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Abstract

The utilization of monocular vision for non-cooperative
spacecraft pose estimation has been significantly re-
searched in space target monitoring, on-orbit servicing, and
satellite maintenance. The challenge lies in addressing the
cross-domain variations in shape, texture, lighting, and mo-
tion patterns between simulated and real captured images.
To tackle this issue, a novel domain adaptation 6DoF pose
estimation algorithm is proposed to extract the geometric
and semantic consistency between cross-domain training
and testing datasets. Experimental results demonstrate that
our pose estimation method achieves state-of-the-art per-
formance on the SPARK2024 dataset.

1. Introduction

The enhancement of Space Situational Awareness (SSA) is
imperative for managing the densely populated near-Earth
orbital environment[10]. Monocular pose estimation rep-
resents a milestone, underscoring the pivotal influence of
Artificial Intelligence (AI) in aerospace, crucial for the ef-
fective gathering of data for orbital monitoring.

Advances in non-cooperative spacecraft pose estima-
tion has been notable, particularly with the utilization of
monocular sensors—integral for space object monitoring,
on-orbit servicing, and satellite maintenance. HRNet[14]
highlights keypoint detection methodologies that identify
distinct 3D model points in images, then use Perspective-n-
Point (PnP) algorithms to infer object depth. While promis-
ing, these methods over-rely on annotated data and falter in
the presence of noise and occlusions, compromising their

effectiveness in real-world and cross-domain applications.
CNN-based techniques[5] streamline the determination of
camera positions directly from images. These approaches
provide a quick option for ascertaining spacecraft orienta-
tion and position but their accuracy declines when trans-
lating simulations to actual textures, predominantly owing
to reliance on simulated data. Furthermore, these meth-
ods inadequately capitalize on the geometric consistency
of targets. Moreover, Model-based pipelines[6] excelled
in controlled settings, evidenced by their performance in
the BOP competition[4], despite difficult lighting, lack of
object textures, clutter, and obstructions. Nevertheless,
these pipelines are principally suited for indoor contexts
and struggle with the complex backgrounds characteristic
of in-space environments, particularly on-orbit. They also
neglect temporal information, which is essential for refin-
ing pose predictions. The persistence of specific, unre-
solved issues in existing techniques underscores the need
for enhanced non-cooperative spacecraft pose estimation:
enhancing robustness against noisy backgrounds and fluc-
tuating lighting, bridging the gap between simulation and
reality, and refining the pose estimation by utilizing tempo-
ral information.

This paper introduces an innovative framework
Crospace6D that not only addresses these enduring chal-
lenges but also augments the current field by focusing on
the geometric stability and motion dynamics of spacecraft,
culminating in precise, cross-domain pose estimation. This
paper makes the following contributions to the field of
non-cooperative spacecraft pose estimation: (i) Addressing
noisy background interference by using semantic segmen-
tation for background removal and tracking algorithms for
subject consistency. (ii) Despite the variability observed
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Figure 1. The structure of Crospace6D pipeline.

in 2D imagery, the underlying 3D shape remains invariant
across both virtual and real-world scenarios. Exploiting
this geometric stability, the paper reconstructs the 3D mesh
of non-cooperative spacecraft from simulated images.
By integrating the reconstruction model with template-
based pose estimation, consistent and domain-agnostic
transformation of the spacecraft’s geometric information
is achieved. (iii) Moreover, a graph-based optimization
approach that uses visual odometry association is proposed.
Alongside the enforcement of motion consistency con-
straints using visual odometry to capture target geometric
information. Experimental results validate the state-of-
the-art performance of the Crospace6D method on the
SPARK2024 dataset[11]. The pipeline is shown in Fig.1.

The following is the paper’s outline: Section 2 reviews
previous research on pose estimate techniques, Section 3
details our suggested architecture, Crospace6D, Section 4
contains the comparative analysis and ablation study, and
Section 5 summarizes the whole paper.

2. Relate Work

6D pose estimation is a fundamental task in the field of com-
puter vision, aiming to accurately determine the position
and orientation in 3D space based on given images. Accord-
ing to different principles underlying 6D pose estimation
technology, it can be categorized into three distinct meth-
ods: keypoint-based, template matching-based, and SLAM-
based.

2.1. Keypoint based 6d pose estimation

The keypoint-based methods employ a detection network
to precisely locate the specific keypoints of an object in the
image. These image keypoints are then matched with corre-
sponding points in the prior CAD model, and the 6D pose of
the object is estimated using the PnP (Perspective-n-Point)
algorithm. Keypoints can be represented as either coordi-
nates or heat maps. DeepPose[13] introduced the concept
of keypoint location regression by utilizing convolutional
neural networks to predict keypoint coordinates based on
learned image features. HRNet[14] is a classical approach
for estimating keypoint heat maps, which incorporates par-
allel networks with different resolutions to maintain high-
resolution feature maps throughout the entire network while
preserving local details and global context information, re-
sulting in outstanding performance in keypoint detection.
Although partially addressing occlusion issues, keypoint-
based methods require a sufficient number of reliable key-
points for accurate pose estimation.

2.2. Template matching based 6d pose estimation

The template matching-based methods utilize a prior CAD
model to generate an extensive library of templates repre-
senting diverse object poses, enabling estimation of the 6D
pose by comparing the similarity between the image target
region and these predefined templates. TemplatePose[9] of-
fers a solution for recognizing and estimating the pose of
new objects, even in partially occluded scenarios, without
necessitating training on new objects. It learns local ob-
ject representations from a small set of training objects and
subsequently matches test images with rendered images de-
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rived from CAD models to obtain their poses. MegaPose[6]
is also suitable for pose estimation of new objects and it
introduces a novel coarse pose estimation approach along
with a pose refiner under rendering and comparison strate-
gies. The training on large-scale synthetic datasets makes it
more generalizable to new objects. The template matching-
based methods are simple and intuitive, but they may not
provide smooth enough poses when processing continuous
image sequences.

2.3. SLAM based 6d pose estimation

SLAM-based methods leverage a continuous sequence of
images to simultaneously estimate camera motion and the
structure of the surrounding environment. The methods can
be broadly classified into direct and indirect approaches.
LSD-SLAM[3] is an optical flow-based direct SLAM that
focuses on pixels in high gradient regions of the image, es-
timating the relative pose by minimizing the photometric er-
ror to achieve semi-dense mapping. ORB-SLAM[8], on the
other hand, is a feature-based indirect SLAM that extracts
and matches ORB features from images, estimating rela-
tive pose by minimizing reprojection error for sparse map-
ping. The ORB-SLAM3[1] exhibits a significant improve-
ment over the previous version, enhancing system flexibil-
ity and scope while enabling accurate 3D reconstruction and
real-time localization in complex environments. Unlike the
aforementioned methods, SLAM does not rely on prior in-
formation and can operate effectively in unknown environ-
ments. However, it is limited to calculating only the 6D
pose between frames and can not accomplish absolute ob-
ject localization. Besides, when estimating poses using a
moving target as the reference frame, background interfer-
ence needs to be eliminated[17].

3. Proposed Method
3.1. Spacecraft semantic segmentation and tracking

Semantic segmentation. To mitigate the impact of back-
ground interference, such as robotic arms, this paper ini-
tially extracts the foreground of the satellite and subse-
quently performs pose estimation. The foreground extrac-
tion is accomplished using the Mask2former[2] semantic
segmentation algorithm, which is based on the Transformer
architecture. In Mask2Former[2], the input image under-
goes a preprocessing stage to generate a series of feature
maps. These feature maps are then passed through the Pixel
Decoder module to enhance them into high-resolution fea-
ture maps. Finally, these feature maps are utilized to gener-
ate masks, thereby achieving the image segmentation task.

Tracking. Despite Mask2former strong image segmen-
tation ability and interactivity, its performance in consis-
tent image sequence segmentation falls short. Thus, we use
Track Anything[16] in this work, designed to achieve high-

performance segmentation and produces a bounding box in
image sequences.

3.2. Pose estimation via template matching

To overcome variations in shape, texture, lighting, and mo-
tion patterns between simulated and real captured images,
the crux lies in exploiting the target’s three-dimensional
information—a cross-domain stable characteristic. Three-
dimensional information remains consistent under varying
lighting and motion conditions and is insensitive to occlu-
sions. Consequently, this method begins by reconstructing
the three-dimensional model of the non-cooperative space-
craft using virtual imagery, subsequently applying a tem-
plate matching-based pose estimation approach.

3D reconstruction. This paper utilized the current train-
ing dataset images for the 3D reconstruction of the satellite.
Addressing the shortcomings of conventional explicit 3D
reconstruction methods, which include pronounced noise,
a lack of geometric detail, and incomplete models, our re-
search adopts NeuS[15], a neural scene representation tech-
nique that employs a signed distance field for the implicit
3D reconstruction of the target satellite Proba, drawing on
deep learning methodologies. To infuse the model with
texture information, the color values of the model mesh
vertices are retrieved from the neural signed distance field
(SDF).

Figure 2. NeuS based 3D reconstruction using training images.

Template matching. Our objective is to estimate the i
time absolute pose of the target spacecraft T si

c0 ∈ SE(3),
with the camera serving as the reference system. This es-
timation is based on the input RGB sequences and the re-
gion containing the target, after reconstructing the space-
craft mesh through 3D reconstruction. We selected the
Template-Matching Monocular Pose Estimation algorithm
MegaPose[6] as the baseline for non-cooperated spacecraft
pose estimation. MegaPose employs 3D reconstruction re-
sults to determine the target’s pose, thereby mitigating im-
age underexposure and target symmetry issues to some ex-
tent. The result is shown in Fig 3.

While this method performs well on most data, single-
frame approaches like this inevitably exhibit significant
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fluctuations and discontinuities when applied to continuous
motion pose estimation. To address this issue, the next step
Graph-base Global Localization is needed.

Figure 3. Template matching result, left: origin image, middle:
contour overlay, right: mesh overlay.

3.3. Graph-based Global Localization

To increase the accuracy of pose estimation, the key ap-
proach is to fuse absolute pose estimation with relative pose
estimation. In contrast to the single-frame estimation of the
absolute poses that mentioned in Section 3.2, the simulta-
neous localization and mapping (SLAM) approach bene-
fits from estimating the inter-frame relative pose has higher
smoothness. However, due to the lack of depth informa-
tion by the monocular camera, relative poses estimated by
SLAM have incorrect scales. Moreover, SLAM estimated
the pose of each moment relative to the pose of the initial
motion. Thus, this method uses graph-based pose fusion
after every relative pose estimation with the corresponding
absolute pose.

Relative pose estimation. SLAM’s estimation of the
relative pose is based on static environment assumptions.
In order to estimate the camera pose via ORB-SLAM3 with
the target spacecraft as the static environment, other back-
grounds such as the Earth and the Moon need to be masked
by the method of Section 3.1. The relative pose at time i
can be represented as T ci

c0 ∈ SE(3).
Pose fusion. The relative pose estimated by monocular

SLAM is obtained in a normalized scale and may exhibit
scale discrepancies compared to the true pose. Further-
more, the coordinate system of the relative pose is based
on the camera’s pose at the beginning of motion, lacking
the transformation relationship with the target spacecraft’s
coordinate system. Therefore, it is possible to estimate a
similarity transformation Ac0

s0 ∈ Sim(3) to transform the
relative pose as follows:

T̂ ci
s0 = Ac0

s0T
ci
c0 (1)

T̂ ci
s0 is i time camera pose in target spacecraft

frame.Transforming the reference system from the
target spacecraft to the camera:

T̂ si
c0 = T̂ ci

s0

−1
(2)

T̂ si
c0 is the absolute position estimate of the target space-

craft at moment i, using the camera as the reference system.

The residual equation corresponding to T si
c0 as the observed

value can be constructed as follows:

e = log(T si
c0 T̂

si
c0

−1
)∨ = log(T si

c0A
c0
s0T

ci
c0 )

∨ = (ϕT , τT )
(3)

where (ϕT , τT ) ∈ se(3).
The Jacobian matrix corresponding to Ac0

s0 is:

∂

∂ϵ
log(T si

c0 exp(ϵ∧)Ac0
s0T

ci
c0 )

∨

≈
(
I + 1

2 ·
[
−ϕ∧ 0
−τ∧ −ϕ∧

])
·
[

Rsi
c0 0 0

tsic0
∧Rsi

c0 Rsi
c0 −tsic0

]
(4)

By employing g2o as the graph optimization algorithm,
we construct the following graph structure. As shown in
Fig.4, the blue triangular nodes represent the relative poses,
which are fixed during the optimization process. The red
square nodes represent the similarity transformations to be
estimated. The green edges utilize the residual equations
mentioned above, with the observed values being the abso-
lute pose estimates. The objective is to minimize the resid-
uals through continuous optimization until convergence.
This process yields the similarity transformation matrix, en-
abling the fusion of absolute pose estimation and relative
pose estimation. Consequently, a smoother estimation in
the temporal domain can be achieved, providing the abso-
lute pose of the target spacecraft at i time with respect to the
camera as the reference system.

Figure 4. Pose graph.

4. Experiments
4.1. Experiments Settings

Datasets. This work is evaluated on the SPARK2024
Stream2 - Spacecraft Trajectory Estimation dataset[11],
which is collected from the Zero-Gravity Laboratory (Zero-
G Lab) facility, at SnT–Interdisciplinary Center for Secu-
rity, Reliability and Trust, University of Luxembourg. The
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SPARK2024 the dataset was simulated with a state-of-the-
art rendering engine (Unity3D), which aims to design data-
driven approaches for spacecraft semantic segmentation and
trajectory estimation.

Implementation Details. Benefiting from the tempo-
ral continuity of RT001, RT002 and RT003, RT000 is con-
structed by splicing them together.Considering that initial-
ization in monocular mode with ORB-SLAM3 requires
some time, in order to estimate the complete trajectory,
RT000 and RT004 are extended in reverse order. The fi-
nal pose estimation is then obtained by taking the poses of
the original sequence length in reverse order of the results.
All experiments reported in this paper were carried out on a
computer with an Intel Core i9-13900K CPU @ 5.80GHz,
64 GB of RAM, and an NVIDIA GeForce RTX 4090 GPU.

4.2. Comparative Analysis

4.2.1 Semantic segmentation

The semantic segmentation results of FCN[7],
Mask2Former and Track Anything are shown in the
image below. It can be observed that both algorithms of
FCN and Mask2former segment some background robotic
arm regions such as the spacecraft body or solar panels.
However, Mask2Former demonstrates higher segmentation
accuracy and robustness in the solar panel area compared to
FCN. Therefore, this paper utilizes the segmentation results
of Mask2Former in the solar panel region as the Track
Anything initial values, to achieve stable segmentation of
the solar panel and the regions between surfboards.

Figure 5. Semantic segmentation and tracking.

4.2.2 Pose estimation via template matching

To demonstrate the performance of NeuS, an implicit 3D re-
construction method, over the traditional explicit 3D recon-
struction method, this work employed the NeuS and SfM
algorithm[12] provided by Colmap software to reconstruct
identical images from the training dataset. A qualitative

comparison was conducted between the reconstruction re-
sults of both methods, as illustrated in Fig 6. It can be
seen the SfM reconstruction model shows a sparse and in-
complete representation, characterized by significant noise
that results in indistinct geometric details. In contrast, the
NeuS reconstruction model demonstrates clear geometric
edges, enhanced completeness, and smoothness, as well as
the ability to reconstruct detailed components with richer
texture information. It is better suited for template matching
in subsequent pose estimation tasks. Therefore, the neural
scene representation method offers a more efficient and reli-
able solution for high-precision 3D reconstruction in space
application scenes.

Figure 6. Comparison of NeuS and SfM reconstruction.

Figure 7. Analyzing pose estimation accuracy through mesh re-
projection, discrepancies highlighted within enlarged red box.

In this paper, by inputting both the reconstruction results
and the image segmentation tracking results into the mega-
pose algorithm, we achieved template-based target pose es-
timation. Utilizing the camera’s intrinsic parameters, the
3D reconstruction results were reprojected onto the original
image according to the target pose, with the reprojection re-
sults shown in Fig 7. It can be observed that the projection
of the model aligns perfectly with the solar panel part of the
original image. Only within the enlarged red box area can
minor errors be detected: a slight shift in the antenna located
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Method Translation error Orientation error Pose error

Absolute poses estimation + Filter 0.0276 0.0593 0.0663
Fusion poses estimation 0.0252 0.0187 0.0252

Table 1. Evaluated on the SPARK2024 dataset.

Figure 8. The trajectories of poses estimations.

at the bottom right and a subtle pose error in the upper right
main body. These results validate the effectiveness of us-
ing simulated data to recover target geometric information
for pose estimation, thereby proving that the consistency of
target geometry between simulated and real data is key to
solving such cross-domain issues.

4.2.3 Global Localization and Mapping

For the RT000 sequence, the relative pose, absolute pose,
and fusion pose are estimated separately, and all the trajec-
tories are shown in Fig.8. It can be seen that the pose fusion
transforms the relative poses to the same coordinate sys-
tem as the absolute poses. This study compares the perfor-
mance of the conventional approach of optimizing absolute
pose estimation using a filter and fusion pose method. The
outcomes are illustrated in the accompanying Fig.9. The
results demonstrate that the method significantly improved
the precision of the absolute pose by leveraging the rela-
tive pose. Compared to the absolute pose, the fused pose
exhibited higher smoothness and continuity. According to
the SPARK2024 competition evaluation metrics, Table 1
presents the experimental results of the complete test set.

Figure 9. The comparison of absolute pose optimization using
filter and fusion method.

5. Conclusion

In conclusion, this paper presents a significant advance-
ment in the field of non-cooperative spacecraft pose estima-
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tion using monocular vision. By addressing the challenges
posed by cross-domain scenes in both simulated and real
captured images, the framework CroSpace6D we proposed
achieves high precision and demonstrates outstanding per-
formance on the SPARK2024 dataset.
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