
Deploying Machine Learning Anomaly Detection Models to Flight Ready AI
Boards

James Murphy
Réaltra Space Systems Engineering

jmurphy@realtra.space

Maria Buckley
Ubotica Technologies

maria.buckley@ubotica.com

Léonie Buckley
Ubotica Technologies

leonie.buckley@ubotica.com

Adam Taylor
Adiuvo Engineering & Training
adam@adiuvoengineering.com

Jake O’Brien
Réaltra Space Systems Engineering

jobrien@realtra.space

Brian Mac Namee
School of Computer Science, University College Dublin

brian.macnamee@ucd.ie

Abstract

This study explores the development and implementation
of machine learning (ML) models on Edge-AI boards, aim-
ing to identify the most effective solution for anomaly detec-
tion systems on space missions. We investigate ML anomaly
detection techniques including Autoencoders, Long Short-
Term Memory (LSTM) cells, Isolation Forests, and Trans-
formers. These models were trained on a univariate dataset
derived from real space missions and deployed on diverse
hardware platforms engineered for space environments to
comprehensively assess performance. Specifically, we ex-
plore space flight ready boards (Ubotica CogniSAT-XE1
and XE2, which incorporate Intel’s Myriad 2 and X chips,
respectively); commercial, non-space flight ready, edge-AI
boards (NVIDIA’s Jetson Nano and Google Coral); and
Field Programmable Gate Array (FPGA) implementations
(from Microchip, AMD, and NanoXplore). We compare
the performance of anomaly detection models run on space
flight ready and commercial boards (using CPU perfor-
mance as a benchmark) to provide a thorough comparison
of available platforms for onboard anomaly detection. This
paper provides a detailed examination of both the optimal
ML models and hardware platforms for deploying univari-
ate anomaly detection systems in space flight contexts and
draws conclusions about which ones are most suitable.

1. Introduction

Developments in Artificial Intelligence (AI) and Machine
Learning (ML) technologies have heralded a new era in

various fields, including aerospace engineering and space
exploration. With the increasing complexity, number, and
duration of space missions, the need for advanced onboard
computational capabilities has never been more critical
[11]. Anomaly detection, in particular, plays a pivotal role
in ensuring the safety and success of these missions by iden-
tifying unexpected events or conditions that could lead to
failures or mission-compromising scenarios. Anomaly de-
tection implemented on ground-based monitoring systems
faces significant challenges due to latency in communica-
tion and the vast amount of data generated by spacecraft,
making onboard anomaly detection systems a primary area
of interest. Recently developed advances in space-ready AI
boards have opened up new possibilities for deploying so-
phisticated ML models directly onto spacecraft, enabling
real-time data processing and anomaly detection without
the need for constant communication with Earth [15]. This
capability is crucial for deep-space missions where com-
munication delays can span from minutes to hours. How-
ever, the deployment of such models in space environments
poses unique challenges, including limited computational
resources, stringent power consumption requirements, ther-
mal issues, and the need to withstand a harsh radiation en-
vironment [10].

Given this context, our study focuses on evaluating var-
ious ML models for anomaly detection [20], and their suit-
ability for implementation on different hardware platforms
that are designed to operate in space conditions. By exam-
ining both deep learning and classical learning models, we
aim to evaluate their performance, efficiency and compat-
ibility for detecting anomalies in univariate data collected
during space missions [16]. Moreover, this research extends

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6828



to an in-depth analysis of hardware platforms that are capa-
ble of supporting these ML models in space. This includes
a comprehensive review of flight-ready boards, which are
specifically designed for space applications, FPGA imple-
mentations, and commercial boards that offer potential for
space deployment. This examination also highlights com-
patibility issues with certain models when deployed on
these boards. Through this examination, we seek to iden-
tify the optimal combination of ML models and hardware
platforms to enhance the reliability and autonomy of space
missions by providing effective onboard anomaly detection
capabilities, and therefore provide a valuable contribution
to the community.

This paper proceeds as follows: Sec. 2 describes the
dataset and anomaly detection approaches used in our ex-
periments; Secs. 3 to 5 describe how models are deployed to
commercial edge AI boards, space flight ready boards, and
FPGA devices respectively; Sec. 6 presents and discusses
the results of evaluating model performance on different de-
vices; and Sec. 7 concludes the study and suggests direc-
tions for future work, addressing and offering solutions for
compatibility challenges faced during the deployment pro-
cess, ensuring a seamless integration of ML models with
space-qualified hardware platforms.

2. Model Development
This study explores the performance of different hardware
deployment options for ML models. To facilitate this re-
search, a set of models was developed and evaluated when
deployed on different hardware platforms. This section de-
scribes the dataset used to train and evaluate these models
and the different ML algorithms used.

2.1. Dataset

The experiments described in this paper use a NASA dataset
published by Hundman et al. [16] containing anonymised
satellite telemetry from two sources: NASA’s Soil Mois-
ture Active Passive (SMAP) mission and NASA’s Mars Sci-
ence Laboratory (MSL). The dataset consists of 82 channels
ranging from 1 500 to 9 000 data points. These channels
contain a variety of point and contextual anomalies ideal
for training and testing ML models. Due to the significant
computation required for the experiments presented here,
one channel was selected as a case study for our experi-
ments. We use the F-5 channel as, based on [20], it is the
most representative of the entire dataset.

2.2. Model Architectures Used

In order to investigate the feasibility of anomaly detection
methods, a selection of state of the art ML approaches are
used in our experiments. These are selected based on re-
sults presented be Murphy et al. [20], and are considered to
be the current state of the art in anomaly detection. These

models range from classical ML methods such as Isolation
Forests to some of the newest deep learning architectures
such as Transformers. The model architectures used in this
study are:
• Basic Dense Autoencoder (BasicAE)
• Convolutional Autoencoder (CNNAE)
• Variational Autoencoder (VAE)
• Long Short-Term Memory Autoencoder (LSTMAE)
• Hybrid Autoencoder with CNN Encoder & LSTM De-

coder (HybridAE)
• Transformer
• Isolation Forest
These models were trained using the Keras environment via
TensorFlow 2 in Python [2]. The optimal network architec-
tures were also chosen by using Keras-Tuner as a pseudo-
hyperparamater search.

3. Deployment on Commercial Edge AI Boards
With the multitude of devices to run AI “on the Edge” avail-
able today, there has been a push in the space sector to
qualify and fly commercial Edge-AI boards. In this study,
we include representative examples from this category that
are not currently recognised as space flight ready, but that
have qualified flight ready examples from space engineering
companies in different form factors. The Edge-AI boards
used in this study, and described below, could be made flight
ready, or are already undergoing certification for flight.

3.1. Raspberry Pi 4

The Raspberry Pi 4 offers enhanced processing power and
memory capacity, making it a viable platform for deploy-
ing basic ML models. The Raspberry Pi 4 features a pow-
erful Broadcom BCM2711, quad-core Cortex-A72 (ARM
v8) 64-bit SoC running at 1.5GHz [22]. The Raspberry Pi
has already flown in previous space missions such as ESA’s
Astro Pi mission and has run on several CubeSat systems as
testbeds. This makes the Raspberry Pi an interesting system
to include in this study. Running models on a Raspberry Pi
4 is relatively straightforward thanks to the Linux based Op-
erating System (OS), Raspbian. This only involves loading
saved TensorFlow models into a Python script and running
directly on the OS.

3.2. Google Coral

The Google Coral is powered by a quad Cortex-A53 and
uses a Google Edge Tensor Processing Unit (TPU) [5]. It is
also optimized for TensorFlow Lite (TFLite) [7], enabling it
to run deep learning models with a smaller power footprint.
This efficiency makes it ideal for Edge-AI, where process-
ing power and energy availability are often limited. The
Google Coral is currently in operation on-board the Inter-
national Space Station (ISS) as part of a NASA mission to

6829



explore Edge-AI devices in space. To deploy saved Ten-
sorFlow models onto a Google Coral, they must first be
converted to TFLite format and then ported to the Coral.
The Coral runs a Python script directly onboard through its
OS and references the imported TFLite model files. Unfor-
tunately, the requirement to convert models to TFLite has
precluded several models in this study from being deployed
to the Google Coral due to compatibility issues.

3.3. NVIDIA Jetson Nano

The NVIDIA Jetson Nano is a compact but powerful
computing platform used by many terrestrial applications.
Equipped with an NVIDIA Graphics Processing Unit
(GPU), the Jetson Nano is capable of running parallel com-
putations essential for deep learning models. This makes
it ideal at processing the complex calculations required for
ML tasks efficiently. The Jetson Nano is ideal for space ap-
plications where power availability is limited. Its energy ef-
ficiency does not come at the cost of performance, making
it a balanced choice for demanding tasks [6]. The Jetson
Nano is likely the most compatible system for deploying
ML anomaly detection models as it runs its own version of
Ubuntu on the development board. This allows all forms of
machine learning frameworks to be used and deployed. The
Nano runs a customised version of Ubuntu which has ac-
cess to standard ML libraries such as TensorFlow, and has
CUDA available natively [6]. This means that running Ten-
sorFlow models onboard is very straightforward and simply
a matter of loading and running the TensorFlow model files
as if on a standard computer system.

4. Myriad Based Systems Implementation
The Ubotica CogniSAT-XE1 and CogniSAT-XE2 On-Board
AI Payload Processors bring Computer Vision (CV) and AI
compute acceleration to a PC/104 form-factor for Small-
Sat and CubeSat missions. They are built around the In-
tel Movidius Myriad 2 and Intel Movidius Myriad X CV
and AI Vision Processing Units (VPU), respectively, whose
custom vector processors provide high-performance paral-
lel and hardware accelerated compute within a low power
envelope. Either Gigabit Ethernet or USB2.0/3.0 can be
used as the primary control and data interface to the payload
processors, enabling data rates sufficient to handle many
CV and AI applications at near-streaming throughput. Both
the Myriad 2 and Myriad X have flight heritage, and both
have been subjected to radiation test campaigns and have
been qualified for space flight [9, 10, 12].

The Myriad 2 flew as part of the Φ-Sat-1 mission which
was the first Earth observation CubeSat to include a dedi-
cated AI accelerator on board to run a neural network. The
CogniSAT-XE1 will fly on the Φ-Sat-2 mission, a 6U Cube-
sat due to launch in 2024. This will allow developers to run
neural networks on the XE1 during flight [15, 19]. Since

Figure 1. Complete conversion flow from the CogniSAT training
environment

March 2024, the XE2 has flown as part of the CogniSAT-
6 mission, a Live Earth Intelligence satellite developed by
Ubotica and Open Cosmos.

4.1. Network Compilation and Deployment

Common ML frameworks (e.g., TensorFlow, PyTorch,
Caffe) can be used for neural network (NN) model devel-
opment and training, with the model subsequently compiled
to target the Myriad device using Intel’s OpenVINO toolkit.
To compile an NN model to a Myriad device, each layer of
the NN must be supported by OpenVINO [3]. Additional
layer support has been added with each release of Open-
VINO. As OpenVINO 2020.3 is the latest version that sup-
ports the Myriad 2, it can happen that layers that are sup-
ported by OpenVINO 2022 and the Myriad X, are not sup-
ported by OpenVINO 2020, and therefore certain network
architectures cannot be compiled to the Myriad 2.

In order to run a network on the CogniSAT hardware, a
Myriad-specific version must be compiled. This is a two
step process, optimise and compile, and is shown in Fig. 1.

The Model Optimiser is used to improve final model per-
formance by applying optimisation methods such as quanti-
sation and pruning [3]. Common pre-processing operations
can be integrated into the network using the Model Opti-
miser, such as normalisation using scale and mean values,
and input channel order swapping. The network format gen-
erated using the Model Optimiser is platform agnostic and is
known as an Intermediate Representation (IR). The IR can
be deployed to Intel CPUs and GPUs as well as the Myriad
using OpenVINO [4]. Compilation of the IR to a Myriad
specific format is performed using a compilation tool pro-
vided by OpenVINO [4]. Parameters such as the input and
output precision (e.g., FP32, FP16) can be specified using
the compile tool.

Ubotica’s CogniSatApp software allows for the de-
ployment of NNs to CogniSAT hardware. The use of
JavaScript Object Notation (JSON) configuration files al-
lows for easy deployment of new applications without the
need to write/alter any code. The design of CogniSatApp

6830



Table 1. Results for compiling and running the models on the XE1
and XE2

Model Architecture Compatibility
XE1 XE2

BasicAE Yes Yes
CNNAE Yes Yes
HybridAE No Yes
LSTMAE No Yes
Transformer No Yes
VAE No No
Isolation Forest No No

addresses pre- and post-processing in a generic manner, al-
lowing for no or multiple pre- and post-processing opera-
tions to be deployed.

4.2. Model Compilation

The models used in this study are exported from the Keras
framework [2], and are provided in the .h5 format. The NN
optimisation and compilation flow described in the previous
section is followed for each of these networks. It was found
that not all networks could be compiled for the XE1, and
mitigating steps were required to compile some of the NNs
for the XE2. This is summarised in Tab. 1, where “Yes”
means that the model is supported and “No” means that the
model is not supported.

The BasicAE and CNNAE networks compiled and ran
on both the XE1 and XE2 successfully. The Transformer
network compiled and ran on the XE2, but could not be
compiled to run on the XE1 due to layers not being sup-
ported. Both the HybridAE and LSTMAE networks were
compiled to run on the XE2, but required a conversion to
ONNX (Open Neural Network Exchange) due to layer in-
compatibility (Tensorflow Loop v5) when converting di-
rectly from the provided .h5 network format. These net-
works could not be compiled to run on the XE1 due to spe-
cific layers not being supported. Finally, the VAE could not
be successfully compiled to run on either board due to the
limitations of OpenVINO with custom layers and loss func-
tions required by variational autoencoders. Isolation forests
were also found to be incompatible with both the Myriad 2
and Myriad X architectures. However, this was a layer issue
and in general, should not preclude other classical learning
architectures from being deployed.

4.3. Deployment and Model Assist Pipeline

When deploying models to the Myriad, comparison against
a test and validation dataset is required, as well as compar-
ison against the performance obtained when running on the
CPU using Keras. For this purpose, the Model Assist appli-
cation was developed.

Figure 2. Model Assist application flow diagram

The Model Assist application allows for easy deploy-
ment of the networks on CPU (using Keras) and on the XE1
or XE2, and to allow for comparison of inference metrics
and benchmarking parameters. The application performs
pre- and post-processing according to the specified network
architecture. A flow diagram of the application can be seen
in Fig. 2. Specification of the model architecture, pre- and
post-processing, and data directory structure are provided
in a JSON configuration file, and the runmodes are spec-
ified by the user with runtime arguments. The application
allows for each network to be run on: CPU using Keras, and
XE1 and XE2 using CogniSatApp.

Batch processing was implemented for some of the mod-
els when running inference on the XE1 and XE2. Batch
processing is particularly advantageous when the duration

6831



required to transfer the input data from the host machine to
the inference engine is significantly greater than the infer-
ence time itself. The batch size that resulted in the highest
throughput was selected for each model.

The XE1 and XE2 were deployed to the XE1 and XE2
over USB.

5. Deployment onto FPGAs
Satellites intended for use in geostationary orbit, or on
deep space exploration missions, utilise radiation qualified
Field Programmable Gate Arrays (FPGA), typically QML
V (Qualified Manufacturer List) due to higher radiation en-
vironments. These devices are provided from a range of
manufacturers including Microchip, AMD and NanoXplore
[13], and each mission typically uses a different FPGA tech-
nology depending upon the performance and size require-
ments of the mission. In this study we evaluate models de-
ployed onto a range of FPGA devices.

The most objective solution is to create a device inde-
pendent system, i.e., can use any underlying FPGA tech-
nology. This rules out vendor solutions which tie the sys-
tem to a particular FPGA technology. Some vendors such as
NanoXplore do not provide ML frameworks for their tech-
nology to be used in this scenario [13].

5.1. Implementing Neural Networks for FPGA

Implementing a generic ML solution for FPGA can be
achieved in several different ways. The first would be to
implement the network using a Hardware Description Lan-
guage (HDL). Such an approach, however, would bring
with it complexity of conversion from the model to the
Register-Transfer Level (RTL) implementation and prohibit
the scaling of the solution and easy modification. There
would also be the traditional FPGA challenges of verifica-
tion of the design prior to implementation [13].

A second approach would be to leverage commercial
tools such as MATLAB / Simulink which enable the gen-
eration of HDL from models. However, this approach re-
quires the use of high performance external memory such
as DDR3/4. External memory may not be available for all
deployed applications.

The final potential approach is to implement the neural
network using TinyML [8, 21] deployed on a small softcore
processor that can be implemented within the FPGA fabric.
The advent of several open source softcore RISC-V proces-
sors ensures this can be a technology independent solution.
This enables the implementation of a RISC-V core within
a target FPGA, while the network is compiled using the in-
dustry standard framework of TensorFlow Lite for Micro-
controllers to implement the solution [7]. In this RISC-V
based approach the application executes from the tightly
coupled block RAM memories of the target FPGA. This
means the FPGA programming file can be generated with

the application included. It also means that a deployment
framework which can enable on-the-bench and in-orbit re-
configuration can be created, as the tool flow and object
generation is very straightforward (summarised in Fig. 3).
There is no need for the FPGA design to be changed to up-
date the network.

For this study, several RISC-V cores were considered,
including the offerings from NIOSV, MicroBlaze V, and
MiV32 along with Open Source RISC-V Processors includ-
ing VexRISCV, NEORV32, IBEX and SERV. The processor
selected was the NEORV32 as this provided the most com-
plete package of configurable system-on-chip (SoC), built
tools and an advanced extensible interface (AXI) for in-
terfacing with several different peripherals should it be re-
quired [1].

5.2. Toolchains and Development Flow

One additional key consideration in this work has been the
ease of re-targeting between FPGA vendors for deployment.
As such, vendor tool chains are only used to perform the im-
plementation and bit stream generation. To avoid the added
complexity of creation of multiple build scripts required for
different vendors, it was decided to use the open source
build tool FuseSoC [18]. FuseSoC is a package manager
and build system for HDL code, and allows easy definition
of several targets. At the heart of FuseSoC is the concept
of a core, this is a reusable element of IP. With the IP Cores
defined, the FuseSoC package manager and build system is
able to organise the design we intend to create. EDALize is
then called from within FuseSoC to create the specific elec-
tronic design automation (EDA) tool projects. Using Fus-
eSoC creates a flexible build chain which is able to target
any of the target devices [18].

In addition to FuseSoC, to enable portability and scal-
ability of the solution the NEORV32 processors was pro-
vided with a generic wrapper which enables its integration
with FPGA Architect SysML to structural Register Transfer
Level (RTL) Framework. This enables the integration of the
machine learning processor within larger FPGA designs.

FPGA Architect is a graphical FPGA architectural tool
which enables developers to capture the architecture of the
design graphically. Once captured graphically the diagram
can be generated as VHDL. This implementation is inter-
face aware and creates all of the AXI networks to ease de-
velopment. The source created is also vendor independent.

As we are targeting FPGA architectures, we need to
consider the deployment requirements of the AMD Kintex
KU60 as it is an industry standard for space missions [14].
When targeting the AMD Kintex KU60 using FuseSoC to
build the design results in a small, compact implementa-
tion, which uses under 3% of the available resources of the
FPGA. For bench testing the NEORV32 is deployed with
its standard boot loader application which allows new exe-

6832



Figure 3. FPGA Development Flow Diagram

cutables to be uploaded and run over the serial port.
Deploying models onto the FPGA at the initial stage is

achieved by taking the Tensorflow models and converting
them to TFLite models, which are then converted into C
header files for use with TFLite for Microcontrollers.

6. Evaluating Deployment Options
To identify the optimal combination of ML models and
hardware platforms for reliability and autonomy of space
missions through effective onboard anomaly detection ca-
pabilities, we have performed an evaluation experiment to
compare the performance of the models described in Sec. 2
when deployed on the commercial and space flight ready
hardware solutions described in Secs. 3 and 4. Performance
on a CPU (Intel i9 14th generation) is also included for
refenrece. After deploying these models to each of the hard-
ware solutions, we evaluate the performance using the test
dataset described in Sec. 2.1. Anomaly detection perfor-
mance is measured using the Area Under the Receiver Op-
erating Characteristic Curve (AUC ROC) and the F1 Score
measure [17]. The throughput of models during deploy-
ment, measured in Inferences Per Second (IPS), and their
power consumption, measured in Watts, are also monitored.
In order to consider a solution suitable for space flight use,
we set the minimum inferencing throughput at 100Hz and
the maximum power draw to be 5W as these are good base-
lines for small satellite missions due to the power restric-
tions and average on-board data-rates. This will give us
a baseline for the feasibility of operating these models on

Small Satellite missions.

6.1. Results

The results from this experiment are displayed in Tab. 2 and
Fig. 4. The table combines all measures used in this study
to understand the relationships between the models them-
selves and the boards they are deployed on. The heatmaps
in Fig. 4 are used to visualise the relationships between the
key measures in order to help choose a device and model
architecture for future anomaly detection missions.

6.2. Discussion

The comparison of inferencing performance in Tab. 2 yields
interesting results. Although the same models were de-
ployed onto all boards, there are slight differences in some
AUC and F1 scores between inferencing directly on the
model and inferencing on a loaded TensorFlow .h5 file
for some model architectures. There were also some dif-
ferences caused by differences in floating point accuracies
present in some systems compared to running on a CPU ca-
pable of FP64. Some other aspects that may have affected
results could be not running ML models via CUDA on the
Nano and the conversion process to TFLite required for in-
ferencing on the Coral. The most surprising result is how
well the Raspberry Pi performed, given it is not optimised
for ML models.

Another interesting outcome is the relatively high
throughput of the Isolation Forest. This is likely due to its
computationally simplicity compared to the neural network
models. However, it was higher in power draw than almost
all other models and lower in overall accuracy.

Generally, these results are inline with what is expected
from the datasheets for each device, especially when it
comes to throughput. One surprising outcome is how close
all of the devices are in power draw with the most power
hungry system, the Raspberry Pi, only just going above 5W
of total power during inferencing. The idle power consump-
tion for the XE1 device is 0.73W and for the XE2 is 1.22W.
Idle power for the Nano is 3.7W, the Coral is 3.45W and the
Pi is 3.5W. Relative power consumption is the total power
consumption minus the idle power consumption.

7. Conclusion

The ideal model to use for anomaly detection is highly de-
pendent on the hardware available. This study shows that,
like in previous work [20], the LSTM Autoencoder is the
best performing model when it comes to model accuracy,
but pays for this with slow inferencing times and compat-
ibility issues. However, if we consider how newer boards
and frameworks are dealing with these compatibility issues,
it is likely that in future iterations of these devices this will
no longer be an issue.

6833



Table 2. Performance Metrics for models running on all devices.

.

Model Inferences Per Relative Power
Architecture Device ROC Area F1 Score Second (IPS) Consumption (W)
Basic AE CPU 0.857 0.730 10 467 -

XE1 0.857 0.730 2 4001 0.92
XE2 0.784 0.669 134 0002 0.96
Jetson Nano 0.857 0.848 4 979 1.33
Raspberry Pi 0.754 0.730 5 132 1.02
Google Coral 0.857 0.730 5 555 1.12

CNN AE CPU 0.860 0.545 5 328 -
XE1 0.861 0.545 1 9001 1.04
XE2 0.842 0.545 4 9001 1.04
Jetson Nano 0.860 0.545 2 695 2.77
Raspberry Pi 0.860 0.545 1 434 1.56
Google Coral 0.860 0.545 2 217 0.87

LSTM AE CPU 0.903 0.892 827 -
XE1 - - - -
XE2 0.679 0.646 44 1.46
Jetson Nano 0.885 0.848 118 2.32
Raspberry Pi 0.885 0.848 101 2.15
Google Coral - - - -

Hybrid AE CPU 0.907 0.810 1 677 -
XE1 - - - -
XE2 0.729 0.465 112 1.13
Jetson Nano 0.585 0.413 525 1.97
Raspberry Pi 0.585 0.413 370 1.47
Google Coral - - - -

Transformer CPU 0.863 0.764 4 630 -
XE1 - - - -
XE2 0.754 0.703 3 2001 1.03
Jetson Nano 0.754 0.703 2 192 2.15
Raspberry Pi 0.754 0.703 2 106 1.85
Google Coral - - - -

VAE CPU 0.770 0.779 8 285 -
XE1 - - - -
XE2 - - - -
Jetson Nano 0.729 0.733 3 488 1.44
Raspberry Pi 0.729 0.733 3 634 1.02
Google Coral - - - -

Isolation Forest CPU 0.776 0.514 52 867 -
XE1 - - - -
XE2 - - - -
Jetson Nano 0.776 0.514 28 215 3.74
Raspberry Pi 0.776 0.514 30 791 3.92
Google Coral - - - -

1Batch size 100
2Batch size 1000

6834



CPU Google
Coral

Jetson
Nano

Raspberry
Pi

XE1 XE2

Device

Basic
AE

CNN
AE

Hybrid
AE

Isolation
Forest

LSTM
AE

Transformer

VAE

M
od

el
 A

rc
hi

te
ct

ur
e

0.86 0.86 0.86 0.75 0.86 0.78

0.86 0.86 0.86 0.86 0.86 0.84

0.91 0.58 0.58 0.73

0.78 0.78 0.78

0.90 0.89 0.89 0.68

0.86 0.75 0.75 0.75

0.77 0.73 0.73

0.5

0.6

0.7

0.8

0.9

1.0

(a) ROC Area

CPU Google
Coral

Jetson
Nano

Raspberry
Pi

XE1 XE2

Device

Basic
AE

CNN
AE

Hybrid
AE

Isolation
Forest

LSTM
AE

Transformer

VAE

M
od

el
 A

rc
hi

te
ct

ur
e

0.73 0.73 0.85 0.73 0.73 0.67

0.55 0.55 0.55 0.55 0.55 0.55

0.81 0.41 0.41 0.47

0.51 0.51 0.51

0.89 0.85 0.85 0.65

0.76 0.70 0.70 0.70

0.78 0.73 0.73

0.0

0.2

0.4

0.6

0.8

1.0

(b) F1 Score

CPU Google
Coral

Jetson
Nano

Raspberry
Pi

XE1 XE2

Device

Basic
AE

CNN
AE

Hybrid
AE

Isolation
Forest

LSTM
AE

Transformer

VAE

M
od

el
 A

rc
hi

te
ct

ur
e

10467 5555 4979 5132 2400 134000

5328 2217 2695 1434 1900 4900

1677 525 370 112

52867 28215 30791

827 118 101 44

4630 2192 2106 3200

8285 3488 3634 102

103

104

105

(c) Inferences Per Second (IPS) (note log scale)

CPU Google
Coral

Jetson
Nano

Raspberry
Pi

XE1 XE2

Device

Basic
AE

CNN
AE

Hybrid
AE

Isolation
Forest

LSTM
AE

Transformer

VAE

M
od

el
 A

rc
hi

te
ct

ur
e

1.12 1.33 1.02 0.92 0.96

0.87 2.77 1.56 1.04 1.04

1.97 1.47 1.13

3.74 3.92

2.32 2.15 1.46

2.15 1.85 1.03

1.44 1.02

0

1

2

3

4

5

(d) Relative Power Consumption (W)

Figure 4. Heatmaps of performances by device and models.

As we set out to gauge the capability of these devices to
run anomaly detection models in Small Satellite missions
with the given targets of 100Hz inferencing throughput and
a maximum power draw of 5W, almost all of these models
and devices have shown that they are effective choices for
deployment in space missions. As all of these devices have
space heritage, albeit in some cases in different form fac-
tors, the decision of which device to use will be determined
by the mission profile and power available.

It is clear that more work is needed by the community

on compatibility problems, particularly with newer model
architectures. However, it is also clear how much potential
these models have within the space domain. The planned
next steps include expanding the solutions compared (in-
cluding FPGA) and developing multivariate models to ex-
pand anomaly detection capabilities to the entire satellite
rather than individual channels. The far future goal is to fly
these models in satellite systems and prove how valuable
they can be.

6835



References
[1] https://stnolting.github.io/neorv32/ug/.

Accessed: 2024-03-08. 5
[2] https://keras.io/. Accessed: 2024-03-08. 2, 4
[3] https : / / docs . openvino . ai / 2022 . 3 /

openvino_docs_model_optimization_guide.
html. Accessed: 2024-03-08. 3

[4] https : / / docs . openvino . ai / 2022 . 3 /
openvino_docs_model_optimization_guide.
html. Accessed: 2024-03-08. 3

[5] https://coral.ai/products/dev-board/. Ac-
cessed: 2024-03-08. 2

[6] https://www.nvidia.com/en-us/autonomous-
machines/embedded- systems/jetson- nano-
developer-kit/. Accessed: 2024-03-08. 3

[7] https://www.tensorflow.org/lite. Accessed:
2024-03-08. 2, 5

[8] N. N. Alajlan and D. M. Ibrahim. Tinyml: Enabling of infer-
ence deep learning models on ultra-low-power iot edge de-
vices for ai applications. Micromachines, 13(6):851, 2022.
Line 341. 5

[9] L. Buckley, A. Dunne, G. Furano, and M. Tali. Radiation
test and in orbit performance of mpsoc ai accelerator. In
2022 IEEE Aerospace Conference (AERO), pages 1–9, Big
Sky, MT, USA, 2022. IEEE. 3

[10] Megan Casey, Ed Wyrwas, and Rebekah Austin. Recent ra-
diation test results on cots ai edge processing asics. In NEPP
Electronics Technology Workshop (ETW), 2022. 1, 3

[11] I. Del Portillo, B. G. Cameron, and E. F. Crawley. A tech-
nical comparison of three low earth orbit satellite constella-
tion systems to provide global broadband. Acta astronautica,
159:123–135, 2019. 1

[12] E. Dunkel, J. Swope, Z. Towfic, S. Chien, D. Russell, J.
Sauvageau, D. Sheldon, J. L. Romero-Canas, and L. Buck-
ley et al. Espinosa-Aranda. Benchmarking deep learning in-
ference of remote sensing imagery on the qualcomm snap-
dragon and intel movidius myriad x processors onboard the
international space station. In IGARSS 2022-2022 IEEE
International Geoscience and Remote Sensing Symposium,
pages 5301–5304. IEEE, 2022. 3

[13] H. Foster. The 2022 wilson research group functional verifi-
cation study. Siemens. com, 2023. 5

[14] C. M. Fuchs, P. Chou, X. Wen, N. M. Murillo, G. Furano,
S. Holst, and K. Marinis. A fault-tolerant mpsoc for cube-
sats. In 2019 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–6. IEEE, 2019. 5

[15] G. Giuffrida, L. Fanucci, G. Meoni, M. Batic, L. Buckley,
A. Dunne, Č. van Dijk, M. Esposito, J. Hefele, and N. et al.
Vercruyssen. The φ-sat-1 mission: The first on-board deep
neural network demonstrator for satellite earth observation.
IEEE Transactions. 1, 3

[16] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T.
Soderstrom. Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding. In Proceedings of the
24th ACM SIGKDD international conference on knowledge
discovery data mining, pages 387–395, 2018. 1, 2

[17] John D Kelleher, Brian Mac Namee, and Aoife D’arcy. Fun-
damentals of machine learning for predictive data analytics:
algorithms, worked examples, and case studies. MIT press,
2020. 6

[18] O. Kindgren. A scalable approach to ip management with
fusesoc. In 1st Workshop on Open-Source Design Automa-
tion (OSDA), 2019. 5

[19] N. Longepé, N. Melega, V. Marchese, A. Paskeviciute, I.
Babkina, I. Petrelli, M. Casaburi, D. Peressutti, and N. O.
Kadunc. φsat-2 mission overview for the orbitalai challenge,
version 1.0. Tech. rep., European Space Agency, 2023. 3

[20] J. Murphy, J. E. Ward, and B. Mac Namee. An overview of
machine learning techniques for onboard anomaly detection
in satellite telemetry. In 2023 European Data Handling Data
Processing Conference (EDHPC), pages 1–6. IEEE, 2023. 1,
2, 6

[21] P. P. Ray. A review on tinyml: State-of-the-art and prospects.
Journal of King Saud University-Computer and Information
Sciences, 34(4):1595–1623, 2022. 5

[22] E. Upton and G. Halfacree. Raspberry Pi user guide. John
Wiley Sons, 2016. 2

6836

https://stnolting.github.io/neorv32/ug/
https://keras.io/
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/2022.3/openvino_docs_model_optimization_guide.html
https://coral.ai/products/dev-board/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano-developer-kit/
https://www.tensorflow.org/lite

	. Introduction
	. Model Development
	. Dataset
	. Model Architectures Used

	. Deployment on Commercial Edge AI Boards
	. Raspberry Pi 4
	. Google Coral
	. NVIDIA Jetson Nano

	. Myriad Based Systems Implementation
	. Network Compilation and Deployment
	. Model Compilation
	. Deployment and Model Assist Pipeline

	. Deployment onto FPGAs
	. Implementing Neural Networks for FPGA
	. Toolchains and Development Flow

	. Evaluating Deployment Options
	. Results
	. Discussion

	. Conclusion

