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Abstract

Spiking Neural Networks (SNNs) are a class of bio-
inspired neural networks that promise to bring low-power
and low-latency inference to edge-devices through the use
of asynchronous and sparse processing. However, being
temporal models, SNNs depend heavily on expressive states
to generate predictions on par with classical artificial neu-
ral networks (ANNs). These states converge only after long
transient time periods, and quickly decay in the absence of
input data, leading to higher latency, power consumption,
and lower accuracy. In this work, we address this issue by
initializing the state with an auxiliary ANN running at a
low rate. The SNN then uses the state to generate predic-
tions with high temporal resolution until the next initializa-
tion phase. Our hybrid ANN-SNN model thus combines the
best of both worlds: It does not suffer from long state tran-
sients and state decay thanks to the ANN, and can generate
predictions with high temporal resolution, low latency, and
low power thanks to the SNN. We show for the task of event-
based 2D and 3D human pose estimation that our method
consumes 88% less power with only a 4% decrease in per-
formance compared to its fully ANN counterparts when run
at the same inference rate. Moreover, when compared to
SNNs, our method achieves a 74% lower error. This re-
search thus provides a new understanding of how ANNs and
SNNs can be used to maximize their respective benefits.
Code: https://github.com/uzh-rpg/hybrid_
ann_snn

1. Introduction

Recent breakthroughs in deep learning have led to acceler-
ating progress on a wide range of computer vision tasks. As
this progress speed-ups, practitioners are moving to deeper
and deeper models in the pursuit of higher task perfor-
mance. However, this trend comes at a cost: Today’s large-
scale models require increasing amounts of power, which
limits their adoption in power-constrained scenarios.

Low-power computation is a crucial requirement for ap-
plications running on edge devices and can make the dif-
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Figure 1. Spiking Neural Networks (SNNs, top) are prone to long
transient periods and state decay in the absence of input data, lead-
ing to lower accuracy and higher latency and power consumption.
In this work (bottom), we solve this with an auxiliary artificial
neural network (ANN) that initializes the SNN states at low rates.
Our resulting hybrid architecture is simultaneously accurate and
maintains the low-power and low-latency aspect of SNNs.

ference between changing the battery of IoT devices once a
day or once a year or greatly increasing the mission time of
autonomous robots with power-constrained hardware.

Spiking Neural Networks (SNNs) are a novel brain-
inspired way to process visual signals, which are orders of
magnitude more efficient than their Artificial Neural Net-
work (ANN) counterparts. Instead of processing inputs as
synchronous, analog-valued tensor maps, they are dynami-
cal systems that process data as sparse spike trains. More-
over, when deployed on neuromorphic processors, SNNs
function asynchronously in an activity-driven fashion, en-
abling fast inference and low power consumption.

Although previous work has demonstrated SNN applica-
tions on a wide range of tasks, they are still limited in their
performance due to two shortcomings: First, they are dif-
ficult to train due to the non-differentiability of spikes [37]
and the vanishing-gradient problem [38, 41]. Second, they
require long time windows to converge and match the accu-
racy of ANNs [11, 29] and are prone to decay in the absence
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of input data. This is because SNNs, being temporal mod-
els, depend on an expressive state to generate predictions on
par with classical ANNs. However, this state takes time to
converge: Membrane potentials (i.e., states) in the SNN lay-
ers need to charge over time, then cross the firing threshold,
and finally emit spikes that charge the next layer. In deep
SNNs, this charging time generates a long delay, which in-
creases latency and energy consumption due to the need for
more iterations.

In this work, we solve this issue by using an auxiliary
ANN to initialize the SNN states periodically at low rates,
thus eliminating the need for the SNN states to converge.
We then use the SNN to generate predictions and propa-
gate the state forward until the next initialization step. The
resulting predictions (i) have a high rate, (ii) experience a
boost in accuracy due to a well-initialized state, and (iii)
maintain the low-power property of SNNs. Crucially, the
auxiliary ANN only requires little power due to the low rate
of state initialization. The resulting hybrid model thus com-
bines the advantages of both ANNs and SNNs.

We evaluate our method on the tasks of 2D and 3D hu-
man pose estimation (HPE) using events from an event cam-
era, where we show consistently that our method reduces
the power consumption of standard ANNs by 88% while
only achieving a 4% error increase. Instead, when com-
pared to SNNs, our method achieves 74% lower error.

In summary:
1. We propose an energy-efficient, low-latency hybrid

ANN-SNN architecture, where the ANN is tasked with
initializing the SNN states at low frequency, thus over-
coming the limitations of both ANNs and SNNs.

2. We show for the task of event-based HPE that this
method achieves a balance between being accurate
and power efficient. Compared to standard ANNs, it
achieves significant improvements in terms of energy
consumption and update rate while only experiencing a
slight decrease in accuracy.

3. The proposed method naturally supports frame-based in-
put, such as RGB images, which further improves the
accuracy.

2. Related work
2.1. Hybrid ANN-SNN Architectures

In recent years, there has been a growing interest in
exploring the potential benefits of combining Artificial
Neural Networks (ANNs) and Spiking Neural Networks
(SNNs) [25, 27, 30, 51, 53]. Different combination strate-
gies have been explored for a variety of tasks.

A group of work employs the strategy of processing the
accumulated spike train of SNNs with ANNs [25, 27, 30].
In these works, the SNN is used as an efficient encoder of
spatio-temporal event data from an event camera. The out-
put of the SNN is accumulated to summarize the temporal

dimension before the ANN processes the accumulated fea-
tures [25, 27]. Liu et al. [30] extend this idea for object
classification and use a feedback loop from the ANN to the
input of the SNN. The downside of the aforementioned ap-
proaches is that they need to execute a full forward pass of
the ANN to extract results, which results in high power con-
sumption and high computational latency. In contrast, our
SNN directly updates the output of the ANN such that we
do not need to execute the ANN for every iteration, thus
retaining the low-power property.

A second line of work uses a strategy where the out-
put of the independently operating SNN and ANN is fused
[28, 51, 53]. This approach is especially suitable for multi-
modal processing of frame-based video and event data from
event cameras. The ANN is tasked with extracting fea-
tures from the frames while the SNN processes events di-
rectly. Finally, the output of both networks are fused based
on heuristics [28], temporal filtering [51], or accumulation
based on the output of the ANN [53]. However, these meth-
ods do not address the convergence of SNN’s and also do
not share features between networks, making their fusion
shallow. By contrast, our approach not only reuses the
output of the ANN [53] but also reuses the features from
the ANN to initialize the SNN states. The initialization of
SNN states drastically improves the performance and con-
vergence of the SNN.

2.2. Human Pose Estimation

Frame-based Human pose estimation (HPE) is the task
of estimating the 2D or 3D locations of body joints from a
single image or video. Current techniques for 3D HPE in-
volve reconstructing the 3D pose from either single [7, 8,
35, 40, 48, 54] or multiple [9, 17, 24, 43] camera views.
To estimate the 3D pose from multiple views, the tradi-
tional approach involves predicting the 2D pose in each
view and using the camera characteristics and positions
to triangulate it into the world coordinate [1]. Alterna-
tively, newer approaches include triangulation with neural
networks [19, 22, 31, 32] or direct regression of the 3D
pose [43, 52]. Both single-view and multi-view approaches
can be improved by using multiple frames to extract tem-
poral information that can help disambiguate joint locations
over time and reduce jitters [9, 17, 22, 36, 43].

Event-based Recently, human pose estimation with event
cameras has gained traction due to their inherent ability to
filter out temporally redundant information like the back-
ground [2, 3, 46, 50, 56]. These works adopt one of two
main approaches. The first direction of work utilizes vol-
umetric human body models [33] to estimate both the 3D
pose and shape of the human body [50, 56]. EventCap [50]
and EventHPE [56] use a low-dimensional human shape
representation called SMPL [33] to enable end-to-end shape
and pose estimation from images and events. The second
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Figure 2. Overview of our method. Our method processes in-
puts as dense and spike-based representations. The ANN uses the
dense representation to perform state and output initialization at
low rates. The SNN then uses spikes to generate high-rate outputs
until the next dense input.

approach, in contrast, focuses on extracting the pose infor-
mation using a skeleton body model [2, 3, 46]. Scarpellini
et al. [46] use events from a single camera view and predict
the 3D pose with a Convolutional Neural Network (CNN).
Calabrese et al. [3] and Baldwin et al. [2] estimate 2D joint
locations using a CNN architecture and perform triangula-
tion to obtain the 3D pose. Different from previous work,
we target low-power inference for human pose estimation
using a hybrid ANN-SNN architecture. Our approach ben-
efits from the high accuracy of ANNs and low power con-
sumption of SNNs to improve the accuracy to power trade-
off.

3. Methodology
An overview of our approach is depicted in Fig. 2. Our ap-
proach employs a slow-fast [6, 12] two-branch design where
feature extraction alternates between an expensive but infre-
quent ANN stage and a frequent cost-effective SNN stage.
In our hybrid ANN-SNN approach, the ANN is utilized to
accurately predict joint locations based on prior events and
to simultaneously initialize the spiking neuron states. This
sets the stage for high-frequency, low-latency updates using
the SNN, where events of duration ∆T are sequentially fed
to the SNN. After the sequence duration T , the process is
repeated where a new prediction is made by the ANN, and
states of spiking neurons are re-initialized. The integration
of the ANN at low rates and the SNN at high rates enables
precise predictions to be made with low-latency while main-
taining energy efficiency. The following provides a detailed
explanation of our hybrid model and its constituent steps.

3.1. Preliminaries

Our method takes as input a sequence of spike-based and
dense representations. The dense representation can be
an image, if synchronized and aligned with events, or any
dense event representation computed from raw events. For

the remainder of this section, we let Yi be the dense repre-
sentation at time ti. In this work, we opted for stacked 2D
histograms [14] in case of event data. They are computed
by stacking N = 10 two-channel histograms [34] from a
total of 7,500 events. We then consider raw binary events
up to time t denoted as X(t) with t > ti:

X(t) =
∑

j|tj<t

pjδ(t− tj). (1)

In general, tj is the timestamp of the j-th events, and
pj ∈ R2 is the event polarity converted to a one-hot vector.
The ANN, FANN, processes the dense event representation
and predicts both the output o at time t as well as the initial
SNN states {sk}Lk=1 for all L layers. The SNN, FSNN, then
processes the incoming event stream X to continuously up-
date the prediction o. The following equations summarize
this process:

{ski }Lk=1, oi = FANN(Yi) (2)

o(t) = FSNN(t;X, {ski }Lk=1, oi). (3)

Here, {ski }Lk=1 denote the membrane potential of the SNNs
at layers k = 1, ..., L for timestamp ti. The variable oi de-
notes the output map for timestamp ti. Finally, o(t) denotes
the human pose estimates at time t. It is generated by using
the initialization oi and integrating the output of the SNN
onto it. In summary, the task of the SNN is to incremen-
tally update the initial prediction that the ANN provides.
While the ANN is a standard U-Net [44], the SNN can be
interpreted as a continuous-time model that takes a function
X (see Eq. (1)) as input and generates a prediction at any
time t. Next, we will go into more detail on how this model
works.

3.2. Spiking Neural Networks

SNNs model individual neurons at layer k as dynamical sys-
tems that update their membrane potential V k by integrat-
ing a series of input spikes in a learnable way. When their
membrane potential exceeds a threshold, it generates spikes
which are then transmitted to the next layer, followed by
some resetting of the membrane potential. In our work, we
use the Leaky Integrate & Fire (LIF) neuron model [15].
The sub-threshold dynamics of a LIF neuron are defined as

τ
dV k(t)

dt
= −(V k(t)− Vrest) +Xk(t). (4)

Here V k(t) represents the neuron’s membrane potential at
time t, and layer k, Vrest is the resting potential of the neu-
ron, Xk(t) denotes the integrated spike train at time t, and
τ is the membrane time constant. After the membrane po-
tential reaches the firing threshold Vth, a spike is emitted,
and the membrane potential is immediately reset back to its
resting potential.
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Figure 3. Hybrid ANN - SNN architecture. The ANN (upper row of blocks) is fed with past events at time step t0, where an initial output
is predicted, and states of spiking neurons are initialized (orange blocks). Events of duration ∆T are fed sequentially to the SNN (lower
row of blocks) for high-rate updates of the prediction.

While conventionally, membrane potentials are initial-
ized at 0 for all neurons and layers; we use the ANN to ini-
tialize these potentials in this work. We thus modify Eq. 4
by adding a boundary condition at time ti for each layer:

τ
dV k(t)

dt
= −(V k(t)− Vrest) +Xk(t). (5)

subj. to: V k(ti) = ski

where ski are the activation initialization maps generated by
the ANN. As will be shown later, this small change has a
major impact on the SNN behavior since it mitigates de-
lays due to convergence in Eq. 4 and improves performance
overall by providing a well-initialized state. Next, we will
discuss how we emulate such a continuous dynamical sys-
tem on conventional hardware.

3.3. Discretization and Training

To train our ANN-SNN model, we need to convert the SNN
into a recurrent network. This is typically done by applying
a forward Euler approximation to the differential Eq. (5).
Eq. (6) shows the discretized sub-threshold dynamics and
the spiking mechanism where H(.) is the Heaviside step
function with St denoting the spike output.

V k
t = V k

t−1 +
1

τ
(Xk

t − (V k
t−1 − Vrest))

Sk
t = H(V k

t − Vth)

subj. to: V k
0 = ski

(6)

In the discretized version, time t takes integer values and
starts at index 0, which previously corresponded to the
timestamp ti. To emulate the resetting behavior, we ap-
ply soft resets, also known as Residual Membrane Poten-
tial Neurons [16], which reduce the potential by the amount

of the threshold value. This allows the residual potential to
be re-used at the next steps, resulting in reduced informa-
tion loss. Using soft reset neurons has the effect that poten-
tial values can be initialized outside the range [Vrest, Vthr].
This allows extreme cases such as dead neurons or always
ON neurons.

Eqs. (6) can be interpreted as a recurrent neural net-
work that can be unrolled over multiple forward Euler steps
and then trained using backpropagation through time [49].
However, a challenge in training the above spiking neural
networks lies in its use of the Heaviside step function H ,
which is not differentiable. However, this problem can be
addressed by using surrogate gradients [37], i.e., replacing
the gradient of the Heaviside function with the approximate

H ′(x) ≈ 1

1 + (πx)2
(7)

For more details on SNN training, see [37].

3.4. Network Details

The hybrid network details are illustrated in Fig. 3. For
the ANN (top row), we use a U-Net structure [45], adapted
from Super SloMo [20]. It has a total of 23 layers, com-
prising a prediction layer, five encoders, and five decoders
concatenated with skip connections at the same spatial res-
olution. The SNN (bottom row) is a variant of the U-Net
architecture [45], modified from EVSNN [55]. The archi-
tecture consists of 10 layers made up of a prediction layer,
residual block, four encoder, and four decoder layers. At
every timestep, events are presented to the network in two
channels for each polarity. The network is trained with a
discretization step of 10 ms. At the output, we use a simple
convolutional layer and integrator, which allows predicting
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analog heatmaps. Each SNN layer is initialized from ANN
state initialization modules depicted with orange blocks in
Fig. 3. The initialization module reuses the ANN U-Net
features and predicts the membrane potential of the SNN
spiking neurons. The initialization modules consist of only
two convolutional layers followed by batch normalization.
An ablation study of the state initialization architectures can
be found in Sec. 4.2.2. Additional network details about the
ANN and SNN are given in the appendix.

4. Experiments

We evaluate our model on two publicly available event-
based human pose estimation datasets, DHP19 [3] and
Event-Human3.6M [46]. Sec. 4.1 starts off with details
about the datasets, metrics, and training. We then demon-
strate the effectiveness of our hybrid model in reducing
power consumption while boosting accuracy in the ablation
study section (Sec. 4.2). We continue with a spike activity
analysis in Sec. 4.3 and comparison with state-of-the-art
event-based human pose estimators in Sec. 4.4 before
concluding with a limitation analysis of our approach in
Sec. 4.5. Further analysis and insights on state initializa-
tions can be found in the Appendix.

4.1. Setup

Datasets The DHP19 dataset [3] is a real-world event
camera dataset recorded with 4 synchronized DAVIS346
cameras. Overall, the dataset features 17 different subjects
performing a total of 33 movement patterns. DHP19 con-
sists of 556 sequences with labels from a motion capture
system at 100 Hz. With this dataset, we analyze our pure
event-based implementation using real event data.

The Event-Human3.6M [46] originates from the Hu-
man3.6M dataset [18] and uses an event simulator [13] to
generate synthetic event data. The dataset features 11 sub-
jects and 17 different activities that are more complex than
the movements in the DHP19 dataset. Human3.6M images
are captured with 4 synchronized high-resolution cameras
and labels with a motion capture system at 50 Hz. Our ex-
periments on Event-Human3.6M examine whether our ap-
proach also performs well on more complex motion patterns
at the cost of using synthetic event data.

Metrics We measure the accuracy using the Mean Per
Joint Position Error (MPJPE). For each joint, the Euclidean
distance between the predicted and ground truth positions of
a joint is calculated. The MPJPE score is computed as the
mean of these errors across all joints in the skeleton body
model. This score is defined for both 2D skeleton estima-
tions (in pixels) and 3D estimation (in millimeters) as:

MPJPE =
1

J

J∑
i=1

∥xi − x̂i∥, (8)

where J is the number of joints, xi is the ground truth,
and x̂i is the estimation of the joint in 2D or 3D space.

Energy Consumption depends on computation and data
movement, which includes memory access. However, due
to hardware dependencies, quantifying memory access and
data movement is challenging. Therefore, we measure
energy consumption by computing the total number of
multiply-accumulate (MAC) and accumulate (AC) opera-
tions used by a method. While ANNs perform dense MAC
operations, SNNs perform sparse AC operations as a re-
sult of the binary nature of spikes. In most technolo-
gies, the addition operation is less costly than the multi-
plication operation. For 7nm CMOS technology, one 32-
bit MAC operation uses 1.69 pJ, while one AC only uses
0.38 pJ [21], which are the values we use to calculate the
power consumption of all methods. For ANNs, we com-
pute the total number of MACs throughout the layers as
k2WoHoCiCo, where we use the kernel size k, output di-
mension Wo ×Ho and input and output channel dimension
Ci and Co. For SNNs, we count the total number of ACs as
the above value multiplied by the average spiking activity
ζl ∈ [0, 1]. It is the ratio of the total number of spikes in
layer l over all timesteps to the total number of neurons in
layer l [26, 42, 47]. In these calculations, we assume every
spike consumes constant energy [5].

Training Details For SNN training, we use the Spiking
Jelly framework [10], an open-source deep learning frame-
work based on PyTorch [39]. The network is unrolled for
all time steps to perform BPTT [49] on the average loss
of the sequence, Lavg. We adopt the loss function from [4],
which computes the difference between heatmaps generated
by our method and 3D joint labels projected to pixel space.
For each 2D joint, ground-truth heatmaps are generated by
setting the joint location pixel to 1 in a zero-filled 2D tensor
at the input’s spatial resolution. Gaussian blurring with a fil-
ter size of 11 and a standard deviation of 2 pixels is applied
to each heatmap to aid learning. The loss is computed be-
tween predicted and ground truth heatmaps using the Mean
Square Error (MSE) and averaged over several timesteps

Lavg =
1

JT

T∑
t=1

J∑
i=1

(oti − ôti)
2, (9)

All experiments were trained on a single GPU, Quadro RTX
8000, for approximately 72 hours. We first train an ANN
with the learning rate 1e-4 of batch size 8 for 60,000 it-
erations. We then train the hybrid model by freezing the
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Figure 4. Overview of the ablation experiments. Schematic of (A) pure SNN without state initialization and output initialization, (B)
hybrid model without output initialization, (C) hybrid model without state initialization, and (D) our proposed hybrid model with state and
output initialization. Plots of accuracy over time of our approach against (E) only output initialization and only state initialization ablated
and (F) both ablated. All plots show 2D MPJPE scores on the entire test set for camera view #2, with initializations performed at t = 0.

Table 1. State initialization module ablation study. Results are
reported on the validation set of DHP19 for camera view #2. The
last bin provides the score of the 10th time step, and the second
column reports the average score of the sequence.

State Initialization Mappings MPJPE (2D) ↓
Last Bin Average

- 9.12 7.08

Conv + BN + LeakyReLU + Conv + BN + Sigmoid 16.59 9.83
Conv + BN + LeakyReLU + Conv + BN + LeakyReLU 6.32 6.14
Conv + BN + LeakyReLU + Conv + BN 6.11 6.02
Conv + BN + LeakyReLU + Conv 6.22 6.23
Conv + BN + LeakyReLU 6.12 6.17

ANN weights and only training the SNN. Hybrid exper-
iments were trained for 280,000 iterations with an Adam
optimizer [23], batch size 2, and learning rate 5e-5 with the
neuronal time constant, firing threshold, and output decay
τ set to 3, 1, and 0.8, respectively. Pure SNN experiments
were trained for 160,000 iterations with the same parame-
ters, with the exception of the time constant τ = 2.

4.2. Ablation Studies

This section first examines the two main contributors to the
performance of our proposed model, state initialization and
output initialization. Second, we examine different state ini-
tialization architectures. In these experiments, we run the
ANN at 10 Hz and the SNN at 100 Hz with 10 ms of events
presented at the input.

4.2.1 Proposed Method

Fig. 4 reports ablation studies comparing four variants of
our method (A-D) in terms of 2D MPJPE on camera view 2
of DHP19. In (E-F), we show the MPJPE over 100 ms of
events. Model A is a pure SNN with a zero state initializa-
tion at time 0. Model B initializes the SNN states from an
auxiliary ANN. This ANN processes a dense event repre-

sentation constructed at time t = 0 to generate these states,
and the SNN then continues predicting within the time in-
terval. Model C does not use state initialization but instead
uses the SNN to learn a delta on the ANN prediction at
timestamp t = 0, which we call output initialization. Fi-
nally, model D combines the idea of output initialization
and state initialization, which is our proposed method.

We see in Fig. 4 (F) that the SNN with states initialized
at 0 (A), results in high error due to slow convergence over
the time interval shown. One way to solve this is to use
output initialization (C), which achieves a low error at the
beginning (E) but diverges back to pure-SNN error levels
the further away we get from the first ANN prediction. Our
proposed way to initialize SNN states via the ANN (B) ac-
celerates the convergence of the SNN and thus leads to sta-
ble and low error rates in (E). Finally, adding back the out-
put initialization (D) further reduces the error rate through-
out the interval. Crucially, using output initialization upper
bounds the method’s error rate at t = 0 to that of the ANN.

4.2.2 State Initialization Architecture

We investigate different blocks for mapping ANN features
to initialize membrane potentials (Fig. 3, orange blocks) and
report the last bin and average bin scores in Tab. 1. For the
last bin, we report the error achieved after 100 ms of events,
and for the average bin score, we average over 10 time steps.

We compare these scores with membrane potentials ini-
tialized with zeros reported in the first row. In general, we
found that putting a batch normalization layer at the end led
to the best results. Interestingly, since batch normalization
can generate values outside of the range [0,1], it can perma-
nently kill or activate neurons which proved to be beneficial.
This can be seen when comparing rows 2 to 4, where adding
a range limiting function LeakyReLU or Sigmoid degrades
performance. Following Tab. 1, we chose Conv + BN +
LeakyReLU + Conv + BN.
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Figure 5. Effect of state initialization on spike firing rates
across time steps. The SNN consumes 46 mW of energy before
state initialization, while energy is decreased to 30 mW after state
initialization.

4.3. Spike Activity Analysis

This section compares spike activity before and after state
initialization of spiking neurons. Fig. 5 shows the average
spike firing rate throughout the network for each time step.
The spike rate gradually increases for the SNN experiment
as membrane potentials build up and more spikes are emit-
ted over time. In contrast, spike firing rates in the hybrid
model show high firing rates in the first time step due to the
initialized states. Overall, there is reduced firing activity
following state initialization, leading to a 35% decrease in
power consumption from 46 mW to 30 mW.

4.4. Comparison with State-of-the-Art

4.4.1 2D Pose Estimation

Here we compare the performance of our hybrid approach
and its ANN counterpart with previous work on 2D pose
estimation. ANN experiments reported at a specific rate are
achieved by inputting events in a sliding window manner.
Tab. 2 reports 2D results on the test set for DHP19 [3] and
compares MPJPE in pixels on the two camera views used in
prior work. We compare against Calabrese et al. [4], which
uses an Hourglass style network to process dense event rep-
resentations, and Baldwin et al. [2], which reuses the net-
work from [4] but instead uses specialized TORE volumes
as inputs. Both methods use artificial neural networks.

Tab. 2 shows that our pure ANN achieves the best score
with 5.03 px compared to all previous methods but con-
sumes the most energy with 3.718 W. In contrast, the hy-
brid model with 0.424 W is 8x more energy efficient com-
pared to the pure ANN model, with only a 6% and 3% de-
crease in accuracy for camera views 3 and 2, respectively.
In comparison with previous work, the hybrid model is the
most energy efficient while outperforming previous works.
A key advantage of using SNNs is that outputs are contin-
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Figure 6. 2D pose estimation performance vs. power consump-
tion at 100 and 200 Hz.

Table 2. 2D pose estimation performance on DHP19 and energy
consumptions. The hybrid model runs the ANN and SNN at 10 Hz
and 100 Hz, respectively, and the pure ANN models are run at
100 Hz. Best values are highlighted in bold, and second best are
underlined.

Method Model 2D MPJPE ↓ # Ops/s (G) Power
(W)Cam 2 Cam 3 MAC AC

Calabrese [3] ANN 7.72 7.61 255 0 0.431
Baldwin [2] ANN 5.98 5.25 949 0 1.605

Ours ANN 5.03 4.67 2200 0 3.718
Ours SNN 21.37 19.17 0.5 121 0.046
Ours Hybrid 5.19 4.97 233 79 0.424

uous time, meaning that we may increase the discretization
step of the SNN to smaller values, i.e., higher rate outputs,
without significantly impacting power consumption. Fig. 6
visualizes all methods’ accuracy and power consumption at
different rates. The SNN part of our hybrid model only con-
sumes 5% of the energy. Therefore, increasing the update
rate allows higher rate predictions with little to no increase
in power consumption while maintaining the same accu-
racy. For approaches relying only on ANNs, power con-
sumption increases linearly with the prediction rate. From
Fig. 6, we see that our hybrid model at 200 Hz retains
good accuracy with minimal change in power consumption.
Fig. 7 visualizes the tracking performance of our approach
at 100 Hz for different movements and test subjects, in com-
parison to ANN at 10 and 100 Hz.

Next, we evaluate our approach on the Event-
Human3.6M [46] dataset. We perform two experiments,
feeding either RGB images or event representation to the
ANN. This shows our approach’s generality to work with
multimodal (events+frames) data. The ANN is deployed at
5 Hz, while the SNN uses a discretization step of 10 ms,
resulting in 100 Hz updates. Tab. 3 reports our scores and
power consumption. Our hybrid approach with RGB im-
ages fed to the ANN reports on par accuracy of 4.66 pixels
with previous work while being 26.7 times more energy ef-
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Table 3. 2D pose estimation scores on Event-Human3.6M with
energy consumptions. The hybrid model runs the ANN and SNN
at 5 Hz and 100 Hz, respectively whereas the pure ANN models
are run at 100 Hz.

Method Model Modality 2D MPJPE ↓ # Ops/s (G) Power
(W)MAC AC

Scarpellini [46] ANN Events 4.66 3321 0 5.61
Ours ANN RGB 4.19 2025 0 3.42
Ours ANN Events 5.09 2200 0 3.72
Ours Hybrid RGB + Events 4.66 108 75 0.21
Ours Hybrid Events 5.76 117 70 0.22

Figure 7. Qualitative 2D pose estimation for different test sub-
jects and actions. From left to right, samples from ANN at 10 Hz,
100 Hz, and our hybrid ANN - SNN model at 100 Hz with green
markers indicating groundtruth and pink markers indicating pre-
dictions. Large circles indicate the end prediction of the sequence.

ficient with 0.21 W power consumption compared to the
5.61 W of previous work. Due to the model complexity
of previous work, our hybrid experiments with only events,
the last row of Tab. 3, fall short of state-of-the-art but show
competitive performance.

4.4.2 3D Pose Estimation

For 3D HPE on the DHP19 dataset, we use the 2D detec-
tion provided by our method and then use two triangulation
methods to generate 3D points. First, we use geometrical

Table 4. 3D pose estimation scores on DHP19. MPJPE is re-
ported in millimeters.

Method Model Triang. 3D MPJPE ↓ # Ops/s (G) Power
(W)MAC AC

Calabrese [3] ANN Geom. 87.6 255 0 0.431
Baldwin [2] ANN NN 58.4 984 0 1.664

Ours Hybrid Geom. 57.7 233 79 0.424
Ours Hybrid NN 54.2 268 79 0.483

triangulation from the two camera views to compare against
Calabrese et al. [3]. Second, we use neural network-based
(learned) triangulation for a fair comparison with Baldwin
et al. [2]. Tab. 4 summarizes the results and shows that our
approach yields the best trade-off between performance and
energy consumption. Our hybrid approach with geometri-
cal triangulation requires less power than Calabrese et al. [3]
while substantially reducing the MPJPE by 34%, from 87.6
mm to 57.7 mm. When using learned triangulation, our
method achieves an MPJPE reduction of 4.2 mm compared
to Baldwin et al. [2], while at the same time consuming 3.4
times less energy.

4.5. Limitation Analysis

To enhance the performance of our approach and ensure
temporal consistency of predictions, one could consider
conditioning the ANN on the prior SNN states. This is a
limitation of the current approach but could be overcome
with ANN to SNN cross-attention in future work.

5. Conclusion
We presented a hybrid ANN-SNN architecture that deliv-
ers fast and precise inference with reduced computational
costs. Our work identified that the slow convergence of
SNNs is due to the initialization of spiking neuron mem-
brane states. Our solution to this problem involves initial-
izing both SNN states and the output state with an ANN.
This approach enables SNNs to immediately produce accu-
rate predictions without requiring a warm-up phase, thereby
reducing latency. Our experimental results demonstrate that
this hybrid architecture can reduce energy consumption up
to 88%, with only a 4% decrease in performance on hu-
man pose estimation with respect to a standard ANN. When
compared to SNNs, our method achieves a 74% lower error.
We anticipate that this research will inspire further investi-
gations at the intersection of neuromorphic engineering and
conventional deep learning.
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