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Abstract

This paper introduces a neuromorphic dataset and
methodology for eye tracking, harnessing event data cap-
tured streamed continuously by a Dynamic Vision Sensor
(DVS). The framework integrates a directly trained Spiking
Neuron Network (SNN) regression model and leverages a
state-of-the-art low power edge neuromorphic processor -
Speck. First, it introduces a representative event-based eye-
tracking dataset, ”Ini-30,” which was collected with two
glass-mounted DVS cameras from thirty volunteers. Then,
a SNN model, based on Integrate And Fire (IAF) neurons,
named ”Retina”, is described , featuring only 64k param-
eters (6.63x fewer than 3ET) and achieving pupil tracking
error of only 3.24 pixels in a 64x64 DVS input. The con-
tinuous regression output is obtained by means of tempo-
ral convolution using a non-spiking 1D filter slided across
the output spiking layer over time. Retina is evaluated on
the neuromorphic processor, showing an end-to-end power
between 2.89-4.8 mW and a latency of 5.57-8.01 ms de-
pendent on the time to slice the event-based video record-
ing. The model is more precise than the latest event-based
eye-tracking method, ”3ET”, on Ini-30, and shows compa-
rable performance with significant model compression (35
times fewer MAC operations) in the synthetic dataset used
in ”3ET”. We hope this work will open avenues for further
investigation of close-loop neuromorphic solutions and true
event-based training pursuing edge performance.

 DVXplorer ( x2 )  

Dataset Collection of Ini-30 Event-Camera Recordings

Figure 1. A picture of the hardware for data collection (left)
and an example of the video recordings (right) with ground truth
(green) and prediction (yellow).
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Küpelioğlu for the great help during the collection of the
Ini-30 dataset and the Deployment on Speck.

1. Introduction
Neuromorphic systems, mimicking the neurobiological ar-
chitectures of the human brain, have emerged as a promis-
ing paradigm for sensing and processing [1, 5, 17]. Event
cameras and spike-based computation present distinctive
advantages compared to traditional frame-based cameras
and Artificial Neuron Network (ANN), such as low power
and decreased computing complexity. In the context of neu-
romorphic systems for eye tracking, various challenges con-
front the field. First, even the most recent methods either
rely on frame-based input [6, 24] or focus on end-to-end
tasks, such as gaze tracking learned from fixed screen-level
coordinates [2]. However, pupil tracking serves as a crucial
initial phase in the gaze estimation pipeline. When mas-
tered, it can facilitate applications to extend their capabili-
ties beyond controlled environments. Second, state-of-the-
art algorithms for event-based eye tracking are model-based
and require subject-specific calibration [2, 24] and fitting
at the moment of use, thus limiting their generalization to
consumer application [23]. Furthermore, eye-tracking al-
gorithms and systems demand a nuanced equilibrium and
trade-off between resolution, frame rate, latency and power
consumption, as each pixel carries energy and bandwidth
costs during the acquisition process. One of the most re-
cent papers on event-based eye tracking without subject-
dependent calibration was authored by Chen et al. [6].
Notably, in this work, they accumulated and normalized
synthetically generated events to a 32-bit pixel resolution
frame. This approach is inefficient as it does not leverage
the asynchronous 1-bit nature of the event data. Finally,
there is a need for end-to-end assessments of power con-
sumption and latency, with the object of benchmarking the
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energy efficiency and real applicability of machine learning
algorithms, that leverage event input and spike-based com-
putation.

To address these challenges, we propose an eye-tracking
model, dubbed ”Retina”, suitable for deployment on a neu-
romorphic asynchronous System-on-Chip (SoC), Synsense
Speck (Speck). We leverage spike-based computation and
real event input to offer energy-efficient eye tracking of the
pupil from near-eye events. In detail, our work introduces
the following three key contributions:
1. Event-based Eye Tracking Dataset, ”Ini-30”: We in-

troduce the first event-based eye-tracking dataset, named
”Ini-30”, recorded on a glass frame. Our dataset is
collected with two event cameras and features variable
recording lengths and event counts from 30 volunteers,
providing an ideal benchmark for modeling the hetero-
geneity of event-based eye tracking in real-world sce-
narios. Our dataset brings new challenges, such as dif-
ferent event temporal evolution trends across different
recordings. Thus, we slice the event data based on quan-
tity of events instead of fixed timestamps. This method
enables domain gap adaptation between different DVS,
solves the difference in temporal event growth between
real recordings, and improves eye tracking precision.

2. Event-based Eye Tracking Algorithm, ”Retina”:
Retina is a SNN structure based on IAF neurons, fol-
lowed by a non-spiking temporal weighted-sum filter for
regression, which converts spikes to bounding box pre-
dictions. The filter allows IAF neurons to learn tempo-
ral information without having to fall back to a voltage
decay factor [4] or recurrent neurons, which are not sup-
ported in the hardware, Speck. To the best of our knowl-
edge, Retina is the first eye tracking algorithm, suit-
able for deployment on neuromorphic hardware. Com-
pared to 3ET [6], it shows superior precision (-20% cen-
troid error) and reduced computational complexity (-30x
MAC).

3. Deployment on Neuromorphic Hardware: Finally, the
deployment of our model on an ”edge” neuromorphic
SoC, Speck, provides for the first time power and latency
results for network inference on chip and an end-to-end
evaluations using the on-board DVS camera.

2. Related Work
This section discusses the state-of-the-art explorations of
eye-tracking based on a comprehensive literature survey.
Depending on the utilized signal form (non-event or event
input), we separate the existing eye-tracing solutions into
two approaches:

2.1. Non-Event-Based Eye Tracking

Conventional non-event-based eye-tracking includes
model-based and appearance-based methods. The former

one either tracks specular glint reflections for corneal
curvature center detection [9, 19], or extracts salient
geometrical features of the eye from frames and tracks the
pupil with an optimized fitting method based on a physics
eye model [11, 20]. Such an approach commonly supplies
impressive tracking accuracy, achieving sub-degree track-
ing error [13], while stunted by the deployment complexity,
such as ambient light conditions, image resolution, and
calibration requirement. The latter one typically applies a
trained machine-learning model to the raw eye images for
tracking [3, 10, 15, 23]. This approach gives an end-to-end,
deployable eye-tracking solution, which is heavily limited
by the frame rate of the camera, with resulting tracking rate
that can reach a maximum of 300 Hz. Differently from
this line of work, the event-based eye tracking can reach
beyond kHz [2] of update rate and provide energy-efficient
observations [7].

2.2. Event-Based Eye Tracking

Benefiting from the sparse event stream and high dy-
namic range of event cameras, event-based eye-tracking
has emerged as a groundbreaking solution enabling beyond-
kHz and low-power consumption eye-tracking, as listed in
Tab. 1. The first event-based eye-tracking work was pub-
lished in 2020 [2], in which the authors proposed a hy-
brid frame-event-based near-eye gaze tracking system of-
fering update rates beyond 10 kHz with an accuracy com-
parable to commercial tracker. The algorithm is based on
a parametric pupil model and utilizes the event to update
the model with a pupil-fitting method. This work is sensi-
tive to sensor noises, as choosing the useful event that can
be used to update the model is challenging. Following this
work, researchers have published another three event-based
pupil/gaze-tracking papers in the past three years. Stoffre-
gen et al. [18] described the first fully event and model-
based glint tracker, which is robust to background distur-
bances and has a sampling rate of 1 kHz with an estimated
power of 35 mW (sensing components only). Here the au-
thor used coded differential lighting to enhance the glint de-
tection with an event camera. Similar to [2], in [24], the au-
thors presented a hybrid eye-tracking method that leverages
both the near-eye grayscale images and event data for robust
and high-frequency eye tracking. The proposed matching-
based pupil tracking method gave a pixel error of only 1.2
px with a peak tracking frequency of up to 38.4 kHz. In
[6], the authors proposed a sparse change-based convolu-
tional Long-Short-Term-Memory (LSTM) model for event-
based eye tracking, which reduces arithmetic operations by
approximately 4.7×, compared to a standard convolutional
LSTM, without losing accuracy when tested on a synthetic
event dataset.
There are several limitations to existing methods. First, they
rely on frames, either directly from the sensor output [2, 24],
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Table 1. A summary of the related work in event-based pupil/gaze tracking

Year-Work DVS
Camera

Dataset Input Algorithm Event Rate Energy Precision

2020-[2] DAVIS346b Customized Frames/Events Model-based ≥ 10 kHz N/A a 0.45◦–1.75◦

2022-[18] Prophesee
G3.1

N/A Events/LED
Markers

Glint Detection 1 kHz ≈ 35mWb < 0.5px

2023-[24] DAVIS346 EV-Eye Frames/Events Point2Edge ≤ 38.4 kHz N/A 1.2-7.7px

2023-[6] N/A Synthetic Event-frames ConvLSTM 95 kHz N/A N/A

Ours DVXplorer Ini-30 Events SNN ≤ 5kHz c 2.89d-4.8mW d 3-8px
a Not Available.
b Sensor power only.

c Depending on the DVS and time window lenght.
d End-to-end power.

which decreases the power efficiency of the system, or ac-
cumulate the events into frames and process the frames with
deep neural network [6], which sacrifices the temporal res-
olution, introduces latency and increase the memory foot-
print. Second, with a purely event-based solution, auxiliary
devices are used to enhance specular events [18]. Besides
that, none of the existing works carried out a real deploy-
ment of their proposals, especially on a neuromorphic plat-
form that perfectly matches the sparsity of the event stream.
Thus, the system-level performance in the energy and la-
tency that an event solution can bring is still unclear. In con-
trast, our work presents a SNN supported by an end-to-end
neuromorphic edge system leveraging pure events stream
from a DVS camera.

3. Dataset

Several prominent eye-tracking and gaze estimation
datasets have contributed significantly to the advancement
of this field using frame cameras [12, 22]. To the best of
our knowledge, the only available event-based datasets have
been presented by Angelopoulos et al. [2] for gaze tracking
and in Zhao et al. [24] for gaze and eye tracking. As a mat-
ter of fact, the state-of-the-art methods, i.e. 3ET [6], had to
generate synthetic event-based dataset to develop eye track-
ing algorithms. In this paper, we introduce a representative
event-based eye tracking dataset, dubbed ”Ini-30”, which,
for the first time, was collected with two event cameras (one
per eye) mounted on a glass-frame without fixing the head
of the user on a head set in a controlled environment.

3.1. Dataset Collection

The Ini-30 dataset is collected with two event cameras
mounted on a glass frame. Each DVXplorer sensor (640 ×
480 pixels) is attached on the side of the frame. The power
supply was provided via a 2 meter cable connected from the
cameras to a computer, which provided enough freedom of
movement. Differently from [2, 24], the participants were

not instructed to follow a dot on a screen, but rather encour-
aged to look around to collect natural eye movements. As
shown in Fig. 1, the event cameras were securely screwed
on a 3D-printed case attached to the side of the glass frame.

The data was annotated based on accumulated linearly
decayed events by defining the pixel intensity as function of
the linear accumulation of previous pixel intensity. Next we
labeled the position of the pupil in the DVS’s array manu-
ally, using an assistive labeling tool. We discarded the first
20ms of events to ensure the eye was visible and annota-
tions met the level of image-based annotators. The number
of labels per recording was intentionally variable, spanning
from 475 to 1’848 with a time per label ranging from 20.0
to 235.77 milliseconds depending on the overall duration of
the sample.

This setup allows for unconstrained head movements,
enables to capture event data from eye movement in a ”in-
the-wild” setting and allows the generation of a represen-
tative, unique, diverse and challenging dataset. In the next
section, we characterize the dataset and compared further
with event-based datasets for gaze tracking.

3.2. Dataset Comparaison

In this section, we present a comparative analysis of the
dataset presented in [2, 24] with our proposed Ini-30
dataset. We summarize the key points in Tab. 2. To the
best of our knowledge, Ini-30 is the first eye-tracking event-
based dataset with pupil location labelled on the sensor. The
other event-based datasets available [2, 24] consist of point
coordinates on a display, instead of pupil location coordi-
nates on the DVS’s array. Labeling pupil locations provides
superior precision and granularity for understanding gaze
behavior compared to screen coordinates.

In addition, [2, 24] employs a lower resolution sensor,
DAVIS346b (346 × 260 px), whereas our Ini-30 dataset in-
corporates DVXplorer sensor, 640 × 480 px. Both datasets
are collected using Near-Infra Red (Illumination) (NIR) il-
lumination technology, to highlights the events surrounding
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Table 2. Comparison between our proposed dataset (Ini-30) with
the one proposed in [2] and [24].

Aspect [2] [24] Ini-30 (Ours)

Resolution 346×260px 640×480px
Glass Frame ✗ ✓

Pupil Label ✗ ✓

Variability* Low High

* Variability refers to the difference in duration of each
recordings and the event temporal distribution.

the pupil. Additionally, [2, 24] captures subjects with fixed
head positions, while Ini-30 is designed for use cases with
unconstrained head movements with cameras mounted di-
rectly on glass frames. Because of this, Ini-30 covers a
broader range of situations. For example, temporally, [2]
maintains fixed recording lengths (30s) and linearly grow-
ing event counts, while Ini-30 showcases richer variabil-
ity, Tab. 3, with recording durations spanning from 14.64
to 193.8 seconds.

Tab. 3 provides key statistics for Ini-30, in the context
of event cameras updates rates. The sampling time step
ranges from 61 to 346 microseconds, and the event count
per timestep spans from 3 to 5’000 events.

Table 3. Statistics for sampling times (Ts [µs] ) and number of
events per timestamps in Ini-30.

Name Median Mean Std Min Max

Sampling Time 200 200 14 61 346
Events / Ts 94 175 299 3 4’799

Overall, our dataset encompasses a diverse range of
recordings (30), with labels per recording spanning from
475 to 1’848, with total event data varying from 4.8 mil-
lion to 24.2 million, and time per label ranging from 20.0
to 235.77 milliseconds. This information helped informed
data preparation strategies in our models which consider a
temporal dimension.

4. Methodology
We propose a low latency and lightweight architecture and
learning rule for an eye-tracking algorithm based on event
data. Our network is a single SNN featuring spiking spa-
tial convolutions and fusible batch normalization layers.
The spiking outputs are converted to continuous values by
means of a 1D convolution layer with fixed weights. An
overview of our network configurations can be found in Tab
5, while other implementation details are described in the
next subsections.

4.1. Data Preparation

Since the algorithm is deployed on the neuromorphic SoC
Speck, which has two-channel support for a 64x64 DVS’s
resolution, we prepared the dataset to bridge this domain
gap. First, we transformed the rectangular resolution of the
original data to a squared array of 512x512, by shifting the
y-axis to 16 pixels and discarding 128 X-coordinates in cor-
respondence to the spatial location where fewer events are
present and no label appeared (x < 96 and x > 608).

Next, we applied sum pooling to reach the Speck com-
patible resolution and proceeded to dynamically slice the
event temporally. Every video was sliced, from a point in
time corresponding to a pupil label timestamp, until we ob-
tained a desired pixel activations. This results in better input
data for convolution layers, (Tab. 4), Fig. 2 shows an illus-
trated example of the working principles of the two tech-
niques. In case multiple events from the same pixels are
found during this slicing step, we keep the event polarity
with the highest number of events and then clip the event
frame back to 0 and 1, ensuring only one channel is ac-
tive at every timebin. Finally, since in our dataset, the sam-
pling time of events has a median of 200 µs, Tab. 3, while
pupil labels have a frequency of around 30 ms, we weight-
interpolated new labels at bin time using the two closest la-
bels in the source recordings. We trained our network with
64 timebins, shuffling each slice of recording only during
training.

4.2. Network Architecture

After the data preparation step, events are processed se-
quentially at fixed timestamps by kernel of the convolution,
batch normalization layers and IAF neurons in our model.
We designed each layer of our network to fit the memory
limitation of the available cores in the targeted platform,

800us 800us 800us 200us 1.2ms 600us

Pupil Target (x,y,t)

t

p

Dynamic
Window

Fixed
Window

Figure 2. An example illustrating the different techniques for slic-
ing events video recordings (red, blue) in time: A) dt = 800us, B)
events count = 2.
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Table 4. An example of the qualitative improvements of slicing
video recording with a dynamic time window (1) compared to
fixed time (2).

Method t ti+1 ti+2

(1)

(2)

Speck.
We computed the total kernel memory available KMT

for each layer following the basic formula:

KMT = c2log
kxky
2 +logf

2 (1)

Where c is the input channel of M , f is the output channel
number, kx and ky are the kernel size. The necessary neuron
memory NM entries are computed by solving the following
formulas:

NM = ffxfy (2)

Where f is the output channel number and fx and fy de-
pend on the input feature map size cx, cy , stride sx,sy , and
padding px,py , following the relationships:

fx =
cx − kx + 2px

sx
+ 1, fy =

cy − ky + 2py
sy

+ 1 (3)

In Tab. 5, we present an overview of the network. The
events are processed by Layer ID ”1” and sequentially
transmitted to the following layers. Every convolution oper-
ation is followed by a spiking neuron with a spiking thresh-
old of 1 and a minimum voltage membrane of -1. Given
that spike generation is non-differentiable, we use a surro-
gate gradient [14] periodic exponential function [21].

The spikes generated by the final layer are converted to
continuous values using a 1-dimensional non-spiking tem-
poral weighted-sum filter with fixed weights, discussed in
Sec. 4.4. Next, akin to other grid-based methodologies
such as those presented by Redmon et al. [16], we mod-
ify the output layer to consist of 4 × 4 cells, each contain-
ing two 5-dimensional vectors representing the top right
and bottom left coordinates of the bounding box, along
with a confidence score. To refine the bounding box lo-
calization, we employ a post-processing step using Non-
Maximum Suppression (NMS) [8], which helps eliminate
redundant detections by retaining only the highest-scoring
bounding boxes while discarding overlapping alternatives.
In section Sec. 4.5, we present how we compare the predic-
tion to a generated target bounding box synthetically gener-

ated around the original 1-pixel label by expanding it to 2
pixels in each direction.

4.3. Neuron Model

The IAF neuron model, operating after every convolution
layer, is characterized by a straightforward mathematical
formulation. It involves the integration of incoming synap-
tic inputs (convolution operations) and the generation of
a spike once a certain membrane potential threshold is
reached. The dynamics of the IAF neuron are described
by the following differential equation:

τm
dV

dt
= −V (t) +RmIsyn(t) (4)

where V (t) is the membrane potential at time t, τm is
the membrane time constant, Rm is the membrane resis-
tance, and Isyn(t) represents the synaptic input current. The
neuron fires when V (t) surpasses a predefined threshold
V (th) = 1, at which point the membrane potential is re-
set to a resting value V (reset) = 0. One of the key features
of the IAF neuron model is its integration mechanism for in-
coming synaptic inputs. The synaptic input Isyn(t) is often
modeled as a sum of weighted contributions from different
synapses:

Isyn(t) =
∑
j

wj · Ij(t− tj) (5)

where wj represents the synaptic weight, Ij(t−tj) is the
synaptic input spike train arriving at time t from synapse j
with a spike at tj .

4.4. Temporal Weighted-Sum Filter

The implemented temporal weighted-sum filter can be de-
scribed as follows:

y(t) =

N∑
i=1

wi · x(t− i) (6)

where y(t) represents the filtered output at time t, N is
the length of the convolutional kernel, wi denotes the filter
weight at position i in the kernel, and x(t − i) is the input
value at time t− i.

The filter weights (wi) are determined by a ’synaptic
kernel’ S(t) and ’membrane kernel’ M(t), which in turn
are computed based on a membrane constant (τmem) and a
synaptic constant (τsyn):

S(t) = exp

(
− t

τsyn

)
,M(t) = exp

(
− t

τmem

)
(7)

The membrane kernel initializes the weights of a 1D con-
volution applied to the synaptic kernel. The weights wi of
the temporal weighted-sum filter wi are initialized as a re-
sult of the synaptic and membrane kernel convolution.
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Table 5. The network configuration, memory footprint and core compatibility on Speck for each layer.

Layer ID SNN cin cout kx ∗ ky sx ∗ sy NM KMT Cores ID

1
BatchConv 2 16 5× 5 2× 2

0.78 KiB 15.02 KiB allIAF
Pool 2× 2 1× 1

2
BatchConv 16 64 3× 3 1× 1

9.00 KiB 64.00 KiB 0, 1, 2IAF
Pool 2× 2 1× 1

3
BatchConv 64 16 3× 3 1× 1

9.00 KiB 4.00 KiB allIAF
Pool 2× 2 1× 1

4
BatchConv 16 16 3× 3 1× 1

2.25 KiB 1.00 KiB all
IAF

5
BatchConv 16 8 3× 3 1× 1

1.12 KiB 0.50 KiB all
IAF

6
BatchConv 8 16 3× 3 1× 1

1.12 KiB 1.00 KiB all
IAF

7
BatchConv 144 128 1× 1 1× 1

18.00 KiB 1.12 KiB 3, 4, 5, 6
IAF

8
BatchConv 128 160 1× 1 1× 1

34.37 KiB 2.42 Ki
5, 6

IAF

4.5. Loss Function

Our loss function L is a combination of several components:
a box loss Lbox, a confidence loss Lconf , a synaptic loss
Lsyn .

The box loss Lbox measures how well the model can lo-
calize the pupil within the image, by minimizing the mean
squared error distance between the predicted pi and target
ti bounding boxes, represented as:

Lbox =

N∑
i=1

(pi − ti)
2 (8)

The confidence loss Lconf measures how confident the
model is about its prediction, by penalizing low confidence
scores for correct predictions and high confidence scores
for incorrect predictions. This component is calculated as
a mean squared error distance between the predicted and
target confidence scores (ci and gi):

Lconf =

N∑
i=1

(ci − gi)
2 (9)

The synaptic loss Lsyn is the first of our regularization
terms and it ensures that the number of multiply-accumulate
operations performed by the neurons in the network at each
layer is within a range the neuromorphic SoC Speck can
handle (1e6). Lsyn is formulated as the squared differ-
ence between the target synaptic operations with each layer

synaptic operations, normalized by the square of the target
synaptic operations. The total loss L is a weighted sum of
these components. To summarize, the Lboxand Lconf are
tasks losses which are used to detect the pupil in the event
array. The Lsyn is a regularization component in order to
deploy the network on the neuromorphic device.

5. Experiments
5.1. Setup

Our precision results are based on the centroid error in pix-
els extracted from the predicted bounding box. We evalu-
ated the efficiency of our algorithm by measuring the power
(P) [mW] consumption, energy (E) [mJ] consumption and
the latency (L) [ms] on the neuromorphic SoC. In addition,
we evaluated the network complexity with the number of
parameters and Multiply and Accumulate (MAC) opera-
tions. Regarding our implementation, we trained Retina’s
convolution layer M with 8-bit weight parameters (kernel
memory KMT ) and a 16-bit spiking neuron states (neuron
memory NM ). Batch normalization layers are fused to the
convolution blocks in inference. The models are trained for
576 iterations using the ADAM optimizer and a step learn-
ing rate scheduler with a gamma of 0.8. Furthermore, we
reset the states of the neuron at every iteration. The weights
of the losses are λbox = 7.5, λconf = 1.5 and 1e-7 for
λsyn. Finally, we train our models with a batch size of 16,
a sequence length of 64 , and an initial learning rate of 1e-

5689



3. The training takes 1 hour on a single NVIDIA GeForce
RTX 4090.

5.2. Ablation Studies

This section examines the two main components of our
methodology: the dynamic event windows, the temporal
weighted-sum filter as well as the loss function. The ab-
lation studies are performed on the Ini-30 Dataset and using
the best models.

5.2.1 Event-Based Video Recording Slicing

Precision Results: In Tab. 6, we evaluate the effects of
fixed time windows (dt) on the precision of pupil localisa-
tion. The evaluation considers the median, the minimum
and maximum number of events/time-window per bin, see
Tab. 3. The comparison is carried out considering the aver-
age time window. The dynamic event time window consis-
tently outperform the fixed time window on the validation
set.

Table 6. The performance of different event slicing methods.

Method Event Count Time Window Error (px) ↓

Fixed
198

1.1ms 4.40 (± 2.69)
[52, 401]

Dynamic 100
1.1ms 3.54 (± 1.43)

[0.41, 3.1ms]

Fixed
242

1.6ms 5.18 (± 1.37)
[69, 481]

Dynamic 150
1.6ms 3.49 (± 1.18)

[0.63, 4.0ms]

Fixed
277

2.1ms 3.39 (± 1.02)
[84, 541]

Dynamic 200
2.1ms 3.46 (± 1.36)

[0.86, 4.6ms]

Fixed
331

3.0ms 3.71 (± 1.40)
[110, 630]

Dynamic 300
3.0ms 3.24 (± 0.79)

[1.10, 8.4ms]

Firing Rates: In Fig. 3, we provide insights into the firing
rates of the SNN at different network depths. Results show
the dynamic time window of events has considerably lower
firing rate (10% instead of 20%) in the first layer.

5.2.2 Temporal Weighted-Sum Filter

The temporal weighted-sum filter plays a crucial role in en-
hancing the performance of our model. In Tab. 7, we present
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Figure 3. The firing rates of the trained SNN at different network
depths with different slicing methods and time windows.

an evaluation of the impact of two key parameters, namely
τmem and τsyn, on the overall effectiveness of the filter. No-
tably, the without the filter yields an error of 24.46 pixels
(±3.17). Adjusting the values of τmem and τsyn allows for
a tailored optimization of the filter’s performance.

Table 7. The effect of the components of the temporal filter.

Figure τmem τsyn Kernel Size Error (px) ↓

- Not Used 24.46 (±3.17)

B 5 1 20 21.70 (±4.54)
C 1 5 20 8.72 (±4.60)
D 5 5 20 3.24 (± 0.79)
E 10 10 20 3.52 (± 0.89)
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5.2.3 Architecture Components

We conducted additional experiments on variants of the
Retina model, specifically one without neuron state resets
(”Retina w/o resets”) during training and another trained
with 3ET’s loss function (”Retina w/o box”). The latter
variant shares the same network architecture as Retina, ex-
cept for the output layer, which directly predicts pupil coor-
dinates.

Tab. 8 shows the importance of resetting the neuron
states during training and the efficacy of predicting bound-
ing boxes instead of single pixels coordinates.
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Table 8. The performance of our model on the validation set.

Method Error (px) ↓

Retina w/o box 5.89 (± 1.71)
Retina w/o reset 7.99 (± 5.79)

Retina 3.24 (± 0.79)

5.2.4 Latency & Power Consumption

In this section, we present a comprehensive analysis of
the power consumption, energy and latency metrics on the
Speck platform for the two time windows of events, namely
the Dynamic Window (300 events) and the Fixed Window
(3ms). We injected the events bins at sufficiently distant
timestamps (100ms) in order to isolate the response of the
chip. Tab. 9 provides an overview of the power consumption
across various components contributing to the overall power
profile in the Speck namely: Vdd, Vda, (referring to the dig-
ital and analog steps on the DVS), Logic (the power usage
of the SNN), RAM, and I/O. The Dynamic Window can
be used to stabilize the power consumption in case higher
rates of events are expected, however in our test the Fixed
Window was able to utilize the resources available more ef-
ficiently. We computed the latency by calculating the dif-
ference between the timestamp for any given bin from the
input timestamp of the events to the generation of spikes (on
average 1’700) for a prediction.

Table 9. The average and peak latency (L - ms), power consump-
tion (P - mW) and energy (E - mJ) on Speck for the validation
dataset using two time windows of events.

Device Channel Unit Dynamic Fixed

DVS
Vdd

mW

0.03
[0.01-0.05]

Vda
0.6

[0.58-0.63]

Processor

Logic
2.43 1.26

[0.28-14.34] [0.28-15.08]

RAM
1.64 0.90

[0.01-9.44] [0.03-8.95]

I/O
0.10

[0.08-0.23]

Total End-to-End

mW 4.80 2.89

ms 8.01 5.57

mJ 38.40 16.10

5.3. Benchmark Comparison

We quantified the efficacy of our system using the Centroid
Error metric. The validation protocol employed a leave-two
out participant scheme for Ini-30. Tab. 10 presents the cen-
troid error results for a DVS resolution of 64x64x2. The
results of 3ET on the synthetic dataset are different com-
pared to those reported in the original manuscript because
we modified the data pipeline to transmit only 1-bit event
data.

Table 10. The performance of our model on the validation set.

Dataset 3ET [6] Retina

Ini-30 4.48 (± 1.94) 3.24 (± 0.79)
Synthetic (LPW) [6] 5.33 (± 1.59) 6.46 (± 2.49)

In Tab. 11, we present a comprehensive comparison be-
tween our proposed model and the state-of-the-art 3ET [6],
focusing on both the number of parameters and the volume
of MAC operations. Notably, our model demonstrates a
remarkable reduction in complexity, underscoring its effi-
ciency.

Table 11. A breakdown of the network complexity.

Method MAC Operations ↓ Parameters ↓

3ET [6] 107M 418k
Retina 3.03M 63k

6. Discussion and Future Work
As shown in Tab. 8, Retina is less precise when trained with-
out the continuous resetting of neuron states. The ongoing
reset of neuron states may introduce potential disruptions
in continuous tracking on a neuromorphic chip. Exploring
strategies to mitigate this challenge and optimize model per-
formance under those additional hardware constraints is a
promising avenue for future research.

7. Conclusion
Our work describes an energy-efficient (5mW , end-to-
end), low latency (6ms, end-to-end), and accurate (3-
4px) neuromorphic approach for eye tracking, leverag-
ing the strengths of the neuromorphic form of both sen-
sor and processor, and a truly lightweight and deploy-
able spiking neural network model. The presented model
demonstrates better than baseline precision with signif-
icantly reduced computational complexity. Finally, we
hope the introduced event-based eye-tracking dataset Ini-
30 could promote further exploration in the realm of
real-world ultra-low power wearable eye-tracking technol-
ogy.
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