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nathan.re@advancedspace.com

Matthew Popplewell
matthew.popplewell@advancedspace.com

Michael Caudill
michael.caudill@advancedspace.com

Timothy Sullivan
tim.sullivan@advanced-space.com

Tyler Hanf
tyler.hanf@advancedspace.com

Benjamin Tatman
ben.tatman@advancedspace.com

Kanak Parmar
kanak.parmar@advancedspace.com

Tyler Presser
tyler.presser@advancedspace.com

Sai Chikine
sai.chikine@advancedspace.com

Michael Grant
michael.grant@advancedspace.com

Richard Poulson
richard.poulson@advancedspace.com

Advanced Space, LLC
1400 W 122nd Ave, Westminster, CO 80234

Abstract

This paper presents the judicious application of ma-
chine learning algorithms to solve two fundamental chal-
lenges in spacecraft orbit determination (OD): identifica-
tion of systematic anomalies (nominal vs anomalous be-
havior) and the classification of these anomalies to ex-
plain probable causes (such as unexpected spacecraft ma-
neuvers or mis-modeled small forces). Traditional OD is
based on well-tested iterative linearization methods (vari-
ations of the Kalman filter). These are commonly under-
stood in the astrodynamics community to require manual
tuning for a given set of mission assumptions and re-tuning
when those assumptions are invalidated. OD data are typ-
ically long, sparse, multi-variate sequences consisting of
multiple observation phenomenologies. These characteris-
tics make the OD problem fundamentally well-suited to the
same machine learning architectures (namely, transform-
ers) that have found success with language modeling and
other sequence-based data modeling. The approach taken
here is to simulate various failure modes in the traditional
OD process using NASA’s Monte software, then process the
simulated data in three different transformer-based archi-
tectures. The three transformer architectures all act as clas-
sifiers and can be described at a high level as: 1) treat
each epoch with data as a feature vector, with the input data

comprising a single, long sequence; 2) similar to the first,
but with nested self-attention to efficiently handle longer se-
quences; and 3) plot the data, then classify the plot with
a vision transformer (ViT) model. Model performance is
studied as a function of the hyperparameter trade space.

1. Introduction
Tracking spacecraft through maneuvers, predicting maneu-
vers, and tracking trajectories with limited ground-based
observability are some of the key challenges facing the
in-space intelligence community. Current approaches to
spacecraft tracking rely on human experts and regular
spacecraft communications to guide standard algorithms to-
ward the subjectively most reasonable solution given imper-
fect and incomplete information. Even with over 60 years
of spacecraft orbit determination practice, hard-coded logic
is insufficient to achieve complete autonomy. The hard-
to-quantify “engineering intuition” remains an irreplaceable
component of current practice. Machine learning is a natu-
ral fit for the core orbit determination problem: conditional
probability estimation of nonlinear systems.

The goal of this investigation is to enhance efficiency in
spacecraft orbit determination by reducing human-in-the-
loop effort. To achieve this goal, this research employs
supervised learning based on over one hundred thousand
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high fidelity simulated spacecraft trajectories, navigation
measurements, and corresponding navigation filter results.
Hundreds of years’ worth of simulated data provide a broad
basis for machine learning models to mimic the kinds of
choices human operators make every day, distilling the data
into operational algorithms and flight software. Machine
learning may offer an advantage over human decision mak-
ing because the training process for these algorithms can
easily scale to include more example data than any individ-
ual engineer could see in a lifetime of practice. In addi-
tion, today’s computer processors make it possible to eval-
uate these machine learning algorithms with increasing ef-
ficiency, enabling them to operate directly onboard space-
craft.

This paper presents the application of machine learning
to solve two fundamental challenges in spacecraft track-
ing: identification of systematic anomalies (such as mis-
modeled forces or unexpected maneuvers), and classifica-
tion of anomalies to explain probable causes of deviations
from the expected motion. This technology aims to simplify
spacecraft operations by freeing operators from the task of
determining what happened when an anomaly occurs, and
instead focus on why an anomaly happened. Providing in-
sights into the source of a problem helps operators make
educated decisions in real-time.

An example stressing case for traditional navigation
methods is the near rectilinear halo orbit (NRHO) that is
used by the CAPSTONE (Cislunar Autonomous Position-
ing System Technology Operations and Navigation Exper-
iment) mission and will be used by NASA’s planned lu-
nar Gateway. CAPSTONE, designed and operated by Ad-
vanced Space, launched on June 28, 2022. CAPSTONE
is demonstrating the novel inter-spacecraft navigation tech-
nology CAPS (Cislunar Autonomous Positioning System)
via cross-link with NASA’s LRO (Lunar Reconnaissance
Orbiter). CAPS uses relative range and range-rate between
participating spacecraft and the time-varying, asymmetrical
gravity field of the Earth-Moon system to generate abso-
lute state estimates of all participating spacecraft without
ground intervention. Robust automation is necessary for
such a system to work at scale as intended, especially in
chaotic N-body motion. The increasing traffic in cislunar
space by commercial, scientific, and national security orga-
nizations points to the need for new approaches to space-
craft position-navigation-timing (PNT) and spacecraft au-
tonomy.

Autonomous navigation is even more challenging on-
board spacecraft where computation is constrained. Tradi-
tional algorithms are computationally intensive and quickly
become infeasible in an onboard and operational environ-
ment. Machine learning shifts the computational heavy lift-
ing to ground-based assets at training time and minimizes
the requirements for onboard memory and compute capa-

bility. Anomaly detection and classification aims to extend
superhuman domain knowledge to real-time space-based
space domain awareness. The resulting increase in do-
main awareness for a spacecraft of its own and other space-
craft’s states creates a substantial capacity for growth in au-
tonomous decision-making.

Since artificial neural networks (ANNs) are primarily
composed of simple linear algebra, current chips such as
CPUs and GPUs can evaluate them very efficiently. Fu-
ture computing hardware (ground-based or space-based,
and whether GPU, ANN-optimized Application Specific In-
tegrated Circuits (ASIC’s), optical computing chip, or neu-
romorphic processor) will be able to use these algorithms
even more effectively at orders of magnitude better perfor-
mance per watt. The same innovations that currently allow
consumer devices to process large data streams in real-time
will, in the future, enable spacecraft to do the same, au-
tonomously make intelligent decisions and achieve mission
objectives that are impossible with current ground-in-the-
loop systems. However, new algorithms must be developed
to reformulate PNT mathematical problems into a form that
can take advantage of these computer hardware advances.
This research is intended to address that need.

2. Background

2.1. Spacecraft orbit determination

Traditional spacecraft navigation uses a series of limited ob-
servations of a spacecraft (for instance, instantaneous range
and Doppler relative to a fixed ground station) to build up
an estimate of the spacecraft state and/or other parameters
of interest over time. This relies on careful use of lineariza-
tion, for example, iteratively linearizing the spacecraft mo-
tion relative to an assumed trajectory and minimizing the
sum of squared observation residuals. In the typical orbit
determination parlance, “prefit residuals” refer to the dif-
ference between observed measurements and the expected
measurements according to the a priori state estimate and
dynamical model. “Postfit residuals” refer to the this dif-
ference after updating the state estimate and/or dynamical
model according to the measurements. Postfit residuals in
general correspond to a solution that locally minimizes the
sum of squared residuals.

Measurement residuals are essentially the measurements
detrended by the current best estimate of the spacecraft
state and the forces acting on the spacecraft. Human op-
erators typically use prefit and postfit residuals as one of the
strongest indicators of filter success. If the residuals are nor-
mally distributed and centered at zero, that is evidence that
the state estimate and dynamical model explain the motion
of the spacecraft. If the residuals have some trend or signal
present, that is evidence that either the force model or the
state estimate have some error.

6820



When the predicted behavior is well known, the filter is
kept within its linearizable region. When the various un-
certainties in the dynamical model are balanced correctly,
these methods (i.e. variations of the batch filter and Kalman
filter) work well. However, experienced space navigators
know that navigation is as much an art as it is a science.
Much of the tuning of a spacecraft navigation filter comes
down to navigator experience and intuition. When anoma-
lies occur (either on the ground side or the spacecraft side),
experience is required to identify the unexpected behavior,
and creativity is required to develop and test reasonable hy-
potheses to explain the observed discrepancies.

The proposed ML models primarily use the postfit resid-
uals to infer what small force(s) are mismodeled in the filter
dynamics. Additional data about the orbit and observer(s)
are also provided to the models for context.

2.2. Anomaly detection

For most real-world anomaly detection datasets, a tradi-
tional linear method would misclassify a portion of each
group of data. An ANN can be trained to manipulate the
data in a higher-dimensional latent space, making it easier
to separate classes. The ANN’s utility grows as the dimen-
sionality of the problem increases, given nonlinear and po-
tentially hidden relationships in the state space.

Two broad approaches to training ANN models are su-
pervised learning and unsupervised learning. In supervised
learning the training algorithm is given labeled data and ad-
justs the model weights to get the model to classify inputs
correctly. In unsupervised learning, the ANN learns with
unlabeled inputs. ANN classifiers and outlier detectors have
been demonstrated in applications such as medical diagno-
sis [1], battery monitoring systems [3], radar activity clas-
sification [21], and other areas [5], [31]. In this work, we
primarily use supervised learning, where the training algo-
rithm is provided true anomaly class labels for each input
data sequence.

2.3. Transformer models

In this research, we use a recently developed deep learning
architecture known as the Transformer [28]. Transformers
have been found to be highly effective at modeling sequence
data and were originally developed to solve problems within
the Natural Language Processing (NLP) domain. Trans-
formers were able to achieve state-of-the-art performance
in machine translation, question answering, and language
inference [10]. Following this success, the Transformer
framework was extended to sequence problems with image
[11] and audio data in the form of sequences of bits of a
digitized stream [26], [8].

The original paper on Transformers, “Attention is All
You Need” [28], describes the goal of the Transformer
architecture as being to simplify the process for creating

sequence-to-sequence (seq2seq) model architectures by re-
lying solely on the attention mechanisms and removing re-
currence and convolution operators entirely. This also re-
moves the sequential processing constraints, allowing for
highly efficient parallel architectures. These breakthroughs
are made possible due to the sole reliance on an attention
mechanism. The attention mechanism was first introduced
by Bahdanau, Cho, and Bengio in their paper on neural ma-
chine translation [2]. Attention allows models to draw de-
pendencies between inputs and outputs without regard to
the distance between elements in a sequence. In simpler
terms, attention mechanisms allow a model to look at an in-
put sequence and decide which other parts of that sequence
are important. When utilized within the Transformer ar-
chitecture, the attention mechanism is referred to as self-
attention, which relates different positions of a single se-
quence to compute a representation of that sequence [28].

Transformers have also been extended to complex data
types including multivariate time series data [29], which is
also the sequence data type that this research focuses on.
Compelling examples in the literature have focused on both
time series forecasting for physical systems, and time series
classification tasks such as anomaly detection and classifi-
cation [14],[6]. Zerveas et. al. present a novel Transformer-
based framework for multivariate time series representation
learning and use that framework to push the limits of state-
of-the-art performance on both regression and classification
tasks [30]. Work has also been done to improve the Trans-
former architecture to accommodate longer data sequences;
for example, Long-Range Transformers [13] also achieved
state of the art results on benchmarks such as traffic fore-
casting and weather prediction.

The Recurrent-Neural-Network (RNN) [9] structure and
Long Short-Term Memory (LSTM) [15] networks were
long established as state of the art for seq2seq modeling
problems. However, these architectures were fundamen-
tally constrained to process inputs one at a time, while
Transformers process a batch of inputs simultaneously. As a
result, Transformer models allow seq2seq modeling to scale
up by orders of magnitude both in model size and sequence
length. Transformers can effectively work with sequences
that are thousands or even millions of elements long with-
out the problem of extended gradients which must be traced
back through a recurrent model. Thus, even large sets of
time-ordered navigation measurements can be used effec-
tively – constrained primarily by the memory and computa-
tion speed of the computers used for training and inference.
Many of the tasks humans perform daily (perception, rea-
soning, predicting, decision making) can be naturally repre-
sented as seq2seq modeling problems.

Transformers are applied here to understand sequences
of navigation observations. This research was inspired
by considerable success with Transformer-based language
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models such as the GPT series [4], [24], [23], BERT [10],
and variants thereof [16, 17, 19, 22, 25]. Natural language
processing typically represents language as a sequence of
vectors, where each vector represents a character, word part,
or phrase. This data structure is similar to spacecraft navi-
gation data, which, like many engineering data sources, is a
multivariate, sparse sequence with uneven time steps. Ob-
servations of spacecraft can consist of multiple data types
(such as range, Doppler, and angle in the sky relative to a
ground station) each of which might be present at different
times and cadences.

Transformers may be well-suited for time series data, but
they have only recently been applied to time-series model-
ing problems. The reason that Transformers are particularly
suited for time series is that they can represent each ele-
ment in an input sequence by considering its context within
the entire sequence. This ability to consider sequence con-
text is the direct result of the attention mechanism. Con-
currently, the addition of Multi-Head attention allows the
model to consider different representations of the same ele-
ment which can represent multiple aspects of relevance like
periodicity [30]. There have been several research projects
which have been able to exemplify the Transformers ability
to work with time series data [29]. Ma et al. showed that an
encoder-decoder Transformer could impute missing values
in a multivariate time series and achieve superior results to
state-of-the-art RNN models [20].

Building on the work of Ma et al., Zerveas et al. de-
velop a unified framework for unsupervised representation
learning with Transformer for multivariate time series data
[30]. The framework built by Zerveas can achieve supe-
rior performance on both regression and classification tasks
compared to traditional methods and RNN/LSTM meth-
ods. The datatypes included a wide range of multivariate
series from the Monash University, UEA, and UCR Time
Series Regression Archive [27]. The data includes regres-
sion time series with up to 24 dimensions and classification
series with up to 963 dimensions that span different areas
across science and engineering. Grigsby et al. also devel-
oped a separate Transformer architecture that can incorpo-
rate spatial relationships between variables as well as tem-
poral ones with the Spacetimeformer model [13]. Finally
Li et al. [18] incorporate a sparse-attention mechanism to
work with longer time series sequences and prevent models
from extracting irrelevant information.

3. Training data
The methods and results described in this paper used su-
pervised learning with a large set of simulated trajectories.
Approximately 20,000 examples were generated for each of
five anomaly classes.

Orbit states were randomly chosen from a range of or-
bital elements: altitude between 400-4,000 km, eccentricity

between 0-0.5, inclination between 0-180◦, and all values
of longitude of ascending node, argument of perigee, and
true anomaly. Spacecraft mass was randomly sampled from
50-500 kg, drag coefficient between 1.6 and 3.0, and thrust
for finite thrust maneuvers between 1-50 N.

Five anomaly classes are considered in this study:
• Drag – erroneous estimate of the spacecraft’s coefficient

of drag.
• Gravity – reduction in spherical harmonics degree and or-

der in the estimation filter’s dynamical model.
• Maneuver – erroneous finite thrust maneuver direction

and magnitude estimate.
• Nominal – no dynamical or measurement mismodel

present.
• SRP – erroneous estimate of the solar radiation pressure

scale factor.
To build a set of samples, an initial orbit and correspond-

ing set of spacecraft properties are randomly sampled, then
propagated with a high fidelity force model for 24 hours.
Each of the observation platforms records simulated mea-
surements whenever the spacecraft is in view. Simulated
measurements are collected from the following observers:
• 3 arbitrarily-placed ground stations collecting coherent

(low noise) range/Doppler measurements.
• 5 arbitrarily-placed ground stations collecting noncoher-

ent (high noise) range/Doppler measurements and Az-
imuth/Elevation optical measurements.

• 8 arbitrarily-placed spacecraft in MEO collecting optical
Right Ascension/Declination measurements.
Realistic noise and biases are added to the simulated

measurements, with different noise levels chosen for each
measurement type. Finally, the a priori state estimate
and set of measurements are iteratively processed through
a Kalman filter (Monte’s UD-factorized sequential batch
filter-smoother [12]).

For each anomaly class, the filter is forced to fail in dif-
ferent ways. For example, the dynamical model in the filter
is purposefully altered, or an estimated term is forced to an
incorrect value by choosing an incorrect a priori estimate
and a very small a priori variance on that term.

The following outputs are generated for each filter case:
• Epoch
• Measurement type
• Observing station name and state
• Estimated spacecraft state
• Pre-fit and post-fit residuals

Visual examples for two typical ANN model inputs are
provided in Figures 1 and 2. Note that the magnitude of the
signal varies, with some samples having strong signals and
some having imperceptibly-small signals.

Classification models were set up to take in these outputs
and return a probability distribution function across the five
anomaly classes.
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Figure 1. Example input data with SRP mismodel.
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Figure 2. Example input data with gravity field mismodel.

4. Model architectures
All three architectures studied here use the “class token”
idea first implemented by the Vision Transformer (ViT) ar-
chitecture [11]. Similar to the ViT model, the input data
sequence is prepended with a “class token” – a vector of ze-
ros. The class token contains no information on the input,
but when transformed by the model, the class token repre-
sents the anomaly category of the sequence of data. This
was found to be an effective mechanism to get the models
to compress a 2-dimensional input (time-ordered sequence
of feature vectors) to a 1-dimensional output.

All three architectures take the same inputs and return
the same outputs. Preprocessing and the model forward
pass vary between architectures.

Unless stated otherwise, all inputs are scaled to have
zero mean and unit variance. For all models, the Trans-
former encoder implementation is the unedited, vanilla
torch.nn.TransformerEncoder block from PyTorch. All
models use the Adam training algorithm. The output head
of all models is a linear layer with a softmax applied. Model
training uses the cross-entropy loss function, which inter-
prets the model outputs as a probability distribution func-
tion (PDF) across the five output classes.

4.1. Measurement Transformer (MT)

The Measurement Transformer builds off the BERT archi-
tecture (Transformer encoder only, no Transformer decoder
block) [10], adapted for time series data by using a time en-
coding instead of position encoding. The data flow of this

model is illustrated in Figure 3 and described below:

1. Pre-processing:
(a) Most of the data are scaled on a per-input-file basis.

However, the ground station ID numbers are scaled
globally (so the same ID number always refers to
the same ground station across all training sam-
ples). Time scale is also global, so the time scale
is consistent in every input file.

(b) Input sets are padded or trimmed to equal length.
2. Model forward pass:

(a) Use the Time2Vec algorithm [7] to expand the time
element of the feature vector. This time encoding
takes the place of position encoding typical in most
other applications of Transformers.

(b) Pass each feature vector through a linear layer to
expand the length of the feature vector.

(c) Prepend the time series with a “class token” vector
of zeros.

(d) Pass the time series through a Transformer encoder
layer, which uses multi-head self attention to draw
relationships between different elements of the se-
quence.

(e) Pass the transformed sequence through another lin-
ear layer to reduce the length of the feature vector
to 5 (the number of anomaly classes).

(f) Finally, the 0th vector of the sequence (the class to-
ken) is interpreted as the class of the anomaly. The
rest of the sequence (elements 1 through N) are not
used.

…

24hr dataset with several ground tracks

Transformer Encoder

Data sequence
Class 
token

…

Time2Vec (�me encoding)

Figure 3. Conceptual diagram of the Measurement Transformer
architecture.
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4.2. Tracking Pass Transformer (TPT)

The TPT model is similar to the MT but uses two nested
Transformer encoders instead of a single Transformer en-
coder. The motivation for this difference is that each ground
track may have biases (in time tags, or in the measurements
themselves) independent from the others. It is also com-
mon for spacecraft tracking to be very sparse – short periods
(on the order of minutes or hours, depending on the orbital
regime) with dense observations interspersed with long pe-
riods (on the order of hours or days, depending on the or-
bital regime) with no observations. The first encoder ex-
tracts information from a short period of measurements and
condenses it to a single vector. The second encoder com-
bines the vector representation of each short track and ex-
tracts information from the whole set of tracks. In this way,
the Transformer’s attention mechanism can take advantage
of the natural sparsity of the problem. This model architec-
ture is shown conceptually in Figure 4 and described below:
1. Pre-processing:

(a) Each 24-hr navigation measurement file is sepa-
rated out into individual ground tracks. For the
data used here, a measurement file typically con-
tains 10-22 ground tracks with about 200 measure-
ments each.

(b) Most of the data are scaled on a per-track basis. As
before, station ID and time are scaled globally.

(c) Each track is padded or trimmed to have an equal
number of measurements per track.

(d) Each list of tracks is padded or trimmed to have an
equal number of tracks per input sequence.

(e) The sample is reshaped from a simple time series of
dimensions (nf ×N) into a 3-dimensional sample
of size (s×p×nf ), where s is the number of passes
in each arc, p is the number of points in each pass,
and nf is the number of features.

2. Model forward pass:
(a) The Time2Vec algorithm [7] is used to expand the

time element of the feature vector, for each tracking
pass (“track”).

(b) All feature vectors pass through a linear layer to ex-
pand the length of the feature vector.

(c) Prepend each tracking pass with a “class token”
vector of zeros.

(d) The data for each tracking passes through the first
Transformer encoder layer. to draw relationships
between data within a single track.

(e) The 0th vector of each transformed track is kept
and concatenated into a condensed sequence. The
rest of each sequence (elements 1 through N) is not
used.

(f) Prepend the condensed sequence with a “class to-
ken” vector of zeros.

(g) The condensed sequence passes through the second

Transformer encoder layer.
(h) The condensed sequence passes through another

linear layer to further reduce the length of the fea-
ture vector to 5 (the number of anomaly classes).

(i) Finally, the 0th vector of the condensed sequence
(the class token) is interpreted as the class of the
anomaly. The rest of the sequence (elements 1
through N) is not used.

…

Track 1

Transformer Encoder 1

Data sequence
Class 
token

…

…

Track 2

…

…

Transformer Encoder 2

…

Figure 4. Conceptual diagram of the TPT architecture.

4.3. Vision Transformer (ViT)

Human operators typically plot parameters of interest over
time for visual inspection and identification of anomalies.
Given the great recent advances in computer vision, we con-
sider the question: can a computer vision model function
like a human and learn to visually identify anomalous data?

The Vision Transformer (ViT), invented by Google Re-
search [11], divides an image into a set of 2-dimensional
patches, then treats this set of image patches as a sequence
that can be processed with a Transformer encoder model.
Attention-based models such as the ViT and its numerous
derivatives are the best performing architecture on a wide
range of computer vision benchmarks.

An image to a computer is simply a 3D array or tensor
with dimensions (channels × height × width); an RGB im-
age has dimensions (3×height×width). Any tensor which
has this shape can be used by the ViT model, and there is no
limit on the number of channels. The navigation inputs are
constructed by taking estimated parameters from the filter
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such as pre-fit and post-fit residuals and plotting an image
of each over time. This results in a tensor of data for each
feature with size (1 × 300 × 300) (grayscale images have
only one channel). Each of an arbitrary number of features
is then concatenated along the channels dimension, creating
a new tensor of dimensions (features × value × time).
This essentially a one-hot encoded, scaled, and down sam-
pled version of all features over time.

The ViT preprocessing and forward pass are described
below. For more detail on the forward pass, we refer the
reader to [11].
1. Pre-processing:

(a) Plot each data feature over time (e.g., with mat-
plotlib or an equivalent library), generating a set of
several grayscale images.

(b) Concatenate the images along the channel dimen-
sion, creating a “hyper-image.”

2. Model forward pass:
(a) Divide the input image into a set of patches.
(b) Flatten each patch, add a positional encoding (to al-

low the Transformer encoder to learn spatial depen-
dencies between patch locations), and embed in a
higher dimensional space.

(c) Prepend the sequence of embedded patches with a
“class token.”

(d) Pass the sequence through a Transformer encoder.
(e) Pass the sequence through another linear layer to re-

duce the length of the feature vector to 5 (the num-
ber of anomaly classes).

(f) Finally, the 0th vector of the sequence (the class to-
ken) is interpreted as the class of the anomaly. The
rest of the sequence (elements 1 through N) are not
used.

5. Results
The confusion matrix for a top-performing Tracking Pass
Transformer model is shown in Fig 5. The confusion ma-
trices for the Measurement Transformer and Vision Trans-
former architectures show the same trends, and they are not
included here to save space. The largest source of confu-
sion for all the models is between the “gravity”, “drag”,
and “nominal” classes. The reason these classes are easily
confused is that the drag mismodel and gravity mismodel
can be very subtle in the simulated data. For example, er-
ror in high-order gravity field terms can only be observed
for spacecraft in low altitudes, and the line between “nom-
inal” and “mismodel” is subjective. Drag effects are simi-
larly only apparent on the time scale of the input data (24
hours) in lower altitudes. For all four anomalous classes, the
subjective size of the anomaly in the simulated data ranges
from near-zero (indistinguishable from nominal, even to a
human expert) to large and obvious. Most confusion takes
place with nearly-zero anomalies, where trends are below

the noise level.
Across all subsets of the simulated data generated in this

research, the “maneuver mismodel” class was most accu-
rate and most easily generalized between distributions (e.g.,
a model trained to identify maneuvers in low-altitude space-
craft could reliably identify maneuvers in high-altitude
spacecraft).

0.0%0.0%0.0%0.9%99.1%Drag

Tr
u

e
 L

ab
e

ls

2.8%16.7%0.0%67.6%13.0%Gravity

0.0%0.0%97.2%0.9%1.9%Maneuver

0.0%92.6%0.0%5.9%1.5%Nominal

99.2%0.0%0.0%0.8%0.0%SRP

SRPNominalManeuverGravityDrag

Predicted Labels

Figure 5. Confusion matrix for Tracking Pass Transformer, tested
with in-distribution validation data withheld from the training
dataset.

All three of the model architectures described above
achieved over 80% validation accuracy, with the best per-
forming Tracking Pass Transformer models achieving 93%
validation accuracy. However, accuracy alone is an insuffi-
cient metric. One objective of this research is to develop the
capability for fully autonomous spacecraft. Typically, the
compute capability available on spacecraft is orders of mag-
nitude lower than that of a modern laptop or smartphone. As
a result, it is important to develop models that are both ac-
curate and small. Initial models were 10’s to 100’s of MB in
size, which can be hard to fit on traditional spacecraft com-
puters. Hyperparameter tuning allowed us to reduce model
sizes to be on the order of 1-10 MB disk space. The trade
space of model size and accuracy is shown in 6.

Interestingly, the Measurement Transformer and Vision
Transformer architectures were found to have similar per-
formance in terms of model accuracy as a function of model
size, despite taking fundamentally different approaches to
data preprocessing and model inference. The Tracking
Pass Transformer architecture was most accurate overall
and also showed the best performance when tested on out-
of-distribution data. A detailed analysis of performance on
in-distribution vs out-of-distribution data will be reserved
for a future publication.

6. Conclusion

This paper presents some of the key findings from an ef-
fort to apply AI/ML techniques to spacecraft autonomy.
The work presented here focused on detecting anomalies
in spacecraft navigation and classifying them by type of
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mismodeled acceleration. Spacecraft navigation is the pro-
cess of mapping a sparse, irregular time series of geomet-
ric measurements to estimates of spacecraft state (position
and velocity) at epochs of interest. We find that Transform-
ers, specifically the Transformer encoder block with self-
attention, are highly effective for data with these character-
istics and are a natural fit for at least some aspects of space-
craft navigation. Three model architectures are presented,
each of which may be preferable in different circumstances.

In February and March of 2024, a miniaturized version
of the Measurement Transformer was successfully uplinked
and tested onboard the CAPSTONE spacecraft near the
Moon. This test demonstrated successful flight software im-
plementation of the model preprocessing and model infer-
ence, numerical precision agreement between ground and
flight implementations, and end-to-end connection of the
various ground and space elements. Detailed description
of that onboard test will be presented in a separate publica-
tion. We mention it here as evidence that cutting-edge ML
algorithms can be realistically implemented in space and as
further encouragement to others to continue investigating
AI for space.
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