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Abstract

In this research, a novel approach for autonomous
spacecraft navigation, particularly in lunar contexts, is pre-
sented, focusing on vision-based techniques. The system
incorporates lunar crater recognition in conjunction with
feature tracking to enhance the accuracy of spacecraft nav-
igation. This system underwent comprehensive evaluation
through a purpose-built software simulation, replicating lu-
nar conditions for thorough evaluation and refinement. The
methodology integrates established navigational methods
with advanced artificial intelligence algorithms, resulting in
significant navigational accuracy. The system demonstrates
precise capabilities in determining the spacecraft position,
with an average accuracy of approximately 270 m for the
absolute navigation mode, while the relative mode exhib-
ited an average error of 27.4 m and 0.8 m in determining the
horizontal and vertical lander displacements relative to ter-
rain. Initial tests on embedded systems—akin to those on-
board spacecraft—were conducted. These tests are pivotal
in demonstrating the system’s operational viability within
the constraints of limited bandwidth and rapid processing
requirements characteristic of space missions. The promis-
ing results from these tests suggest potential applicability in
real-world space missions, enhancing autonomous naviga-
tion capabilities in lunar and potentially other extraterres-
trial environments.

1. Introduction and Background
The Lunar exploration venture has gathered renowned at-
tention in recent years. The scientific interest in lunar ex-
ploration, especially in the polar regions with confirmed
ice, is spurring efforts to establish bases and conduct sam-
pling [3]. On February 22 2024, the Nova-C lander, named

Odysseus and developed by Intuitive Machines, success-
fully concluded a seven-day orbital transit to the Moon. It
achieved a soft landing in proximity to Malapert A crater,
located within the Moon’s South Pole region, at 18:24 East-
ern Standard Time1. The revival in manned moon mis-
sions challenges navigation systems, as space missions face
high costs and operational limits with networks like DSN or
ESTRACK. Additionally, unreliable satellite links and in-
accessible ground stations complicate real-time command
transmission. Notwithstanding, acquiring knowledge of the
spacecraft’s position and orientation is imperative for navi-
gating around a planetary body or conducting In-Orbit Ser-
vicing (IOS) and Active Debris Removal (ADR) operations.
In these challenging scenarios, optical navigation (OPNAV)
methods can be a viable tool for determining the spa-
tial orientation and coordinates of a spacecraft, as well-
documented in the literature [16]. Indeed, Visual-Based
Navigation (VBN) strategies are implemented to ascertain
a spacecraft’s spatial orientation and coordinates. This
methodology leverages image data and is bifurcated into
two primary categories, contingent upon the relative prox-
imity of the spacecraft to the celestial body [2]. Firstly,
the horizon-based approach is pertinent when a substantial
segment of the celestial body is discernible within the cap-
tured imagery. Conversely, as the spacecraft approaches the
vicinity of the target surface, the focus shifts to landmark-
based navigation [7]. This technique involves the identi-
fication and utilization of distinct topographical features,
such as craters, boulders, or other unique terrain elements,
for precise positional determination [2]. In the ambit of
VBN, various sensor options exist, including monocular
stereo cameras, thermal sensors RGB/greyscale cameras,
RADARs, LIDARs, among others. Monocular cameras are

1https://www.nasa.gov/missions/lro/nasas-lro-images-intuitive-
machines-odysseus-lander/
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often preferred over other active sensors such as LIDARs
and RADARs due to their relative simplicity, compact size,
lightweight nature, minimal power requirements, and ease
of integration into a wide array of spacecraft configurations.
Over the past decade, spacecraft navigation based on vi-
sion has employed hand-crafted features described using
feature descriptors and identified through feature detec-
tors. The recent leaps in Deep Learning (DL) have led
to substantial advancements in the development of com-
puter vision algorithms, enhancing their efficacy and robust-
ness across various applications, including image classifica-
tion [41] and segmentation [26]. Reflecting this trend, the
rise of DL-based spacecraft pose estimation algorithms has
recently surpassed that of traditional feature-engineering-
based methods [29]. Indeed, the application of Artificial In-
telligence (AI) in VBN addresses several challenges, such
as noise, variable lighting, and changing shadow patterns
in imaging systems. AI’s adaptability to these conditions
enhances intelligent data analysis, and interpretation from
onboard sensors, aiding rapid and well-informed decision-
making. As stated above, locating a spacecraft flying near
a celestial body with a monocular camera usually involves
employing object detection techniques tailored to identify-
ing surface landmarks. DL-based Object detectors play a
crucial role in this effort, facilitating the detection of spe-
cific features on the celestial body’s surface, and have been
widely implemented in lunar crater detection tasks for nav-
igation and geological purposes [40] [33].
The AI integration in spacecraft brings distinct challenges,
particularly the limitation of low power availability, which
impacts the choice of AI models. Effective real-time per-
formance of an AI model requires meticulous selection of
its architecture. This involves strategies to reduce inference
times and computational complexity, including model quan-
tization and distillation. The development of AI-specific
processors is helping to overcome these barriers, enabling
the practical use of AI in both terrestrial and onboard satel-
lite applications. Nowadays, AI has been integrated into
various Earth Observation (EO) missions. The ϕ-Sat-1 [15],
equipped with an AI-accelerated chip for cloud detection,
pioneered this integration. This development was followed
by other significant missions like HYPSO-1 [1], WildRide
[14, 25], and OPS-SAT [17], each serving different pur-
poses.
In the framework of VBN for lunar landing, numerous so-
lutions employing AI methodologies have been proposed.
Nonetheless, their practical application onboard satellites
has been evaluated in rare cases. For instance, the strat-
egy employed by Downes et al. [8], reformulated the crater
detection challenge into a segmentation task, utilizing a U-
net architecture. Their U-net, based on the architecture
of DeepMoon [33], which detected lunar craters from el-
evation imagery, underwent further training with 800 Lu-

nar Reconnaissance Orbiter Camera (LROC) intensity im-
ages. The identified craters are treated as features that are
tracked using an Extended Kalman Filter (EKF). However,
this segmentation-based method tends to be inefficient in
terms of computational resource utilization. The inherent
increase in parameters due to the decoder component esca-
lates the inference time, a factor critical to consider for on-
board systems. Moreover, a segmentation approach restricts
the integration of alternative image processing techniques
such as dilation, erosion, and ellipse fitting for crater de-
tection. These additional steps further increase latency and
become superfluous when utilizing an optimally designed
network architecture capable of directly addressing the de-
tection task.
In [34], a crater detector employing the Single Shot Detec-
tor (SSD) [23] architecture coupled with MobileNetV2 [31]
has been utilised to highlight craters in images of the lu-
nar surface. This detector was trained via transfer learn-
ing, leveraging a simulated portion of the Moon derived
from a Digital Elevation Model (DEM) generated in Pangu
[24]. The network has been implemented on a Raspberry
Pi 4 equipped with an Intel® Movidius™ Neural Compute
Stick, achieving an inference time of 0.4 seconds per image.
To the best of the authors’ knowledge, the work discussed
herein represents the closest parallel to our own. Notwith-
standing, there are notable distinctions: a) the referenced
study utilized simulated imagery rather than authentic Lu-
nar Reconnaissance Orbiter (LRO) images for training the
crater detector; b) the synthetic images are acquired over
a handcrafted lunar surface portion, and not over a high-
fidelity surface reconstructed from the LRO Laser Altime-
ter (LOLA) generated DEM; and c) it employed a singu-
lar mode (absolute) which may not be optimally suited for
lower altitudes where crater prevalence is limited. In this
manuscript, we advance the field by introducing a dual-
mode system designed to effectively address the scarcity
of craters. In summary, the principal contributions of this
research are as follows:

1. Development of a novel dual-mode VBN system: we
propose a unique VBN system with dual operational
modes, tailored to the spacecraft’s varying altitude.

2. System evaluation: we conduct an in-depth analysis of
the proposed system, focusing on accuracy and timing in
position estimation within a targeted trajectory.

3. Model testing on embedded hardware: Focusing on
the AI component, this research includes preliminary
testing of the crater detection module on specialized
hardware, specifically evaluating the algorithm’s effi-
ciency and latency.

The structure of the following sections of the manuscript is
arranged as follows: Section 2 presents an exhaustive delin-
eation of the proposed system architecture, elaborating on
each constituent component in detail. Section 3 elucidates
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the designated target trajectory and imparts numerical find-
ings on navigation performance across the examined modal-
ities. Section 4 furnishes a comprehensive synopsis of the
current progress and delineates the requisite steps for the
system’s integration onboard. The manuscript culminates
with Section 5, which provides a conclusive summary.

2. Dual-Mode VBN
In the lunar environment, craters are the perfect landmark
candidates due to their distinct shape and morphology,
which results in their rims casting sharp shadows. Craters
represent a particular type of visual landmark present in
the lunar environment that can be observed under vari-
ous lighting conditions and with a diverse array of sen-
sors. Presently, crater databases encompass the majority
of craters with diameters larger than 1–2 km [30]. It is
therefore easy to envision a navigation system that lever-
ages these topographical markers and correlates them with
an extensive catalogue to achieve terrain-based navigation.
Many DL-based lunar crater detectors have been proposed
[8] [33] [34] [40].

As the lander’s altitude decreases, however, fewer and
fewer craters are framed by the camera; moreover, the
craters that are framed are too small to be surveyed in a lu-
nar crater catalogue. It follows that this approach well suits
the preliminary descent phase, from the 100 km Low Lunar
Orbit (LLO) to an altitude of about 10 km, where many, dis-
tinct and catalogued craters are visible in the sensor’s FOV.
Hence, as the lander’s altitude descends below 10 km, a
shift to a relative visual navigation algorithm becomes nec-
essary. This relative operational mode would no longer rely
on crater-based markers but instead on tracking common
surface features, like rocks and fissures, across subsequent
frames. The proposed visual navigation pipeline (Figure 1)
will provide navigation support for the entire descent trajec-
tory, including segments where a crater matching strategy is
no longer possible. The following subsections provide com-
prehensive details on the two distinct operational modes.

2.1. Absolute Visual-based Navigation

The proposed crater-based absolute navigation algorithm
unfolds across three main stages. Initially, high-resolution
onboard imagery from a spacecraft is utilized as input for
a Deep Learning-based crater detector. Then, the craters
identified are coupled to a database of known craters via
a robust matching strategy leveraging geometric invariants
[3] [18]. Finally, the camera pose is estimated by solving
the related Perspective-n-Points (PnP) problem [20].
The deep learning-based crater detection module extends
our previous work [4] to be deployed onboard. Comprehen-
sive details about this module are presented in Section 4.
By employing this selected detector, the system is capable
of providing a comprehensive array of potential landmarks

for utilization in subsequent navigation stages. This DL-
based detector has been trained using transfer learning on
more than 800 real lunar monocular images obtained from
the LRO cameras [4]. The crater detector has been validated
on both WAC and NAC camera images, showing a remark-
able mAP50 of above 0.7. In addition, the detector has been
comprehensively tested for its robustness in the presence of
noise, blur [4] and varying lighting conditions [38].
For each identified crater triad within the image, a set of
camera-independent geometric features, namely interior an-
gles and the ratio of crater radii to centroid distance, are
calculated (See Figure 2). These descriptors effectively pre-
serve the angular and spatial distribution of the crater triad.
The same procedure is performed for the catalogue craters.
A catalogue search window is identified based on the lan-
der’s previous position, and assuming a nadir camera point-
ing. It is noteworthy that the number of the crater triads
computed is approximately N3 of the craters under inves-
tigation [3]. In the next phase, two lookup tables are con-
structed, one for the image craters and one for the catalogue
craters, each including the unique identifier of each crater
and the triad’s projective invariants. These tables are then
merged using an inner join operation [3].
The output of the matching pipeline comprises a set of
2D-to-3D correspondences including the coordinates of the
matched craters, both in the camera reference frame and
in the Lunar Centered Lunar Fixed (LCLF) frame. To
tackle the related PnP problem, and thus retrieve the camera
pose in the LCLF frame, the Efficient Perspective-n-Point
(EPnP) problem solver [19], has been employed. Its effi-
ciency is particularly crucial in the resource-limited envi-
ronment of a spacecraft, ensuring minimal computational
burden. Ultimately, solving the PnP problem provides us
with the monocular camera’s pose.

2.2. Relative Visual-based Navigation

As previously discussed in Section 2, the effectiveness of
the crater-based navigation system diminishes as altitude
decreases, given the reduction in visible catalogued craters.
Hence, an alternative approach becomes necessary, which
relies on tracking other salient surface features between
consecutive frames [28] [37]. The proposed feature match-
ing pipeline, integral to the implementation of the relative
navigation algorithm, comprises two primary architectures:
SuperPoint [6] and SuperGlue [32].
The SuperPoint network is a robust architecture for extract-
ing feature points and descriptors from images. It utilizes
a VGG-like [35] encoder to reduce the dimensions of the
input image. Subsequently, two decoders jointly operate
on this shared and spatially reduced representation of the
input, outputting both the keypoints location and descrip-
tors [6]. The network achieves lightness without sacrificing
accuracy, making it suitable for tasks such as Simultane-
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Figure 1. Flow diagram representing the proposed VBN system’s architecture in which the operational mode is selected based on specific
criteria: if the altitude is below 10 km or no craters are detected, the relative mode is chosen. In absolute mode, images undergo crater
detection and crater matches are identified. Then, the pose is estimated to solve the EpNP problem and integrated into the Extended Kalman
Filter (EKF). For the relative mode, it processes two frames at a time and computes their offsets through an essential matrix obtained by
feature tracking, then integrates these offsets into the EKF.

Figure 2. Example of selected projective invariants descriptors for
a crater triad: interior angles and the ratio between crater radii and
centroid distance.

ous Localization And Mapping (SLAM) and Structure from
Motion (SfM) [5] [42] [21].
SuperGlue is a deep learning architecture that aims at
matching sparse local features in images. Assignments are
estimated by solving a differentiable optimal transport prob-
lem, whose costs are predicted by a Graph Neural Network
(GNN). The architecture incorporates a flexible context ag-
gregation mechanism based on attention, allowing it to rea-

son about the underlying 3D scene and feature assignments
[32]. SuperGlue has been widely used in various applica-
tions, including SfM [21]. Recently, the LightGlue [22] ar-
chitecture tackled the problem of sparse feature matching
in a more computationally efficient fashion by dynamically
reducing the number of layers depending on the difficulty
of the input image pair, which varies based on the amount
of visual overlap, appearance changes, or discriminative in-
formation. Furthermore, the network architecture discards
at early stage points that are not matchable, thus focusing its
attention on the visible area [22]. The relative pose between
two consecutive viewpoints is retrieved from the collection
of 2D point correspondences through essential matrix esti-
mation, employing the RANSAC algorithm [13], followed
by the matrix decomposition and check against the cheiral-
ity condition [27]. The scale ambiguity is addressed by in-
corporating the pipeline altimeter measurements generated
within the virtual landing scenario.

3. Numerical Results

To evaluate and validate the performance of the proposed
architecture, a testing pipeline has been established. Firstly,
a dataset of synthetic images has been generated along a
reference descent trajectory (See Section 3.1), to support
the assessment of the VBN module’s performance across
both operational modes. Subsequently, further testing of the
crater detector on dedicated hardware has been performed
to evaluate inference times and power consumption.
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Figure 3. Reference descent trajectory considered for the EL3 lan-
der [36], highlighted alongside the camera’s FOV swath lines (in
green). During the trajectory segment in red, the absolute module
is employed, while the relative module is active in the purple seg-
ment.

3.1. Environment

The study examines a landing trajectory covering approx-
imately 17 kilometers in altitude, with a duration of about
36 minutes. The chosen landing site is situated on the bor-
der of the Shackleton crater (Figure 3), positioned at the lu-
nar South Pole. This selection was made based on analyses
of the average annual exposure to solar illumination, aim-
ing to identify the most viable locations for lunar landings
[39]. While the investigation of optimal landing guidance
falls outside the scope of this study, the reference trajectory
was generated considering fuel consumption and thrust con-
straints, aligning with the specifications of the ESA Large
Logistics Lander (EL3) [36].
The lander’s dynamics were propagated factoring in the fol-
lowing forces acting on the spacecraft for both powered and
ballistic segments: gravitational force from the main celes-
tial body, third body effects from both the Sun and the Earth,
and solar radiation pressure on the spacecraft surface at a
distance of 1 AU from the Sun. The lander has an initial
wet mass of 2500 kg and a dry mass of 1200 kg.
A dataset of synthetic images of the lunar surface was gen-
erated starting from the DEM generated by the LRO LOLA.
With a resolution up to 5 m/pixel, this DEM enabled to con-
struct a high fidelity 3D model of the lunar terrain traversed
by the lander. The surface was subsequently imported into
Unreal Engine 5 [11], leveraging its capabilities to handle
high-polygon meshes and high-fidelity scenes through in-
novative technologies such as Nanite [10], Virtual Shadow
Maps (VSMs) [12] and Lumen [9]. This virtual landing
scenario facilitated the creation of high-resolution images
under varying lighting conditions. Figure 4 depicts the lan-

Figure 4. Reference descent trajectory within the virtual landing
scenario based on Unreal Engine [11] (left). The synthetic image
(a) has been captured from the environment at longitude 0.96° W
and latitude 75.80° S. Image (b) has been generated at longitude
1.66° W and latitude 82.62° S

der’s trajectory within the virtual scenario, alongside two il-
lustrative examples of synthetic images generated from this
environment. A material simulating lunar regolith was ap-
plied to the surface to enhance realism. Post-processing
techniques, such as Contrast Limited Adaptive Histogram
Equalization (CLAHE), were employed to ensure alignment
between the synthetic images dataset and a dataset of real
images captured by the LRO’s Wide Angle Camera (WAC).

3.2. Experiments

Both the absolute and relative navigation algorithms under-
went testing using a sequence of synthetic images gener-
ated from the virtual landing scenario in Unreal Engine.
These images were captured along the reference trajectory
described in Section 3.1. Firstly, the accuracy of the po-
sition estimation was assessed for the absolute operational
mode. Concerning the relative navigation mode, two inves-
tigations were conducted: one focusing on estimating the
displacement error relative to terrain, and the other examin-
ing the relative rotation error along a reference maneuver. A
nadir-pointing camera with a resolution of 1024x1024 and
with a FOV of 90° has been assumed throughout the analy-
ses.

3.2.1 Absolute Mode

The performance assessment of the absolute pose estima-
tion algorithm was conducted according to the following
methodology: a sequence of uniformly spaced images was
captured along the first portion of the landing trajectory, at
15 km of altitude. Each image was input to the absolute
pose estimation algorithm, which performed crater detec-
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tion, matching with the selected catalogue [30] and pose re-
trieval by solving the related PnP problem through the EPnP
solver. The camera frame rate has been set to 1/5 Hz.
Figure 5 provides the outcomes of the crater matching task
for a synthetic image sample that the crater detector has not
encountered during the training phase. The detected craters
(in green) have been matched with the corresponding cata-
logue craters (in yellow).
The average absolute position error has been computed as
the Euclidean norm of the vector difference between es-
timated and true lander positions in the LCLF reference
frame. This mean error has been estimated to be 270.1 m.
For all stages of the absolute navigation algorithm, compu-
tational times were computed using commercial hardware
(Intel® Core™ i7-8086K Processor @5GHz and 16 GB of
system RAM) yielding the following results: approximately
1.08 s on average for the crater detector CPU inference,
about 90 ms for the matching phase, and less than 2 ms
for the EPnP solver.

Figure 5. An example of crater detection and matching. The green
craters are those detected by the crater detector. The yellow craters
are the corresponding catalogue craters.

3.2.2 Relative Mode

The relative navigation algorithm showcased in Section 2.2
has been tested along the final segment of the trajectory,
covering the altitude range from 10 km to 2 km and lasting
approximately 150 seconds. To assess the pipeline’s nav-
igation performance, the displacement error relative to the
ground has been evaluated. Figure 6(a) display said error,
split into its horizontal and vertical components, and eval-

uated at each new frame acquisition along the selected tra-
jectory portion. The camera’s framerate was set to 1/4 Hz,
and the number of keypoints to detect for each frame was
configured to 1024 for the testing procedure. Both the hor-
izontal and vertical errors display a negative trend with de-
creasing altitude. The average displacement error along the
trajectory has been estimated to be approximately 27.4 m
for the horizontal component. the vertical error component
is about 0.8 meters and can be attributed to the altimeter
measurements being directly integrated into the navigation
pipeline.
The rotation error relative to terrain was estimated by sim-
ulating a yaw slew maneuver along the final trajectory seg-
ment, and by evaluating the error committed on the mea-
sured rotation. The chosen maneuver starts with a 30° rota-
tion lasting for about 20 seconds, followed by a 40 seconds
coasting phase where the lander proceeds along the trajec-
tory in a crabbed fashion. Finally, the maneuver ends with
the lander performing another 30° slew maneuver to recover
the initial attitude configuration.
By exploiting the virtual scenario capabilities, it was possi-
ble to generate a synthetic image sequence during the lan-
der’s slew at varying camera frame rates. This sequence
was subsequently used in the pose estimation algorithm
to retrieve the instantaneous and mean relative attitude er-
rors. Figure 6(b) depicts a comparison between the actual
rotation and the rotation measured by the relative naviga-
tion pipeline. Very limited deviation from ground truth can
be appreciated, with a maximum cumulated error of about
0.7°, indicating a good correlation between the rotation es-
timates provided by the pipeline and the actual rotations.
Testing the relative navigation algorithm on commerical
hardware (see Section 3.2.1) yielded an average LightGlue
CPU inference time of 3.81 s, and 50 ms for the pose esti-
mation.
To compare the relative efficiency and effectiveness of each
operational mode in VBN, Table 1 presents an analysis con-
trasting the positional accuracy of both the absolute and rel-
ative modes. The analysis highlights that the absolute navi-
gation pipeline yields an estimation error of approximately
300 m along the trajectory, consistent with the anticipated
performance at these relevant altitudes. The relative mode
demonstrates notably low error margins in horizontal dis-
placement, consistently remaining under 150 m.

4. Toward Onboard-AI Implementation
As stated above, with the expanding uptake of AI onboard
satellites, the possibility of effectively streamlining compu-
tational loads to AI-dedicated chips is increasing. These
components can accelerate or execute with high energy ef-
ficiency in some modules of the processing chain. The land-
scape of platforms for onboard AI deployment in satellites
is notably limited to a few devices supported by various
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Figure 6. (a) Horizontal and vertical components of the relative displacement error along the selected trajectory segment. (b) Comparison
between actual rotation and rotation measured by the relative navigation pipeline. The maximum deviation is approximately 0.7°.

VBN Mode Performance

Absolute Mean Position Error:
270.1 m @1/5Hz

Mean Horizontal Position Error:
216.1 m @1/5Hz

Mean Vertical Position Error:
54.0 m @1/5Hz

Relative Mean Horizontal Displacement Error:
27.4 m @1/4Hz

Mean Vertical Displacement Error:
0.8 m @1/4Hz

Table 1. Absolute and relative mode accuracies in terms of mean
positin error, mean horizontal displacement and mean vertical dis-
placement.

In-Orbit Demonstration on Class V/IV2 spacecrafts and on-
ground radiation testing. This can be explained by the com-
plexity of qualifying ground platforms for space applica-
tions and by the low maturity of AI models and workflows
for onboard deployment.
In this study, we show a demonstration of the optimization
and testing of the crater detector module. To facilitate a
rigorous and exhaustive evaluation, we conducted empiri-
cal testing of the optimized crater detector module on two
established hardware platforms with a proven flight legacy.

2ESA Mission Classification and Project Adoption of New Microelec-
tronics Development, available online at: https://tinyurl.com/2s5shdkj

Specifically, our selection included the Intel® Neural Com-
pute Stick 2 (Intel® NCS2) and the Ubotica CogniSAT-
XE1, which incorporates the Intel® Movidius™ Myriad™
2 chip.
A simple but effective model for the crater detection mod-
ule has been tested: we combine ResNet-50 as a backbone
for feature extraction with head layers similar to the ones
of SSD [23]. To tailor the model more effectively to on-
board devices, we removed certain layers3 from the original
implementation for a more streamlined design. A pivotal
modification in the conv4 x layer involved setting strides
to a uniform 1 × 1, diverging from typical configurations.
BatchNorm layers were added after each convolution in the
SSD heads to boost stability and training efficiency.
The model training has been performed with mixed pre-
cision using an NVIDIA A100 GPU. Stochastic Gradient
Descent (SGD) with a momentum of 0.9 was utilized for
optimization. A critical element in our training methodol-
ogy was the learning rate scheduler. We adopted a cosine
annealing approach, starting with an initial learning rate of
2.6e-3. To enhance training, we implemented learning rate
decay, and a linear warmup strategy during the first epoch,
incrementally increasing the learning rate from a low to a
higher value. This technique helps avert early training di-
vergence due to an excessively high starting learning rate.
Subsequently, the model underwent post-training quantiza-
tion using the OpenVINO toolkit (v2020.3) to compile it
in half-precision. These specific training strategies were
crucial in optimizing the model for quantization, ensuring

3All the conv5 x, the Average Pooling, and fully-connected layers in
the classification heads.
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Metric IoU Area maxDets Value

AP 0.50:0.95 all 100 0.34
0.50 0.67
0.75 0.30
0.50:0.95 small 0.23

medium 0.55
large 0.58

AR 0.50:0.95 all 1 0.047
10 0.30
100 0.46

small 0.38
medium 0.65
large 0.66

Table 2. Average Precision (AP) and Average Recall (AR)
prompted at different scales and intervals of Intersection over
Union (IoU).

both effective performance and compatibility. The model’s
efficacy was assessed using metrics like Average Preci-
sion (AP) and Average Recall (AR), considering various
scales and Intersection over Union (IoU) thresholds. Table 2
presents the ultimate results obtained through an exhaustive
hyper-parameter tuning process, employing a grid search
technique. Ultimately, the model was successfully deployed
on two designated devices, yielding inference times under
one second. Figure 7 presents a bar plot comparing the
inference times for processing a single image (tensor size
1× 3× 300× 300) on each device. As it can be observed,
the NCS2 demonstrates a performance that is three times
faster than that of the XE1 board.

Nonetheless, despite the achievements of our study, it is
important to acknowledge certain limitations and identify
areas for further improvement. One of the primary areas
of focus in our ongoing research is the optimization of the

Figure 7. Latency comparison of the quantized model for crater
detection. The bar plot illustrates the time performance, in sec-
onds, of two different devices under test, i.e., the CogniSAT-XE1
(XE1) and the Intel® Neural Compute Stick 2 (NCS2).

LigthGlue network. Currently, the network exhibits promis-
ing capabilities; however, its optimization for onboard de-
ployment remains a critical challenge. This requires a care-
ful balance between maintaining high accuracy and mini-
mizing computational demands. Additionally, there is a sig-
nificant opportunity to enhance the efficiency of the crater
matching pipeline. As it stands, the pipeline faces a compu-
tational bottleneck, primarily due to its quadratic increase in
computational complexity relative to the number of craters
[3]. This issue poses a considerable challenge, especially
in scenarios involving large datasets with numerous craters.
To address this, we aim to develop more sophisticated algo-
rithms that can reduce the computational load without com-
promising the accuracy of crater matching.
One potential approach is to implement more efficient data
structures or to leverage advanced machine learning tech-
niques that can intelligently prioritize or filter crater com-
parisons. Another avenue could be the integration of par-
allel processing techniques or hardware accelerators like
VPUs, which can significantly speed up computations. Fur-
thermore, the current quadratic complexity makes scalabil-
ity a concern, particularly for extensive lunar or planetary
surveys where thousands of craters need to be analyzed.
Streamlining the crater-matching process would not only
improve the speed but also enhance the overall feasibility
of large-scale applications.
In addition, the optimization of the LigthGlue network for
onboard use and the improvement of the crater matching
pipeline to tackle computational inefficiencies stand out as
critical areas for future research. These enhancements will
not only augment the practicality of our study but also
broaden its applicability in various space exploration and
remote sensing missions.

5. Conclusion
This research introduces a tailored solution for lunar land-
ing operations without GNSS signal assistance. The study
innovates by integrating a dual-mode VBN system, adept
at switching between absolute and relative modes depend-
ing on altitude and crater visibility. Our simulated descent
experiments over Shackleton crater mark a first step in val-
idating the AI-based system for onboard use. In terms of
accuracy, the system’s relative mode achieved an average
horizontal displacement error of merely 27.4 m at 1/4 Hz
and an impressively low vertical displacement error of 0.8
m at the same frequency, showcasing the system’s high pre-
cision. Our evaluations using CogniSAT-XE1 and Neural
Compute Stick 2 have confirmed the capability of operating
the crater detection module with inference times under one
second and with an overall AP of 0.67. Future research will
focus on tuning the feature matching network for onboard
deployment and enabling the crater matching process, crit-
ical aspects for enabling the practicality and expanding the
potential applications of this study in lunar exploration mis-
sions.

6806



References

[1] Sivert Bakken, Marie B Henriksen, Roger Birkeland,
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