

ED 298.97 565.07 0.01 18.46

Gauss Ang 342.62 618.67 0.02 16.43

L Set 498.92 924.28 0.01 94.63

Wass 480.44 763.88 0.02 49.79

Table 2. Avg. results on the reduced dataset with 10% incorrect

crater matches and position and angular uncertainties of 6.7 km

and 0.01◦ respectively.

From these results, we can see the negative effect of not

dealing with incorrect matches on the pose estimates, with

3DoF LS resulting in a 3581.1% increase in observed sur-

face error and a 5115.0% increase in position error. In con-

trast, EP only obtained a 12.2% increase in observed sur-

face error and a 17.6% increase in position error. A box and

whisker plots of the position error are shown in Figure 3 to

further evaluate the effects of incorrect crater matches into

the data. These plots support results from tables 1 - 2 and

also highlight the variations in accuracy of the methods.

The bar charts in Figure 3 demonstrate the relationship

between the position error and angle off nadir. From these

bar charts, the optimal angle for most metrics is 20 de-

grees off nadir, with a trend in increasing position error

for oblique viewing angles. This is supported by Figure

7a in the supplementary material which demonstrates that

the highest crater distribution per problem instance occurs

at 20◦ off nadir. The charts in Figure 3 plot the average po-

sition error against the number of craters used per problem

instance, with a trend in lower position errors correlating

to a larger number of detected craters (with viewing angles

of 40◦ off nadir producing the largest number of detectable

craters per problem instance on average - see Figure 7b in

the supplementary material). From these charts, it is appar-

ent that in addition to 3Dof LS and PnP, ECP, L Set and

Wass are the least accurate and stable ellipse errors.

5.5. Evaluation on CRESENT

In the reduced dataset, EP, ED and Gauss Ang consistently

produced the most accurate and stable results. These met-

rics were tested on the full dataset, evaluating their perfor-

mance under an increasing number of outlier crater matches

and greater uncertainties in the a priori information.

Table 3 contains the average position error and observed

surface error results over the full CRESENT dataset for

small uncertainties (6.7km, 0.01◦) and large uncertainties

(100km, 0.1◦). From the results produced under small un-

certainties, EP outperforms all other metrics, achieving on

average ∼300m observed surface accuracy and ∼600m po-

sition accuracy, even when 90% of the crater matches are

outliers (implying three craters were used on average to es-

timate pose - see Figure 8 in the supplementary material).

While increasing the uncertainty significantly increases the

average position and observed surface errors across all met-

rics, we observe through Figure 4 that the median observed

surface error for EP is ∼300m, and the average observed

surface error is a consequence of very large outlier results

due to the large attitude and position uncertainties.

From these results we can conclusively state the pro-

posed PnC algorithm invoking the EP ellipse distance met-

ric achieves the most accurate pose and observed surface

measurement results for CBPE and significantly outper-

forms traditionally invoked LS and PnP methods.

(a) Average observed surface error (m) with small uncertainties.

% incorrect matches 0 10 20 30 40 50 60 70 80 90

EP 239.74 279.10 279.09 280.13 284.53 305.08 317.47 329.63 331.18 331.20

ED 263.82 307.34 307.32 308.37 312.85 335.18 348.35 360.64 362.92 362.89

Gauss Ang 287.00 327.89 327.91 328.94 333.18 354.24 368.17 382.54 385.80 385.92

(b) Average position error (m) with small uncertainties.

% incorrect matches 0 10 20 30 40 50 60 70 80 90

EP 409.16 491.43 491.41 493.15 501.05 543.65 570.06 598.74 602.23 602.29

ED 452.56 544.69 544.68 546.39 554.39 600.41 631.71 661.81 667.54 667.64

Gauss Ang 510.61 601.16 601.24 603.21 611.72 662.47 696.08 727.36 735.35 735.65

(c) Average observed surface error (m) with large uncertainties.
% incorrect matches 0 10 20 30 40 50 60 70 80 90

EP 1524.13 1588.47 1588.46 1623.35 1552.26 1946.84 2675.62 4074.11 4330.19 4314.16

ED 1309.34 1882.32 1882.32 1928.32 1866.43 3061.19 4426.20 6679.55 6981.91 6976.69

Gauss Ang 44993.53 54350.47 54364.41 54388.61 56169.68 60475.93 61947.64 63562.19 63737.18 63724.82

(d) Average position error (m) with large uncertainties.
% incorrect matches 0 10 20 30 40 50 60 70 80 90

EP 3051.35 3375.45 3375.45 3386.31 3412.53 4024.70 5285.50 7778.96 8287.56 8260.29

ED 2758.33 4580.92 4580.99 4613.49 4612.03 8002.94 11801.13 16894.76 17607.96 17603.07

Gauss Ang 44150.20 54421.97 54430.80 54534.51 56194.42 60711.94 62229.38 63892.60 64010.37 64005.88

Table 3. Results of metrics under small (6.7km, 0.01◦) and large

(100km, 0.1◦) uncertainties.

6. Conclusion
The CBPE pipeline has promise of producing pose esti-

mates that are desirable of lunar survey missions that re-
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(a) Position error results on the reduced dataset with correct matches

(b) Position error results on the reduced dataset with 10% incorrect matches

Figure 3. (a)(b) Position error results on the reduced dataset with correct matches (a) and 10% incorrect matches (b). Note that 3DoF LS

results were excluded from (b) due to the errors being too large (see table 2).

(a) (b) (c)

Figure 4. Average (a), median (b) and standard deviation (c) of the observed surface error over an increasing % of incorrect crater matches

for the EP and ED metrics with large uncertainties. Note that Gauss Ang was excluded as the resulting errors were too large (see table 3c).

quire highly accurate observed surface measurements. The

final pose estimation step of the CBPE pipeline has had

the least amount of development, with methods ranging

from LS solvers that assume known attitude and do not

compensate for outlier crater matches, to PnP algorithms

that utilise geometrically incorrect 2D-3D crater correspon-

dences. To address the drawbacks of these methods, we

proposed robust PnC for CBPE. By benchmarking the CRE-

SENT dataset, we conclusively demonstrate the limitations

of the traditionally invoked pose estimation methods for

CBPE and demonstrate significant improvements in posi-

tion and observed surface measurement accuracy for the

proposed PnC method.
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